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We propose the topological object, a gravitational knot, could exist in Newton’s theory of gravitation by
assuming that the Ricci curvature tensor especially the metric tensor consists of a scalar field i.e. a subset of
the Ricci curvature tensor. The Chern-Simons action is interpreted as such a knot.
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I. INTRODUCTION

It is commonly believed there exists no topological ob-
ject in the linear theory, such as Newton’s theory of grav-
itation. It is because a topological theory must be a
non-linear theory1. How could a gravitational knot exist
in Newton’s linear theory of gravitation (the weak-field
limit of Einstein’s non-linear theory of gravitation)?

We consider that identical to the existence of a topo-
logical structure in Maxwell’s gauge theory in vacuum
space1,2, the curvature especially the metric tensor (the
set of the solutions of Einstein field equations) in empty
space has a subset field with a topological structure.
Empty space here means that there is no matter present
and there is no physical fields exist except the weak
gravitational field. The weak gravitational field does
not disturb the emptiness. But other fields disturb the
emptiness3.

A subset field is locally equal to curvature i.e. curva-
ture can be obtained by patching together subset fields
(except in a zero-measure set) but globally different. The
difference between the subset fields and the curvature in
empty space is global instead of local since the subset
fields obey the topological quantum condition but the
curvature or the metric tensor does not.

Curvature in Newton’s theory of gravitation satisfies
a linear field equation, but a subset field satisfies a non-
linear field equation. Both, curvature and a subset field,
satisfy a linear field equation in the case of the weak field
of gravitation. It means that, in the case of the weak
field, a non-linear subset field theory reduces to Newton’s
linear theory of gravitation.

In this article, we propose there exists a knot (a gravi-
tational knot) in Newton’s theory of gravitation in empty
space. This gravitational knot could exist in Newton’s
theory of gravitation in empty space because Newton’s
theory of gravitation in empty space is the weak-field
limit2 of a non-linear subset field theory. To the best
of our knowledge1,4–6, the formulation of such a knot (a
weak field gravitational knot) in Newton’s theory of grav-
itation has not been done yet.

II. WEAK-FIELD LIMIT OF GRAVITATION

In the limit of weak gravitational fields, low velocities
(of sources), and small pressure, the general theory of rel-
ativity reduces to Newton’s theory of gravitation7. In the
case of the weak field, linearization (we assume that we
ignore the non-linear terms of connection8) of the Ricci
curvature tensor yields7

Rµν = ∂αΓαµν − ∂νΓαµα (1)

This equation is identical to Abelian field strength in elec-
trodynamics where the curvature (the Ricci tensor), Rµν ,
is identical to the field strength, Fµν , and the connection
(Christoffel symbol), Γαµα, is identical to the gauge po-
tential, Aµ.

In the case of the weak-field limit where the source of
gravitation is static8, we could write Newton’s theory of
gravitation7,9,10 as a linear equation written below

Rtt = ~∇ · ~∇Φ = ∇2Φ (2)

where Rtt is the time-time component of the Ricci curva-
ture tensor, ∇2 (div of grad) is the Euclidean Laplacian
operator with respect to space, Φ is the (scalar) potential

of gravitation, ~g is the gravitational field, ~g = ~∇Φ, and

∇2Φ = 4πρ (3)

is Poisson’s equation7, ρ is the mass density. By sub-
stituting eq.(3) into eq.(2) we obtain Newton’s theory of
gravitation expressed as Newtonian field equation7

Rtt = 4πρ (4)

We see that eq.(4) as a consequence of the spherical
symmetry of eq.(1) i.e. only Rtt component is signif-
icant and the others are zero. The spherical symme-
try is assumed because the form of gravitational objects
is assumed to be a sphere at infinite r. The value of
Rtt = ∇2Φ due to the weak field of gravitation measured
or observed at infinite r i.e. far from sources.

III. SUBSET FIELDS PROPERTY AND MAPS S3 → S2

Let us consider maps of subset fields (consisting of
complex scalar fields) from a finite radius r to an infi-
nite r implies from the stronger field to the weak field.



A scalar field has properties that, by definition, its value
for a finite r depends on the magnitude and the direc-
tion of the position vector, ~r, but for an infinite r it
is well-defined2 (it depends on the magnitude only). In
other words, for an infinite r, a scalar field is isotropic.
Throughout this article, we will work with the classical
scalar field.

The property of such scalar fields can be interpreted
as maps S3 → S21 where S3 and S2 are 3-dimensional
and 2-dimensional spheres respectively i.e. after identify-
ing via stereographic projection, 3-dimensional physical
space, R3 ∪ {∞}, with the sphere S3 and the complete
complex plane, C ∪ {∞}, with the sphere S2.

These maps S3 → S2 can be classified in homotopy
classes labeled by the value of the corresponding Hopf in-
dexes, integer numbers, and the topological invariants1,2.
The other names of the topological invariants are the
topological charge, and the winding number (the de-
gree of a continuous mapping)11. The topological charge
which is independent of the metric tensor could be inter-
preted as energy12.

We see there exists (one) dimensional reduction in such
maps. We consider this dimensional reduction as a conse-
quence of the isotropic (well-defined) property of a scalar
field for an infinite r. The property of a scalar field as
a function of space seems likely in harmony with the
property of space-time itself. Space-time could be lo-
cally anisotropic but globally isotropic (the distribution
of matter-energy in the universe is assumed to be homo-
geneous).

IV. HOPF INVARIANT AND ABELIAN
CHERN-SIMONS

Let us discuss the maps above more formally. As we
mentioned we have a scalar field as a function of the posi-
tion vector, ea(~r), with a property that can be interpreted
using the non-trivial Hopf map written below1,2

ea(~r) : S3 → S2 (5)

This non-trivial Hopf map is related to the Hopf
invariant13, H, expressed as an integral13–15

H =

∫
S3

ω ∧ dω (6)

where ω is a 1-form on S313 and dω is a 2-form.
The relation between the Hopf invariant and the Hopf

index, h, can be written explicitly as1

H = h γ2 (7)

where γ is the total strength of the field which is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

Related to gauge theory and magnetohydrodynam-
ics (self-helicity), it can be interpreted naturally that
the Hopf invariant has a deep relationship with the

Abelian Chern-Simons action (the Abelian Chern-Simons
integral)13.

The Hopf invariant is just the winding number of Gauss
mapping13. Hopf invariant or the Chern-Simons inte-
gral is an important topological invariant to describe the
topological characteristics of the knot family13,16. In a
more precise expression, the Hopf invariant or the Chern-
Simons integral is the total sum of all the self-linking and
all the linking numbers of the knot family13,16. The self-
linking and linking numbers by themselves have a topo-
logical structure.

V. NON-LINEAR SUBSET FIELD AND LINEARIZED
RICCI THEORIES

We assume that a subset field, a scalar field, a compo-
nent of the curvature, ea, as a map of the gravitational
theory in (3+1) to (2+1)-dimensional space-time written
below

ea(~r, t) : M3+1 →M2+1 (8)

where M denotes manifold.
The map (8) has a consequence (by considering that

the field strength is identical to the curvature) that we
could write the Ricci curvature tensor as

Raµν ≈
∂µe

a∗∂νe
a − ∂νea

∗
∂µe

a

(1 + ea∗ea)2
(9)

where ea is a subset of Ricci curvature tensor, and ea
∗

is the complex conjugate of ea. Eq.(9) is the non-linear
equation where the nonlinearity is shown by the ea

∗
ea

term in the denominator. The superscript index a in ea

represents a set of indices that label the components of
the scalar field.

In the case of the weak field, the scalar field is very
small, ea << 1, so eq.(9) reduces to a linear equation as
written below

Raµν ≈ ∂µea
∗
∂νe

a − ∂νea
∗
∂µe

a (10)

This linear equation (10) is equivalent to eq.(1). It means
that the linearized Ricci theory (1) could be interpreted
as the same as the Ricci theory in the case of the weak
field (10).

We see from eq.(5) that a scalar field in a non-trivial
Hopf map is written as ea(~r), i.e. a time-independent
scalar field. It differs from a time-dependent scalar field
ea(~r, t) in eq.(8). This problem could be solved by in-
terpreting some of the quantities that appear in Hopf’s
theories as Cauchy’s initial time values17.

VI. SCALAR AND TRIAD FIELDS AS POTENTIAL

We consider the scalar field, ea, as the scalar potential
and it could be interpreted similarly to linearized met-
ric perturbation. Linearized metric perturbations take
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a role as ”potentials” in linearized gravitation identical
to electric (scalar) and magnetic (vector) potentials in
electromagnetism18. Linearized metric perturbation can
be written as18

hab = ρab e
i~k·~r (11)

where ρab is amplitude and ~k is wave vector. In empty
space, a weak field, the amplitude is constant. Eq.(11)
shows us that the linearized metric perturbation can be
understood in terms of the wave.

Analog to eq.(11), we propose that the scalar field and
the triad field could be written in terms of the wave,
respectively as19

ea = ρaeiq (12)

and

eρa = fa ∂ρq (13)

where ρa is the amplitude, q is the phase, fa =
−1/

{
2π[1 + (ρa)2]

}
, fa and q are the Clebsch

variables17. We see from eq.(13) that the triad field could
be viewed as vector potential20. The subscript index ρ
in eρa represents space-time coordinates.

We consider that Ricci tensor (10) is identical to the
field strength tensor of electromagnetic, Fµν = ∂µAν −
∂νAµ. By using eq.(13), Ricci tensor (10) could be writ-
ten as17

Raµν ≈ ∂µ(fa ∂νq)− ∂ν(fa ∂µq) (14)

This is the Ricci tensor written in term of the Clebsch
variables.

VII. A GRAVITATIONAL KNOT

In the three or (2+1)-dimensional general theory of
relativity, the dynamics is topology21. Roughly speak-
ing, the (2+1)-dimensional general theory of relativity
could be interpreted as a Chern-Simons three form22

where Chern-Simons theory is topological gauge the-
ory in three dimensions21. The Chern-Simons action
precisely coincides with the (2+1)-dimensional Einstein-
Hilbert action22,23. Chern-Simons theory was discovered
in the context of anomalies and used as a rather exotic toy
model for gauge systems in 2+1 dimensions ever since24.

The (2+1)-dimensional Abelian Chern-Simons action
could be written as22,23

SCS =

∫
M

εµνρ eρa R
a
µν d

3r (15)

where εµνρ is the Levi-Civita symbol. By substituting
eqs.(13), (14), into eq.(15) we obtain

SCS ≈
∫
M

εµνρ fa ∂ρq {∂µ(fa ∂νq)− ∂ν(fa ∂µq)} d3r

(16)

The action, SCS , (16) is related to a topological object i.e.
a knot22, a gravitational knot (a gravitational helicity),
an integer number. This integer number is what we mean
with the subset fields obeying the topological quantum
condition.

VIII. DISCUSSION AND CONCLUSION

The proposal that curvature i.e. Ricci curvature tensor
has a subset field, ea, a scalar field (a scalar potential)
has deep and far-reaching consequences. One of the con-
sequences is that we can formulate the Ricci curvature
tensor in non-linear form using the scalar field and its
conjugate complex field (9).

In the case of empty space or weak field, the non-linear
Ricci curvature tensor (9) reduces to the linearized Ricci
curvature tensor (10) where Newton’s theory of gravita-
tion in the form of a subset field, a scalar field, could
be derived from eq.(10). The linearized Ricci curvature
tensor (10) is locally equivalent to eq.(1), but globally
different. Eq.(1) is no longer valid globally.

We assume that a subset field, a scalar field, or a com-
ponent of Ricci curvature tensor, as a map of gravita-
tional theory in (3+1) to (2+1)-dimensional space-time.
It implies there exists (one) dimensional reduction in such
a map. We consider this dimensional reduction as a con-
sequence of the isotropic (well-defined) property of a sub-
set field, a scalar field, for an infinite r i.e. for infinite
distance from the source the gravitational field is weak.
It implies also that the linearized Ricci curvature tensor
and its derived Newton’s theory of gravitation can be
formulated in (2+1)-dimensional space-time.

The remarkable one, as we mentioned that the (2+1)-
dimensional general theory of relativity could be inter-
preted as a Chern-Simons (topological gauge theory)
three form, it has a consequence that we could relate
and interpret (2+1)-dimensional linearized Ricci curva-
ture tensor (10) and its derived Newton’s theory of gravi-
tation as Chern-Simons three form in (2+1)-dimensional
space-time where its action is related to a gravitational
knot, an integer number (16). It means that the subset
fields obey the topological quantum condition.
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