
A ‘trinionic’ representation of a classical group

Kohji Suzuki*

kohji@fastmail.com

Abstract

We apply ‘trinions’ put forward in viXra:1712.0131 [v1] to the Lie group SU(3) to discuss
some physical matters.

1 Glossary
0 or 0⃗: zero vector .

a ∈ A: a is a member of the set A.

A := B : A is defined as B.

AT: transpose of a matrix A .

C: the set of complex numbers .

CP or ×: cross product .

det: determinant .

DP: dot product .

ı: imaginary unit .

In: n× n identity matrix .

LHS: left-hand side .

MI: mathematical induction .

MT: multiplication table .

N : {1, 2, 3, . . .} .

N0 : N ∪ 0.

O: the origin O(0, 0, 0) .

On: n× n null matrix .

R: the set of real numbers .
* Protein Science Society of Japan

1

https://en.m.wikipedia.org/wiki/Zero_element#Additive_identities
https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols#Set_and.2For_logic_notation
https://en.wikipedia.org/wiki/List_of_mathematical_symbols_by_subject#Definition_symbols
https://en.wikipedia.org/wiki/Transpose#Transpose_of_a_matrix
https://www.symbols.com/symbol/complex-numbers
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Determinant
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Imaginary_unit
https://en.wikipedia.org/wiki/Identity_matrix#Terminology_and_notation
https://en.wikipedia.org/wiki/Sides_of_an_equation
https://en.wikipedia.org/wiki/Mathematical_induction
https://en.wikipedia.org/wiki/Multiplication_table
https://en.wikipedia.org/wiki/Natural_number#Notation
https://oeis.org/wiki/List_of_LaTeX_mathematical_symbols#Set_and.2For_logic_notation
https://en.wikipedia.org/wiki/Origin_(mathematics)#Cartesian_coordinates
https://en.wikipedia.org/wiki/Zero_matrix
https://www.symbols.com/symbol/real-numbers
http://archive.fo/Ac1u8

RHS: right-hand side .

Rn: the vector space of n-tuples x = (x1, . . ., xn) with each xi ∈ R .

SU(n): special unitary group of degree n .

tr: trace .

VTP: vector triple product .

wrt: with respect to .

|x|: absolute value of x .

x⃗ ⊥ y⃗: vector x is perpendicular to vector y .

x⃗ ̸⊥ y⃗: vector x is not perpendicular to vector y.

2 Introduction and preliminary computation
The Lie group SU(3) , a classical group , has been known to be very useful physically [1], where-

as we don’t know what to do about its waywardness [2]. So we try applying ‘trinions’ (tr’s 1) [3]
to it to get some insights. At the outset, we write a 3× 3 ‘trinionic’ matrix A explicitly:

A =

 a11 + b11i+ c11j a12 + b12i+ c12j a13 + b13i+ c13j
a21 + b21i+ c21j a22 + b22i+ c22j a23 + b23i+ c23j
a31 + b31i+ c31j a32 + b32i+ c32j a33 + b33i+ c33j

,

where amn, bmn, cmn ∈ R with m, n ∈ N and 1 ≤ m, n ≤ 3. Recalling the definitions of special
unitarity, we demand A satisfy

A†A = I3 , (1)

and

detA = 1 . (2)

Then, we compute the LHS of (1).

A†A =

 a11 + b11i+ c11j a12 + b12i+ c12j a13 + b13i+ c13j
a21 + b21i+ c21j a22 + b22i+ c22j a23 + b23i+ c23j
a31 + b31i+ c31j a32 + b32i+ c32j a33 + b33i+ c33j


† 2

1Not to be confused with tr.
2The character ‘†’ is defined like the case of quantum mechanics .

2

https://www.wikiwand.com/en/Sides_of_an_equation
https://en.wikipedia.org/wiki/Real_coordinate_space#Definition_and_structures
https://en.wikipedia.org/wiki/Special_unitary_group
https://en.wikipedia.org/wiki/Trace_(linear_algebra)#Definition
https://en.wikipedia.org/wiki/Triple_product#Vector_triple_product
https://en.wikipedia.org/wiki/List_of_mathematical_abbreviations
https://en.wikipedia.org/wiki/Absolute_value#Definition_and_properties
https://en.wikipedia.org/wiki/Up_tack#Perpendicular_symbol
https://en.wikipedia.org/wiki/Lie_group#Matrix_Lie_groups
https://en.wikipedia.org/wiki/Classical_group
https://en.wikipedia.org/wiki/Unitary_matrix
https://en.wikipedia.org/wiki/Special_unitary_group#The_group_SU(3)
https://handwiki.org/wiki/Conjugate_transpose#Definition

·

 a11 + b11i+ c11j a12 + b12i+ c12j a13 + b13i+ c13j
a21 + b21i+ c21j a22 + b22i+ c22j a23 + b23i+ c23j
a31 + b31i+ c31j a32 + b32i+ c32j a33 + b33i+ c33j


=

 a11 − b11i− c11j a21 − b21i− c21j a31 − b31i− c31j
a12 − b12i− c12j a22 − b22i− c22j a32 − b32i− c32j
a13 − b13i− c13j a23 − b23i− c23j a33 − b33i− c33j


·

 a11 + b11i+ c11j a12 + b12i+ c12j a13 + b13i+ c13j
a21 + b21i+ c21j a22 + b22i+ c22j a23 + b23i+ c23j
a31 + b31i+ c31j a32 + b32i+ c32j a33 + b33i+ c33j

,

which we rewrite as

 b11 b12 b13
b21 b22 b23
b31 b32 b33

 = B.

For convenience, we reproduce the MT of tr’s [3, Table 1]:

× 1 i j
1 1 i j
i i 0 0
j j 0 0

From now on, tr-related calculations will be performed according to the above table.
We compute each entry of B explicitly.

b11 = (a11 − b11i− c11j) · (a11 + b11i+ c11j) + (a21 − b21i− c21j) · (a21 + b21i+ c21j)

+(a31 − b31i− c31j) · (a31 + b31i+ c31j)

= a211 + a221 + a231,

b12 = (a11 − b11i− c11j) · (a12 + b12i+ c12j) + (a21 − b21i− c21j) · (a22 + b22i+ c22j)

+(a31 − b31i− c31j) · (a32 + b32i+ c32j)

= a11a12 + (a11b12 − a12b11)i+ (a11c12 − a12c11)j

+a21a22 + (a21b22 − a22b21)i+ (a21c22 − a22c21)j

+a31a32 + (a31b32 − a32b31)i+ (a31c32 − a32c31)j,

3

b13 = (a11 − b11i− c11j) · (a13 + b13i+ c13j) + (a21 − b21i− c21j) · (a23 + b23i+ c23j)

+(a31 − b31i− c31j) · (a33 + b33i+ c33j)

= a11a13 + (a11b13 − a13b11)i+ (a11c13 − a13c11)j

+a21a23 + (a21b23 − a23b21)i+ (a21c23 − a23c21)j

+a31a33 + (a31b33 − a33b31)i+ (a31c33 − a33c31)j,

b21 = (a12 − b12i− c12j) · (a11 + b11i+ c11j) + (a22 − b22i− c22j) · (a21 + b21i+ c21j)

+(a32 − b32i− c32j) · (a31 + b31i+ c31j)

= a11a12 + (a12b11 − a11b12)i+ (a12c11 − a11c12)j

+a21a22 + (a22b21 − a21b22)i+ (a22c21 − a21c22)j

+a31a32 + (a32b31 − a31b32)i+ (a32c31 − a31c32)j,

b22 = (a12 − b12i− c12j) · (a12 + b12i+ c12j) + (a22 − b22i− c22j) · (a22 + b22i+ c22j)

+(a32 − b32i− c32j) · (a32 + b32i+ c32j)

= a212 + a222 + a232,

b23 = (a12 − b12i− c12j) · (a13 + b13i+ c13j) + (a22 − b22i− c22j) · (a23 + b23i+ c23j)

+(a32 − b32i− c32j) · (a33 + b33i+ c33j)

= a12a13 + (a12b13 − a13b12)i+ (a12c13 − a13c12)j

+a22a23 + (a22b23 − a23b22)i+ (a22c23 − a23c22)j

+a32a33 + (a32b33 − a33b32)i+ (a32c33 − a33c32)j,

b31 = (a13 − b13i− c13j) · (a11 + b11i+ c11j) + (a23 − b23i− c23j) · (a21 + b21i+ c21j)

+(a33 − b33i− c33j) · (a31 + b31i+ c31j)

= a11a13 + (a13b11 − a11b13)i+ (a13c11 − a11c13)j

+a21a23 + (a23b21 − a21b23)i+ (a23c21 − a21c23)j

+a31a33 + (a33b31 − a31b33)i+ (a33c31 − a31c33)j,

b32 = (a13 − b13i− c13j) · (a12 + b12i+ c12j) + (a23 − b23i− c23j) · (a22 + b22i+ c22j)

+(a33 − b33i− c33j) · (a32 + b32i+ c32j)

= a12a13 + (a13b12 − a12b13)i+ (a13c12 − a12c13)j

+a22a23 + (a23b22 − a22b23)i+ (a23c22 − a22c23)j

+a32a33 + (a33b32 − a32b33)i+ (a33c32 − a32c33)j,

b33 = (a13 − b13i− c13j) · (a13 + b13i+ c13j) + (a23 − b23i− c23j) · (a23 + b23i+ c23j)

+(a33 − b33i− c33j) · (a33 + b33i+ c33j)

= a213 + a223 + a233.

Equating the above with entries of I3, one gets the following equations.

4



a211 + a221 + a231 = 1,

a11a12 + a21a22 + a31a32 = 0,

a11b12 − a12b11 + a21b22 − a22b21 + a31b32 − a32b31 = 0,

a11c12 − a12c11 + a21c22 − a22c21 + a31c32 − a32c31 = 0,

a11a13 + a21a23 + a31a33 = 0,

a11b13 − a13b11 + a21b23 − a23b21 + a31b33 − a33b31 = 0,

a11c13 − a13c11 + a21c23 − a23c21 + a31c33 − a33c31 = 0,

a11a12 + a21a22 + a31a32 = 0,

a12b11 − a11b12 + a22b21 − a21b22 + a32b31 − a31b32 = 0,

a12c11 − a11c12 + a22c21 − a21c22 + a32c31 − a31c32 = 0,

a212 + a222 + a232 = 1,

a12a13 + a22a23 + a32a33 = 0,

a12b13 − a13b12 + a22b23 − a23b22 + a32b33 − a33b32 = 0,

a12c13 − a13c12 + a22c23 − a23c22 + a32c33 − a33c32 = 0,

a11a13 + a21a23 + a31a33 = 0,

a13b11 − a11b13 + a23b21 − a21b23 + a33b31 − a31b33 = 0,

a13c11 − a11c13 + a23c21 − a21c23 + a33c31 − a31c33 = 0,

a12a13 + a22a23 + a32a33 = 0,

a13b12 − a12b13 + a23b22 − a22b23 + a33b32 − a32b33 = 0,

a13c12 − a12c13 + a23c22 − a22c23 + a33c32 − a32c33 = 0,

a213 + a223 + a233 = 1.

We notice a certain kind of duplication in the above. For example, the equations a11c12 − a12c11 +
a21c22 − a22c21 + a31c32 − a32c31 = 0 and a12c11 − a11c12 + a22c21 − a21c22 + a32c31 − a31c32 = 0,
which seem different, are essentially the same, since multiplying the LHS and RHS of the former
by −1 amounts to the latter. Omitting such duplication, one simplifies these equations to

5



a211 + a221 + a231 = 1, (3)

a212 + a222 + a232 = 1, (4)

a213 + a223 + a233 = 1, (5)

a11a12 + a21a22 + a31a32 = 0, (6)

a11a13 + a21a23 + a31a33 = 0, (7)

a12a13 + a22a23 + a32a33 = 0, (8)

a12b11 − a11b12 + a22b21 − a21b22 + a32b31 − a31b32 = 0, (9)

a11c12 − a12c11 + a21c22 − a22c21 + a31c32 − a32c31 = 0, (10)

a13b11 − a11b13 + a23b21 − a21b23 + a33b31 − a31b33 = 0, (11)

a13c11 − a11c13 + a23c21 − a21c23 + a33c31 − a31c33 = 0, (12)

a12b13 − a13b12 + a22b23 − a23b22 + a32b33 − a33b32 = 0, (13)

a12c13 − a13c12 + a22c23 − a23c22 + a32c33 − a33c32 = 0. (14)

3 Managing to get an example
Solving (3)− (14) in a resounding manner does seem a daunting task. So we would like to rely on
intuition to some extent. 3 Starting with (3)− (5), we intuitively set

(a11, a21, a31, a12, a22, a32, a13, a23, a33) = (1, 0, 0, 0, 1, 0, 0, 0, 1). (15)

Fortunately, (15) happens to satisfy (6) − (8), giving us some clues. Next, using it, we make
(9)− (14) simpler: 

−b12 + b21 = 0,

c12 − c21 = 0,

−b13 + b31 = 0,

−c13 + c31 = 0,

b23 − b32 = 0,

c23 − c32 = 0.

Again, we intuitively set

(b12, b13, b21, b23, b31, b32, c12, c13, c21, c23, c31, c32) = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1). (16)

3Of course, we are aware that we can miss something important due to the very imperfection of our intuition.

6

Unknowns we haven’t considered yet include b11, b22, b33, c11, c22, and c33, all of which we set to
be 0 for the sake of simplicity. Taken together, we are led to the matrix

C =

 1 i+ j i+ j
i+ j 1 i+ j
i+ j i+ j 1

.

We immediately notice the following.

Property 3.1. trC = 3.

What about detC, then? Using the Leibniz formula , we compute

1 ·
∣∣∣∣ 1 i+ j
i+ j 1

∣∣∣∣− (i+ j) ·
∣∣∣∣i+ j i+ j
i+ j 1

∣∣∣∣+ (i+ j) ·
∣∣∣∣i+ j 1
i+ j i+ j

∣∣∣∣
= 1·{1·1−(i+j)·(i+j)}−(i+j)·{(i+j)·1−(i+j)·(i+j)}+(i+j)·{(i+j)·(i+j)−1·(i+j)}
= 1− (i+ j)2 − (i+ j)2 + (i+ j)3 + (i+ j)3 − (i+ j)2

= 1.

So we point out

Property 3.2. detC = 1.

The above Property is found to satisfy (2). By the way, is (1) satisfied like (2)? Since the entries
of C come from the values satisfying (1), actually, we don’t have to check whether C†C = I3
holds. That said, we compute

C†C =

 1 i+ j i+ j
i+ j 1 i+ j
i+ j i+ j 1


†  1 i+ j i+ j

i+ j 1 i+ j
i+ j i+ j 1


=

 1 −i− j −i− j
−i− j 1 −i− j
−i− j −i− j 1


 1 i+ j i+ j

i+ j 1 i+ j
i+ j i+ j 1


=

 1 0 0
0 1 0
0 0 1

 = I3

just for the sake of confirmation. As expected, C has been shown to satisfy (1). So we can say we
have obtained the below example of A (rather) intuitively.

Example 3.3.  1 i+ j i+ j
i+ j 1 i+ j
i+ j i+ j 1

.

7

https://en.wikipedia.org/wiki/Determinant#Leibniz_formula

Talking of the computation of DP of rows (or columns) of such a matrix, two ways are think-
able. One is to regard them as (usual) real vectors . For example, we compute the DP of the first
and second rows of the above example in this way:

1 · (i+ j) + (i+ j) · 1 + (i+ j) · (i+ j) = 2(i+ j).

The other is to treat them as if they were complex vectors . For example, we compute the DP of
the first and second columns of the same example in this way: 4

1 · i+ j + (i+ j) · 1 + (i+ j) · i+ j = 1 · −(i+ j) + (i+ j) · 1 + (i+ j) · −(i+ j) = 0.

Taking footnote 2 into consideration, we will adopt the latter.
Incidentally, since matrices spanning the Lie algebra of SU(3) are Hermitian , we try to know

whether it is also the case with C. Since

C† =

 1 −i− j −i− j
−i− j 1 −i− j
−i− j −i− j 1

̸=

 1 i+ j i+ j
i+ j 1 i+ j
i+ j i+ j 1

,

 −1 −i− j −i− j
−i− j −1 −i− j
−i− j −i− j −1

,

it turns out that C† ̸= C, −C. We thus point out the following.

Property 3.4. C is neither Hermitian nor skew-Hermitian .

4 Some decomposition
We decompose C by writing

C =

 1 0 0
0 1 0
0 0 1

+

 0 i+ j i+ j
i+ j 0 i+ j
i+ j i+ j 0

 = I3 +D (17)

and compute the DP’s of each row of D as mentioned earlier. 5

First and second rows

(0, i+ j, i+ j) · (i+ j, 0, i+ j) = (0, i+ j, i+ j) · (−i− j, 0, −i− j) = 0.

Second and first rows

(i+ j, 0, i+ j) · (0, i+ j, i+ j) = (i+ j, 0, i+ j) · (0, −i− j, −i− j) = 0.

4 In what follows, x̄ denotes the conjugate of x. Cf. [3, Def. 2.1.4].
5
Similar computations wrt columns are left to the reader as an exercise.

8

https://en.wikipedia.org/wiki/Dot_product#Coordinate_definition
https://en.wikipedia.org/wiki/Dot_product#Complex_vectors
https://en.wikipedia.org/wiki/Gell-Mann_matrices
https://en.wikipedia.org/wiki/Conjugate_transpose#Basic_remarks
https://handwiki.org/wiki/Conjugate_transpose#Basic_remarks
https://en.wikipedia.org/wiki/Complex_conjugate

Second and third rows

(i+ j, 0, i+ j) · (i+ j, i+ j, 0) = (i+ j, 0, i+ j) · (−i− j, −i− j, 0) = 0.

Third and second rows

(i+ j, i+ j, 0) · (i+ j, 0, i+ j) = (i+ j, i+ j, 0) · (−i− j, 0, −i− j) = 0.

Third and first rows

(i+ j, i+ j, 0) · (0, i+ j, i+ j) = (i+ j, i+ j, 0) · (0, −i− j, −i− j) = 0.

First and third rows

(0, i+ j, i+ j) · (i+ j, i+ j, 0) = (0, i+ j, i+ j) · (−i− j, −i− j, 0) = 0.

So we point out the following.

Property 4.0.1. Rows of D are orthogonal like those of a unitary matrix .

We then make the following claim.

Claim 4.0.2. Cn = I3+nD, where n ∈ N0. (18)

Proof. MI on n. First, we compute

D2 =

 0 i+ j i+ j
i+ j 0 i+ j
i+ j i+ j 0


 0 i+ j i+ j

i+ j 0 i+ j
i+ j i+ j 0

 =

 0 0 0
0 0 0
0 0 0

 . (19)

Next, we note when n = 0, the LHS of (18) is C0 = I3, so is its RHS, which means that (18)
holds for n = 0. We now assume that (18) holds for n = k, that is, we assume we have

Ck = I3 + kD.

It follows from (17) that

Ck · C = (I3 + kD) · (I3 +D).

That is, Ck+1 = I23 + I3 ·D + kD · I3 + kD ·D = I3 +D + kD + kD2. Using (19), we get

Ck+1 = I3 + (k + 1)D,

which means that (18) holds also for n = k + 1.

□

9

https://en.wikipedia.org/wiki/Dot_product#Properties
https://en.wikipedia.org/wiki/Unitary_matrix#Equivalent_conditions
https://en.wikipedia.org/wiki/Tombstone_(typography)#/media/File:Halmos_symbols.png

4.1 Another kind of decomposition
We can also write

C =

 1 0 0
0 1 0
0 0 1

+(i+j)

 0 1 1
0 0 1
0 0 0

+(i+j)

 0 0 0
1 0 0
1 1 0

 = I3+(i+j)E+(i+j)F .

Remark 4.1.1. F = ET, and E = X + Y + Z in terms of Heisenberg algebra , where

X =

 0 1 0
0 0 0
0 0 0

, Y =

 0 0 0
0 0 1
0 0 0

, Z =

 0 0 1
0 0 0
0 0 0

.

Remark 4.1.2. Using E and F , (18) can be rewritten as Cn = I3 + n(i+ j)E + n(i+ j)F .

4.2 Yet another kind of decomposition
C can also be written as

C =

 1 0 0
0 1 0
0 0 1

+

 0 i j
j 0 i
i j 0

+

 0 j i
i 0 j
j i 0

 = I3 +H + J .
6

5 On n× n ‘special trace matrix’, STn

Inspired by Properties 3.1 and 3.2, we get the idea of n × n ‘special trace matrix’, which is
abbreviated as STn and defined as follows.

Definition 5.1. det(STn) = 1.

Definition 5.2. tr(STn) = n.

Example 5.3. By the above definitions, C is a kind of ST3.

Example 5.4. Likewise, ST1 = 1, if we can think of the natural number 1 as a 1 × 1 matrix
whose det and tr are 1.

6We refrain from using the character ‘I’, in case it should be confused with I3.

10

https://en.wikipedia.org/wiki/Heisenberg_group#Heisenberg_algebra

N.B. In what follows, ‘ı’ needs to be differentiated from ‘i’.

Examples 5.5. Likewise,

1) I2 is a kind of ST2;

2) Likewise,
 2 −1

1 0

 is a kind of ST2;

3)
 1 + ı −ı

ı 1− ı

 is a kind of ST2.

Notation 5.6. We write STn,R instead of STn, when we wish to put an emphasis on the fact that
each entry of STn is a real number .

Example 5.7.

 1 0 0
3 −1 −2
5 2 3

 is a kind of ST3,R.

Notation 5.8. Likewise, we can write STn,C instead of STn.

Example 5.9.

 2 + ı 1 + ı 1− ı
ı 2− 2ı −1 + ı

−1 + ı 7
4
− ı −1 + ı

 is a kind of ST3,C.

6 X3 + Y 3 + Z3 − 3XY Z = x3 + y3 + z3 − 3xyz: ‘distance-
preservation’ by coincidence?

Consider the transformation given by I3 +H: 7

 X
Y
Z

 =

 1 i j
j 1 i
i j 1


 x

y
z

.

Remark 6.1. det of the above matrix is 1, tr of it being 3.

We then compute

X3 + Y 3 + Z3 − 3XY Z = (x+ iy + jz)3 + (jx+ y + iz)3 + (ix+ jy + z)3

−3(x+ iy + jz) · (jx+ y + iz) · (ix+ jy + z)

= x3 + 3x2(yi+ jz) + y3 + 3y2(zi+ jx) + z3 + 3z2(xi+ yj)

−3{xyz + i(x2y + y2z + z2x) + j(x2z + y2x+ z2y)}
= x3 + y3 + z3 − 3xyz.

Letting dist:=x3+y3+z3−3xyz 8 , we note that dist remains the same after such a transformation.
7For a similar transformation, see Appendix 9.2, in which I3 + J plays a role.
8Cf. [4].

11

https://en.wikipedia.org/wiki/Real_number

Here we recall ‘distance-preserving’ examples such as

 X
Y

 =

 cos θ − sin θ
sin θ cos θ

 x
y


under which X2 + Y 2 = x2 + y2 holds and X

Y

 =

 cosh θ sinh θ
sinh θ cosh θ

 x
y


under which X2 − Y 2 = x2 − y2 holds.

Moreover, we let a⃗ = (x, y, z), b⃗ = (y, z, x), c⃗ = (z, y, x) and consider the parallelepiped,
whose volume V is given by | (a⃗× b⃗) · c⃗ | , where the character ‘·’ denotes DP . Then, V = | ((x,
y,z) × (y, z, x)) · (z, x, y) | = |3xyz − x3 − y3 − z3| = | − (x3 + y3 + z3 − 3xyz)| = | − dist|.

We have thus caught a glimpse of the relevance of tr’s to two-/three-dimensional spaces, even
if it is coincidence. This prompts us to seek for their physical significance.

7 Physical application(s) of tr’s: when CP is associative wrt
multiplication

We have dealt with SU(3), a Lie group , whereas its corresponding Lie algebra is su(3) . Since R3

equipped with the Lie bracket given by CP, which we encountered in the previous section, is one
of the examples of such algebras [5], we examine whether tr’s have something to do with CP.

7.1 Checking whether tr’s are associative wrt multiplication
First, we check if tr’s are associative wrt multiplication. Let

tr1 = a1 + b1i+ c1j,

tr2 = a2 + b2i+ c2j,

tr3 = a3 + b3i+ c3j,

where ai, bi, ci ∈ R with i ∈ N and 1 ≤ i ≤ 3. Next, we compute

(tr1 · tr2) · tr3 = {(a1 + b1i+ c1j) · (a2 + b2i+ c2j)} · (a3 + b3i+ c3j)
= {a1a2 + (a1b2 + a2b1)i+ (a1c2 + a2c1)j} · (a3 + b3i+ c3j)
= a1a2a3 + (a1a2b3 + a2a3b1 + a3a1b2)i+ (a1a2c3 + a2a3c1 + a3a1c2)j.

Likewise, we compute

tr1 · (tr2 · tr3) = (a1 + b1i+ c1j) · {(a2 + b2i+ c2j) · (a3 + b3i+ c3j)}
= (a1 + b1i+ c1j) · {a2a3 + (a2b3 + a3b2)i+ (a2c3 + a3c2)j}
= a1a2a3 + (a1a2b3 + a2a3b1 + a3a1b2)i+ (a1a2c3 + a2a3c1 + a3a1c2)j.

12

https://en.wikipedia.org/wiki/Parallelepiped#Volume
https://en.wikipedia.org/wiki/Parallelepiped#Volume
https://www.wikiwand.com/en/Lie_group#Matrix_Lie_groups
https://en.wikipedia.org/wiki/Table_of_Lie_groups#Real_Lie_groups_and_their_algebras
https://en.wikipedia.org/wiki/Lie_algebra

So we have

(tr1 · tr2) · tr3 = tr1 · (tr2 · tr3),

which means that tr’s are associative wrt multiplication.

7.2 By the way, is CP always non-associative wrt multiplication?: getting a
non-example

Since in the preceding subsection, tr’s have been shown to be associative wrt multiplication, we
search for a case in which associativity and non-associativity wrt multiplication coexist [6]. For
example, it is known that three-dimensional Euclidean space equipped with CP operation exempli-
fies a non-associative algebra . If we interpret the adjective ‘non-associative’ as “not necessarily
associative” , we literally come across the coexistence of associativity and non-associativity. So
we ‘poke around’ in CP for a while, raising a (naive) question about the vectors u, v, w in R3.

Question 7.2.1. Perchance u× (v × w) equals (u× v)× w?

Even intuitively, one can present the following, answering in the affirmative.

u =

1
0
0

, v =

0
1
0

, w =

0
0
1

.

Indeed,

u× (v × w) = (u× v)× w =

0
0
0

.

So

Answer 7.2.2. Yes, at least in a certain case.

With the above non-example 9 , we will be conscious of this kind of subtlety for a while.

7.3 Other non-examples
Though presenting just one non-example has proven sufficient for answering Question 7.2.1, we
show some more.

Non-example 7.3.1. u = (1, −1, 0), v = (0, 0, 1), and w = (1, 1, 0).

Remark 7.3.2. In the above non-example, v × w = (−1, 1, 0) = −u, and u × v = (−1, −1,
0) = −w.

9By ‘non-example’, we mean an example in which CP shows multiplicative associativity like the vectors u, v, and
w.

13

https://en.wikipedia.org/wiki/Non-associative_algebra
https://en.wikipedia.org/wiki/Non-associative_algebra
https://en.wikipedia.org/wiki/Algebra_over_a_field#Non-associative_algebra
https://en.wikipedia.org/wiki/Algebra_over_a_field#Non-associative_algebra

So we compute u× (v × w) = u× (−u) = −(−u× u) = u× u. Recalling the formula

a× a = 0 , (20)

we get u × (v × w) = 0. Likewise, we get (u × v) × w = 0. So we can say u × (v × w) =
(u × v) × w, that is, u, v, w are associative wrt multiplication. Explicitly, we compute u × (v ×
w) = (1,−1, 0) × ((0, 0, 1) × (1, 1, 0)) = (1,−1, 0) × (−1, 1, 0) = (0, 0, 0), and (u × v) × w =
((1,−1, 0)×(0, 0, 1))×(1, 1, 0) = (−1,−1, 0)×(1, 1, 0) = (0, 0, 0). In any event, we have shown
that u, v, w are associative wrt multiplication again.

Remark 7.3.3. We notice that u ⊥ v, v ⊥ w, and w ⊥ u, since the DP’s of u and v, v and w,
and w and u are all 0.

Although we obtained another non-example, we ended up with 0⃗ again. And some might find
those examples ‘trivial’, just because they are 0⃗ ’s. For those who are fond of something nonzero,
we introduce the following.

Definition 7.3.4. When VTP amounts to 0⃗, we call it ‘trivial’.

Example 7.3.5. u× (v × w) is called ‘trivial’, since it equals 0⃗.

By the way, if Non-example 7.3.1 seems to have come out of nowhere, looking too intuitive,
we refer to a known identity

u× (v × w)− (u× v)× w = (w × u)× v. [7] (21)

This seems to say u, v, w are non-associative wrt multiplication, since unless its RHS amounts to
0, we have u× (v×w) ̸= (u× v)×w. However, we would like to raise another (naive) question.

Question 7.3.6. What if the RHS of (21) amounts to 0?

This question can be answered easily:

Answer 7.3.7. If it equals 0, one immediately gets u× (v × w) = (u× v)× w, which means
that multiplication of u, v, w is associative.

Notation 7.3.8. In what follows, we write e.g., u⃗ for u to differentiate vectors from scalars.

Trying to get yet another non-example, we make the following claim and prove it.

Claim 7.3.9. If we have w⃗ = ku⃗, where k ∈ R, in (21), then u⃗, v⃗, and w⃗ are associative wrt
multiplication.

14

https://en.wikipedia.org/wiki/Anticommutative_property#Examples
https://en.wikipedia.org/wiki/Cross_product#Algebraic_properties
https://en.wikipedia.org/wiki/Identity_(mathematics)

Proof. Since w⃗ = ku⃗, the RHS of (21) becomes (ku⃗× u⃗)× v⃗ = k(u⃗× u⃗)× v⃗ =k · 0⃗× v⃗ = 0⃗.
Hence, we have u⃗ × (v⃗ × w⃗) = (u⃗ × v⃗) × w⃗, which means that u⃗, v⃗, w⃗ are associative wrt multi-
plication.

□

With this proven claim, we present yet another non-example:

Non-example 7.3.10. u⃗ = (1, 1, 1), v⃗ = (1, 2, 0), w⃗ = (2, 2, 2).

In the above non-example, we note w⃗ = 2u⃗, which reflects Claim 7.3.9. Then, we explicitly
compute u⃗ · (v⃗ · w⃗) = (1, 1, 1) × ((1, 2, 0) × (2, 2, 2)) = (1, 1, 1) × (4,−2,−2) = (0, 6,−6),
and (u⃗ · v⃗) · w⃗ = ((1, 1, 1) × (1, 2, 0)) × (2, 2, 2) = (−2, 1, 1) × (2, 2, 2) = (0, 6,−6). Since we
have shown that u⃗ · (v⃗ · w⃗) = (u⃗ · v⃗) · w⃗ (= (0, 6,−6)), we can say u, v, w are associative wrt
multiplication 10 , confirming the validity of Claim 7.3.9.

Remark 7.3.11. u⃗ ̸⊥ v⃗, v⃗ ̸⊥ w⃗, and w⃗ ̸⊥ u⃗, since the DP’s of u and v, v and w, and w and u
are all nonzero.

Remark 7.3.12. Since u⃗ · (v⃗ · w⃗), (u⃗ · v⃗) · w⃗ ̸= 0⃗, we call such VTP’s ‘nontrivial’. 11

Having obtained some non-examples, we make preparation for dealing with things in a more
general way.

Preparation 7.3.13. Writing u⃗ = (a1, a2, a3), v⃗ = (b1, b2, b3), and w⃗ = (c1, c2, c3), we
compute

u⃗× (v⃗ × w⃗) = (a1, a2, a3)× ((b1, b2, b3)× (c1, c2, c3))
= (a1, a2, a3)× (b2c3 − b3c2, b3c1 − b1c3, b1c2 − b2c1)

= (a2b1c2 − a2b2c1 − a3b3c1 + a3b1c3,
a3b2c3 − a3b3c2 − a1b1c2 + a1b2c1,
a1b3c1−a1b1c3−a2b2c3+a2b3c2), (22)

and

(u⃗× v⃗)× w⃗ = ((a1, a2, a3)× (b1, b2, b3))× (c1, c2, c3)
= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)× (c1, c2, c3)
= (a3b1c3 − a1b3c3 − a1b2c2 + a2b1c2,

a1b2c1 − a2b1c1 − a2b3c3 + a3b2c3,
a2b3c2−a3b2c2−a3b1c1+a1b3c1). (23)

Equating (22) with (23), one gets

10Cf. Non-example 7.3.1.
11See Def. 7.3.4.

15

https://en.wikiversity.org/wiki/Cross_product#Geometric_Definition
https://proofwiki.org/wiki/Definition:Halmos_Symbol#Also_defined_as


a2b1c2 − a2b2c1 − a3b3c1 + a3b1c3 = a3b1c3 − a1b3c3 − a1b2c2 + a2b1c2,

a3b2c3 − a3b3c2 − a1b1c2 + a1b2c1 = a1b2c1 − a2b1c1 − a2b3c3 + a3b2c3,

a1b3c1 − a1b1c3 − a2b2c3 + a2b3c2 = a2b3c2 − a3b2c2 − a3b1c1 + a1b3c1,

which simplify to
c1(a2b2 + a3b3) = a1(b3c3 + b2c2), (24)

c2(a3b3 + a1b1) = a2(b1c1 + b3c3), (25)

c3(a1b1 + a2b2) = a3(b2c2 + b1c1). (26)

Finishing preparation and regarding (24) − (26) as Diophantine equations , we perform a Ruby
search to get

Non-example 7.3.14. u⃗ = (5, 2,−2), v⃗ = (2,−2, 3), w⃗ = (4, 1,−2). 12

Using the above non-example, we compute u⃗× (v⃗× w⃗) = (5, 2,−2)× ((2,−2, 3)× (4, 1,−2)) =
(5, 2,−2)× (1, 16, 10) = (52,−52, 78) and (u⃗× v⃗)× w⃗ = ((5, 2,−2)× (2,−2, 3))× (4, 1,−2) =
(2,−19,−14)× (4, 1,−2) = (52,−52, 78), confirming that u⃗, v⃗, w⃗ are associative wrt multiplica-
tion.

Remark 7.3.15. u ⊥ v, v ⊥ w, and w ̸⊥ u. 13

Remark 7.3.16. The above non-example is‘nontrivial’. 14

Through such a search, we also got something looking quite ‘trivial’:

Non-example 7.3.17. u⃗ = (−2,−2,−2), v⃗ = (−2,−2,−2), w⃗ = (−2,−2,−2).

In the above non-example, we note u⃗ = v⃗ = w⃗. From (20), it is clear that u⃗ × (v⃗ × w⃗) =
u⃗ × 0⃗ = 0⃗, (u⃗ × v⃗) × w⃗ = 0⃗ × w⃗ = 0⃗. That said, we explicitly compute u⃗ × (v⃗ × w⃗) =
(−2,−2,−2)× ((−2,−2,−2)× (−2,−2,−2)) = (−2,−2,−2)× (0, 0, 0) = (0, 0, 0), and (u⃗×
v⃗)× w⃗ = ((−2,−2,−2)× (−2,−2,−2))× (−2,−2,−2) = (0, 0, 0)× (−2,−2,−2) = (0, 0, 0),
just confirming that u⃗× (v⃗× w⃗) = (u⃗× v⃗)× w⃗ = 0⃗. So u⃗, v⃗, w⃗ are associative wrt multiplication.

Remark 7.3.18. u ̸⊥ v, v ̸⊥ w, and w ̸⊥ u. 15

Remark 7.3.19. Sure enough, this non-example has proven to be ‘trivial’. 16

12For computational details, see Appendix 9.4.
13Cf. Remarks 7.3.3 and 7.3.11.
14See Def. 7.3.4.
15Cf. Remarks 7.3.3, 7.3.11, and 7.3.15.
16See Def. 7.3.4.

16

https://en.wikipedia.org/wiki/Diophantine_equation#Examples
https://en.wikipedia.org/wiki/Ruby_(programming_language)

7.4 Wrapping up non-examples
We tabulate the non-examples we obtained in 7.3:

Table

Non-examples u⃗ ⊥ v⃗? v⃗ ⊥ w⃗? w⃗ ⊥ u⃗?
u⃗ = (1, −1, 0), v⃗ = (0, 0, 1), w⃗ = (1, 1, 0). Yes Yes Yes
u⃗ = (1, 1, 1), v⃗ = (1, 2, 0), w⃗ = (2, 2, 2). No No No

u⃗ = (5, 2,−2), v⃗ = (2,−2, 3), w⃗ = (4, 1,−2). Yes Yes No
u⃗ = (−2,−2,−2), v⃗ = (−2,−2,−2), w⃗ = (−2,−2,−2). No No No

17 18 19 20

Table (cont’d)

u⃗× (v⃗ × w⃗) Is u⃗× (v⃗ × w⃗)‘trivial’?
(0, 0, 0) Yes
(0, 6, −6) No

(52,−52, 78) No
(0, 0, 0) Yes

21 22

7.5 Representing CP by tr’s yields multiplicative associativity
Here we note if we introduce tr’s to CP computation, that is, if we rewrite e.g., u⃗ = (a1, a2, a3)
with a1, a2, a3 ∈ R as

u⃗ = (a1, a2, a3) −→ tr1 = a1 + a2i+ a3j, (27)

we can make our computation associative because of the multiplicative associativity shown in 7.1
More concretely, we make further replacement:{

v⃗ = (b1, b2, b3) −→ tr2 = b1 + b2i+ b3j,
w⃗ = (c1, c2, c3) −→ tr3 = c1 + c2i+ c3j,

where b1, b2, b3, c1, c2, c3 ∈ R, and{
(u⃗× v⃗)× w⃗ −→ (tr1 · tr2) · tr3,
u⃗× (v⃗ × w⃗) −→ tr1 · (tr2 · tr3).

17On the other hand, examples, in which multiplicative associativity doesn’t hold, include u⃗ = (1, 3, 0), v⃗ =
(−4, 5, 1), w⃗ = (0, −1, 0); u⃗ = (1, −2, 3), v⃗ = (−1, 4, 5), w⃗ = (0, 1, 3), etc.

18If DP of u⃗ and v⃗ equals 0, ‘Yes’. Otherwise, ‘No’.
19If DP of v⃗ and w⃗ equals 0,‘Yes’. Otherwise, ‘No’.
20If DP of w⃗ and u⃗ equals 0,‘Yes’. Otherwise, ‘No’.
21We have u⃗× (v⃗ × w⃗) = (u⃗× v⃗)× w⃗, because we collected such non-examples.
22Ditto.

17

Then, as we have already done in 7.1, we get

(u⃗× v⃗)× w⃗ = (tr1 · tr2) · tr3
= a1a2a3+(a1a2b3+a1a3b2+a2a3b1)i+(a1a2c3+a1a3c2+a2a3c1)j, (28)

and

u⃗× (v⃗ × w⃗) = tr1 · (tr2 · tr3)
= a1a2a3+(a1a2b3+a1a3b2+a2a3b1)i+(a1a2c3+a1a3c2+a2a3c1)j. (29)

Since (28) = (29), one can say the equation (u⃗ × v⃗) × w⃗ = u⃗ × (v⃗ × w⃗) always holds, which
means that a ‘trinionic’ representation of CP has ‘effaced’ the subtlety of which we got conscious
in 7.2. This seems significant in terms of mathematical clarity. What about physical side, then?
By ‘reversing’ 23 (28) and/or (29), one gets the vector

(a1a2a3, a1a2b3 + a1a3b2 + a2a3b1, a1a2c3 + a1a3c2 + a2a3c1), (30)

which seems different from (22) and/or (23). Thus, one might imagine physical contents the
vectors u⃗, v⃗, and w⃗ originally entailed have been entirely changed by ‘trinionic’ replacement.
However, VTP can actually be immutable after such replacement 24 . Therefore, our response to
[3, Question 2.1.5] is

Answer 7.5.1. Maybe.

8 Discussion
We would like to discuss the results we have obtained mainly from a physical point of view. First,
a tr-related transformation was shown to ‘preserve dist’:=x3 + y3 + z3 − 3xyz. If one is allowed
to draw a (rough) parallel between such ‘dist-preservation’ and invariance of arclength under coor-
dinate transformations , one can say tr’s are related to physics, recalling the relevance of arclength
to physics 25 . As for a ‘trinionic’ representation of CP, since formulae comprising CP’s are known
to be very useful in simplifying vector calculations in physics , it is likely that such a representation
has something to do with physics.

Next, we discuss mathematical side. From (3)− (5), it is clear that (a11, a21, a31), (a12, a22,
a32), and (a13, a23, a33) are the points on x2+y2+z2 = 1 . In regard to (6)−(8), writing x⃗ = (a11,
a21, a31), y⃗ = (a12, a22, a32), z⃗ = (a13, a23, a33), we have

x⃗ · y⃗ = x⃗ · z⃗ = y⃗ · z⃗ = 0, (31)

23We mean by ‘reversing’ that for example, we get the vector (a1, a2, a3) from a1+a2i+a3j the other way around.
For example, ‘reverse’ the direction of the arrow in (27).

24More specifically, if we set e.g., u⃗ = (0, 0, 1), v⃗ = (0, 0, 2), w⃗ = (0, 0, 3), we have (22) = (23) = (30) = 0⃗, end-
ing up with the same, 0⃗. So ‘trinionic’ replacement does not always results in the change of vector.

25
However, we are unaware whether some go so far as to remember c2t2−x2−y2− z2 = c2t′2−x′2−y′2− z′2 .

18

https://en.wikipedia.org/wiki/Metric_tensor#Invariance_of_arclength_under_coordinate_transformations
https://en.wikipedia.org/wiki/Metric_tensor#Invariance_of_arclength_under_coordinate_transformations
https://en.wikipedia.org/wiki/World_line#Usage_in_physics
https://en.wikipedia.org/wiki/World_line#Usage_in_physics
https://en.wikipedia.org/wiki/Triple_product#Vector_triple_product
https://en.wikipedia.org/wiki/Triple_product#Vector_triple_product
https://en.wikipedia.org/wiki/Unit_sphere#Volume_and_area
https://en.wikipedia.org/wiki/Lorentz_transformation#Derivation_of_the_group_of_Lorentz_transformations

where the character ‘·’ stands for DP [8]. (31) geometrically means that the vectors x⃗, y⃗, and z⃗
intersect perpendicularly to each other at O.

We pay some attention to chemical side, for that matter. One can ‘decompose’ the RHS of (15)
into the ‘vectors’ (1, 0, 0), (0, 1, 0), and (0, 0, 1) reflecting (31). 26 If we regard them as primitive
translation vectors used in the description of crystal structures , it seems that four copies of (1, 1, 1),
which are likewise obtained from the RHS of (16), are relevant to plane (111) in crystallography .

Taken together, the stuff we have so far discussed comes from our application of tr’s to the Lie
group SU(3) [9], which is why we believe they are not without physical significance, taking into
consideration the known role of SU(3) in physics . Although our arguments have been far from
exhaustiveness in terms of ‘trinionic’ matrices, we would like to content ourselves with just one
example, or Example 3.3, for the moment.

Acknowledgment. We would like to thank the developers of Ruby for their indirect help,
which enabled us to perform the computation in Appendix 9.4.

References
[1] Chow, T. L., “Mathematical Methods for Physicists,” Cambridge University Press 2000 p453.

[2] Morris, D., “Lie Groups and Lie Algebras,” Abane & Right 2016 p50.

[3] Suzuki, K., “Sketching ‘trinions’ and ‘heptanions’,” viXra:1712.0131 [v1] .

[4] Morris, D., “Non-commutative Differentiation and the Commutator,” Createspace Indepen-
dent Publishing 2018 p66.

[5] Howe, M. R., “An Invitation to Representation Theory,” Springer 2022 p82.

[6] Gürlebeck, K., Habetha, K., and Sprößig, W., “Holomorphic Functions in the Plane and n-
dimensional Space,” Birkhäuser Verlag AG 2008 p42.

[7] D’Angelo, J. P., “Linear and Complex Analysis for Applications,” CRC Press 2023 p75.

[8] Voight, J., “Quaternion Algebras,” Springer 2021 p28.

[9] Morris, D., “Lie Groups and Lie Algebras,” Abane & Right 2016 p115.

26See also three vectors mentioned in 7.2.

19

https://en.wikipedia.org/wiki/Unit_cell#Primitive_cell
https://en.wikipedia.org/wiki/Unit_cell#Primitive_cell
https://en.wikipedia.org/wiki/Miller_index#/media/File:Indices_miller_plan_definition.svg
https://en.wikipedia.org/wiki/Eightfold_way_(physics)#SU(3)
https://www.ruby-lang.org/en/
https://archive.md/ADDJo
https://archive.ph/cR5ij
https://vixra.org/pdf/1712.0131v1.pdf
https://archive.md/iYvtD
https://archive.md/iYvtD
https://archive.md/LDauT
http://archive.fo/A2ma0
http://archive.fo/A2ma0
https://archive.md/ycKYC
https://archive.md/K13d3
https://archive.md/q5Hry

9 Appendix

9.1 Noting some similarity with Latin square
In brief, the Latin square

A B C
C A B
B C A

seems to underlie e.g.,

0 i j
j 0 i
i j 0

,

or MT-like rewriting of H . 27

9.2 A similar transformation that ‘preserves dist’
We can also consider the following.

 X
Y
Z

 =

 1 j i
i 1 j
j i 1


 x

y
z

.

Then, we compute

X3 + Y 3 + Z3 − 3XY Z = (x+ jy + iz)3 + (ix+ y + jz)3 + (jx+ iy + z)3

−3(x+ jy + iz) · (ix+ y + jz) · (jx+ iy + z)

= x3 + 3x2(jy + iz) + y3 + 3y2(ix+ jz) + z3 + 3z2(jx+ iy)

−3{xyz + i(xy2 + z2y + zx2) + j(x2y + y2z + z2x)}

= x3 + y3 + z3 − 3xyz,

27Unfortunately, we don’t have a deep understanding about this relevance at the time of writing. . ..

20

https://en.wikipedia.org/wiki/Latin_square
https://www.wikiwand.com/en/Latin_square#introduction

which is the same as dist defined in Section 6.

9.3 Matrix representation of i and j

We think of representing i and j by some matrices. Writing e.g.,

i =

 1 −1
1 −1

 and j =

 −1 1
−1 1

,

we have I2i = i, i2 = j2 = ij = ji = O2, etc. Identifying I2 and O2 with 1 and 0, respectively,
one sees that i and j satisfy [3, Table 1]. 28

9.4 Ruby computation
We provide the Ruby code used in 7.3: 29 , 30 , 31

% zsh --version
zsh 5.9 (x86_64-redhat-linux-gnu)
% type ruby
ruby is /usr/bin/ruby
% cat --version
cat (GNU coreutils) 9.1
Copyright (C) 2022 Free Software Foundation, Inc.
% cat dio_cross_prod.rb
#!/usr/bin/ruby
eval "
a=-3
while a<=4
a +=1
b=-3
while b<=4
b +=1
c=-3
while c<=4
c +=1
d=-3
while d<=4
d +=1
e=-3

28We might discuss the case in which we deal with On, n = 3, 4, 5 . . . elsewhere.
29Computation is performed on 8-core AMD processors of a Fedora Linux 38 machine.
30For the sake of simplicity, unknowns a1, a2, a3, b1, b2, b3, c1, c2, c3 in (24)− (26) have been rewritten as a, b, c,
d, e, f, g, h, i, respectively.

31 ‘Raw’ output is not always kept intact. For instance, most lines following the command ‘head - -version’ have
been deleted for simplicity.

21

https://archive.md/sI6EL
https://archive.md/tCO1G
https://en.wikipedia.org/wiki/AMD
https://archive.md/BVoUY
https://archive.md/fXZeL

while e<=4
e +=1
f=-3
while f<=4
f +=1
g=-3
while g<=4
g +=1
h=-3
while h<=4
h +=1
i=-3
while i<=4
i +=1
sum1=a*(e*h+f*i)
sum2=g*(b*e+c*f)
sum3=b*(d*g+f*i)
sum4=h*(a*d+c*f)
sum5=c*(d*g+e*h)
sum6=i*(a*d+b*e)
if(sum1==sum2)
if(sum3==sum4)
if(sum5==sum6)
print(’(’,a,’,’,b,’,’,c,’), (’,d,’,’,e,’,’,f,’), (’,g,’,’,h,’,’,i,’)’,’\n’)
end end end end
end end end end
end end end end
"

Then, we run the above code.

% ruby -v
ruby 3.2.2 (2023-03-30 revision e51014f9c0) [x86_64-linux]
% ruby dio_cross_prod.rb>ruby_dio_cross_prod.txt&

22

We try groping for the ‘head’ of the data we obtained:

% head --version
head (GNU coreutils) 9.1
Copyright (C) 2022 Free Software Foundation, Inc.
% head ruby_dio_cross_prod.txt
(-2,-2,-2), (-2,-2,-2), (-2,-2,-2)
(-2,-2,-2), (-2,-2,-2), (-1,-1,-1)
(-2,-2,-2), (-2,-2,-2), (0,0,0)
(-2,-2,-2), (-2,-2,-2), (1,1,1)
(-2,-2,-2), (-2,-2,-2), (2,2,2)
(-2,-2,-2), (-2,-2,-2), (3,3,3)
(-2,-2,-2), (-2,-2,-2), (4,4,4)
(-2,-2,-2), (-2,-2,-2), (5,5,5)
(-2,-2,-2), (-2,-2,-1), (-2,-2,-2)
(-2,-2,-2), (-2,-2,-1), (-1,-1,-1)

We now get Non-example 7.3.17 from

(-2,-2,-2), (-2,-2,-2), (-2,-2,-2)

shown above.

What about the ‘whole body’?

% wc --version
wc (GNU coreutils) 9.1
Copyright (C) 2022 Free Software Foundation, Inc.
% cat ruby_dio_cross_prod.txt|wc -l
1623962

This last output suggests that the numerical data we obtained are somewhat ’bulky’. However, if
we manage to open ruby dio cross prod.txt using e.g., Emacs , we can get Non-example 7.3.14 as
shown below. (see the highlighted line.)

23

https://en.wikipedia.org/wiki/Emacs

24

	Glossary
	Introduction and preliminary computation
	Managing to get an example
	Some decomposition
	Another kind of decomposition
	Yet another kind of decomposition

	On nn `special trace matrix', STn
	X3+Y3+Z3-3XYZ=x3+y3+z3-3xyz: `distance-preservation' by coincidence?
	Physical application(s) of tr's: when CP is associative wrt multiplication
	Checking whether tr's are associative wrt multiplication
	By the way, is CP always non-associative wrt multiplication?: getting a non-example
	Other non-examples
	Wrapping up non-examples
	Representing CP by tr's yields multiplicative associativity

	Discussion
	Appendix
	Noting some similarity with Latin square
	A similar transformation that `preserves dist'
	Matrix representation of i and j
	Ruby computation

