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Abstract
Electrostatic fields, cornerstone elements in understanding electrical

phenomena, serve as key components in diverse scientific and engineering
fields. This paper elucidates the concept of electrostatic fields, explores their
properties, and outlines their broad applications. We start from the basics of

electric charges and their interactions, leading us to the core principles of
electrostatics. A deep dive into Coulomb’s law is presented to scrutinize the

behavior of electrostatic fields, along with the concept of electric potential and
its relationship with the electric field. We underline the instrumental role of

electrostatic field analysis in practical applications like electrical power
systems, electronics, and telecommunications. Furthermore, we introduce

techniques to tackle electrostatic field problems and showcase their
applications in engineering and technology. By providing a comprehensive
review of electrostatic fields, we aim to deepen understanding and propel

further research into this vital domain of electromagnetism.
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1 Introduction
Electrostatic fields are crucial in our understanding of electromagnetism,

offering insights into the behavior and interactions of electric charges.
Electrostatics centers on the distribution and movement of electric charges in

a static or stationary state, excluding any time-varying currents.

The core principles and laws governing the behavior of stationary electric
charges fall under the purview of electrostatics. The principles form the
foundation to comprehend diverse phenomena from the attraction and

repulsion of charged objects to the functioning of intricate electrical systems.
The study of electrostatic fields enables us to analyze the behavior of electric

charges, quantify their interactions, and predict resulting effects.

Coulomb’s law, central to the study of electrostatics, posits that the force
between two charged particles is directly proportional to the product of their

charges and inversely proportional to the square of the distance between
them. This law serves as the bedrock for understanding the influences exerted
by electric charges on one another, thereby forming the basis for electrostatic

field theory.

A pivotal concept in electrostatic fields is the electric field itself, which
embodies the influence that an electric charge exerts on its surroundings. An
electric field is present at every point around a charged object and is defined

as the force experienced by a unit positive charge placed at that point.
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Grasping this concept enables us to predict how charges will behave and
interact within a given region.

Electrostatic fields find wide-ranging applications across various scientific and
engineering domains. They are critical in the design and operation of

electrical devices and systems, like capacitors, generators, and electronic
circuits. Moreover, electrostatic phenomena are vital to the functioning of
commonplace objects such as household appliances, telecommunication

devices, and medical equipment.

In this paper, we will delve deep into the essence of electrostatic fields,
elucidating their fundamental principles, mathematical representations, and

practical applications. We will investigate the behavior of electric charges, the
concept of electric fields, and the equations governing their dynamics.

Furthermore, we will incorporate real-world examples and case studies to
illustrate the significance of electrostatic fields in technological advancements.

By comprehensively understanding electrostatic fields, we can unlock new
possibilities in a plethora of fields like electrical engineering,

telecommunications, energy systems, and many more. This paper aspires to
shine a light on both the theoretical foundations and practical implications of

electrostatics, eventually contributing to advancements in science and
technology.

1.1 Background and Motivation
Electrostatic fields, a captivating study area within electromagnetism, provide
valuable insights into the behavior and interactions of electric charges. A firm
grasp of vector analysis and related mathematical concepts is pivotal to fully
understanding electrostatic fields. This section intends to provide a succinct
overview of the key mathematical tools and techniques requisite for a deep

understanding of electrostatics.

Vector analysis offers a robust mathematical framework to describe and
analyze physical quantities possessing both magnitude and direction. In the
context of electrostatic fields, vector analysis facilitates the mathematical
representation of electric fields, electric potentials, and the relationship

between charges and their surroundings.

Mastery of vector analysis empowers researchers and engineers to formulate
and solve complex electrostatic problems. It equips us with the necessary

tools to comprehend concepts of gradients, divergences, and curls, all of which
are essential to describe the behavior of electric fields in three-dimensional

space. Moreover, an understanding of vector calculus, including line integrals,
surface integrals, and volume integrals, is crucial to quantify electric field

strengths, fluxes, and other vital parameters.
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The goal of this paper is to provide a comprehensive exploration of
electrostatic fields, their mathematical foundations, and practical implications.
It is assumed that the reader has a thorough understanding of vector analysis
and related mathematical concepts. With this prerequisite knowledge, readers

can dive into the complexities of electrostatics, explore advanced
mathematical formulations, and understand the principles governing electric

charge interactions.

1.2 Objectives of the Paper
1. To provide a comprehensive overview of the fundamental principles and

concepts underlying electrostatic fields, including an in-depth look at
electric charges, Coulomb’s law, and the concept of electric fields.

2. To delve into the mathematical foundations of electrostatics, emphasiz-
ing the application of vector analysis and related mathematical tech-
niques. This paper aims to provide clear and concise explanations of the
mathematical tools needed to analyze and solve electrostatic problems.

3. To probe into the properties and behavior of electric fields in different
scenarios, such as the interaction of charges, the distribution of charges
on conductors, and the formation of electric potentials. Special focus
will be given to understanding the relationship between electric fields
and potential differences.

4. To discuss the practical applications of electrostatic fields across various
domains, including electrical engineering, physics, and materials science.
This includes examining the role of electrostatic fields in technologies
like capacitors, electrostatic precipitators, and particle accelerators.

5. To address advanced topics in electrostatics, such as the calculation of
electric flux, Gauss’s law, and the concept of electric potential energy.
The paper will delve into these topics to provide a deeper understanding
of the underlying principles and their mathematical formulations.

6. To present real-world examples and case studies demonstrating the sig-
nificance and impact of electrostatic fields. This includes discussing
practical challenges, problem-solving strategies, and the implications of
electrostatic phenomena on system design, safety, and performance.

7. To offer a comprehensive and accessible resource for researchers, engi-
neers, and students interested in electrostatic fields. The paper aims to
serve as a reference guide, providing a solid foundation in electrostatics,
and enabling readers to apply their knowledge to diverse applications
and problem-solving scenarios.

In striving to meet these goals, we’re hoping to add a rich layer of
understanding to the collective knowledge of electrostatic fields. Our aim is to
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arm you, our readers, with the insights needed to not only grasp this
captivating subject but to navigate its intricate twists and turns. We’re

excited to ignite curiosity, to fuel the fire of further research, and to drive new
innovations in the exciting realm of electrostatics. And through all of this, we
wish to deepen your appreciation for the critical role electrostatic fields play

in the technology that shapes our lives every day.

2 General Coordinates
In vector analysis, the concept of general coordinates plays a fundamental role

in expressing and manipulating vector quantities in various coordinate
systems. While Cartesian coordinates provide a convenient framework for

many applications, there are situations where alternative coordinate systems
are more suitable or necessary.

General coordinates allow us to describe vectors and perform vector
operations, such as differentiation and integration, in non-Cartesian
coordinate systems. These coordinate systems may include spherical

coordinates, cylindrical coordinates, or any other coordinate system that best
represents the underlying geometry or physics of a problem.

By using general coordinates, we can adapt our mathematical framework to
the specific characteristics of a problem, making it easier to analyze and solve
complex vector-related tasks. The transformation between coordinate systems

involves expressing vectors and their components in terms of the new
coordinate basis, allowing for a seamless transition between different systems

of reference.

2.1 Curvilinear Coordinates
Let f1(x, y, z), f2(x, y, z), f3(x, y, z) be given as smooth functions of x, y, z in
a given region. We define the following functions as their smooth functions:

u1 = f1(x, y, z), u2 = f2(x, y, z), u3 = f3(x, y, z) (1)

and let the equations below to be solved with respect to x, y, z:

x = φ1(u1, u2, u3), y = φ2(u1, u2, u3), z = φ3(u1, u2, u3) (2)

Again, let these be defined as smooth functions of ⟨u1, u2, u3⟩. For every point
P (x, y, z) in the region, there corresponds a set of values ⟨u1, u2, u3⟩, and

conversely, for every set of values (within certain limits), there corresponds a
specific point. Functions such as ⟨u1, u2, u3⟩ are called curvilinear coordinates.
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In general, we consider the set of values ⟨u1, u2, u3⟩ as continuous and
differentiable functions of (x, y, z), and (x, y, z) as continuous and

differentiable functions of ⟨u1, u2, u3⟩. However, in many cases, there exist
special points where these conditions are not satisfied. Care must be taken

when applying general formulas in regions containing such points.

From every point P , three surfaces called coordinate surfaces pass. These
surfaces can be expressed as:

u1 = constant, u2 = constant, u3 = constant

These three surfaces intersect along three curves called coordinate curves. On
each coordinate surface, one coordinate remains constant while the other two
vary. We denote these surfaces by the name of the coordinate that remains
constant. The vector R, connecting the reference point to the variable point
P (x, y, z), can be expressed as a function of ⟨u1, u2, u3⟩. The partial derivative

of this function with respect to u1 is obtained by keeping the point P fixed
and varying along the u1-curve. Therefore the equation given below is a

vector tangent to the u1-curve at point P .

∂R

∂u1

Similarly, the two equations given below are vectors tangent to the u2 and u3

curves, respectively.

∂R

∂u2
,

∂R

∂u3

The partial derivative of R with respect to u1, under the condition that
changes are taken along the u1-curve, is the ratio of dR to du1. Therefore, for

any change, the following equation is obtained.

dR · ∇u1 = du1

And from here we can write the equation given below.

∂R

∂u1
· ∇u1 =

dR · ∇u1

du1
= 1

Similarly we can obtain,

∂R

∂u2
· ∇u2 =

∂R

∂u3
· ∇u3 = 1
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In any change along the u1-curve, where u2 and u3 are held constant, ∇u2

and ∇u3 are orthogonal to the tangent, resulting in the following equality.

∂R

∂u1
· ∇u2 =

∂R

∂u1
· ∇u3 = 0

Similarly, by varying u1, u2, and u3, similar equations can be obtained. All
these partial derivative relationships can be represented by the following

generalization:

∂R

∂ui
· ∇ui = 1 i = 1, 2, 3 (3)

∂R

∂ui
· ∇uj = 1 i ̸= j (4)

Now we will examine some properties of such reciprocal systems.

2.2 Reciprocal Systems
The concept of a reciprocal system in vector calculus offers an intriguing way
to understand pairs of vector systems. These pairs are bound together by the

principles of orthogonality and reciprocal magnitudes. When we consider
curvilinear coordinates, we come across three base vectors—ê1, ê2, ê3—and

their reciprocals, which are represented as ê1, ê2, ê3. The fascinating interplay
between these vectors can be summarized by:

êi · êj = δij (5)

In the equation above, δij symbolizes the Kronecker delta, assigning the value
of 1 for i = j and 0 otherwise. The intriguing result of this is that every
vector in the original system stands orthogonal to every vector in the

reciprocal system, barring its counterpart.

These vectors can also be expressed through the gradients of our coordinate
functions, as shown:

êi = ∇ui, êi =
∂R

∂ui
i = 1, 2, 3 (6)

Here, the operator ∇ symbolizes the gradient, which points in the direction of
maximum increase of the function to which it is applied. On the other hand,
R denotes the position vector. These portrayals further elucidate the mutual

orthogonality between the base vectors and their reciprocal counterparts.
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To delve deeper into the properties of these reciprocal systems, we must
inspect the transformation laws governing vector and tensor components in

curvilinear coordinates. A vector, V, in these coordinates can be presented as:

V = V iêi = Viê
i (7)

The conversion between the covariant (Vi) and contravariant (V i) components
can be formulated by:

Vi = êi ·V = V j êi · êj (8)

V i = êi ·V = Vj ê
i · êj (9)

In a similar vein, we can derive transformation laws for tensors by extending
the principles we used for vector transformations. All of these elements

underscore the importance and utility of reciprocal systems in studying vector
calculus and physics, especially when delving into electrodynamics and general

relativity.

2.2.1 Differential Forms

Differential forms emerge as unique mathematical entities in differential
geometry, providing a unified framework that elegantly generalizes vectors,

tensors, and functions. For instance, in curvilinear coordinates, a differential
1-form can be represented as:

α = αidu
i (10)

In this case, αi are the components of the form, while dui stands for the
infinitesimal changes in the coordinates ui. Intriguingly, this 1-form stands as
a linear functional, mapping tangent vectors in the space to a scalar quantity.

It proves instrumental in defining integrals over curves, or line integrals.

By extension, a differential 2-form, which serves as a linear functional acting
on pairs of tangent vectors (thus creating an oriented area element), can be

drafted as:

β =
1

2!
βijdui ∧ duj (11)

Here, the symbol ∧ indicates the wedge product, which is antisymmetric,
implying that switching any pair of arguments inverses the sign of the result.
This property of antisymmetry makes the 2-form especially useful in defining

integrals over surfaces.
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More generally, a differential n-form, denoted as ω, can be defined by:

ω =
1

n!
ωi1...indu

i1 ∧ ... ∧ duin (12)

The n-form holds a pivotal position in defining integrals over n-dimensional
subspaces in our mathematical landscape. The theory of differential forms

offers robust tools—the exterior derivative, the wedge product, and the Hodge
star operator—that manipulate these entities and construct invariant

quantities, with far-reaching implications in physics, especially
electromagnetism and general relativity.

Shifting from Cartesian to curvilinear coordinates—as detailed in previous
sections—enables us to scrutinize complex geometrical shapes and model

physical phenomena in these more elaborate geometries. By including
differential forms, we forge a powerful mathematical arsenal capable of

tackling an array of intricate problems that modern physics and engineering
present.

2.3 Orthogonal Coordinates
Orthogonal coordinates, simply put, are a unique variety of curvilinear

coordinates where coordinate surfaces cross at right angles. These systems are
fascinating because, at any point, the basis vectors are consistently

orthogonal, or perpendicular, to one another. Examples of such systems that
you might be familiar with include Cartesian coordinates, polar coordinates in

two dimensions, cylindrical and spherical coordinates in three dimensions.

More formally, we would say that a system of coordinates ⟨u1, u2, u3⟩ is
orthogonal if the angles between the coordinate curves (or to make it

equivalent, the tangent vectors to these curves) at their intersection points are
right angles. We can represent this mathematically as follows:

∂R

∂ui
· ∂R
∂uj

= 0 for i ̸= j (13)

This expression simply tells us that the dot product of the tangent vectors to
any two distinct coordinate curves is zero, hence indicating their

perpendicular nature.

For orthogonal coordinates, the metric tensor, which provides the dot product
of any two vectors in the space, becomes diagonal. Its components, gij , are

the squares of the scale factors hi of the coordinate system, where
hi = ||∂R/∂ui||. In terms of the scale factors, the metric tensor can be

expressed as:

gij = h2
i δij (14)
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And then there’s the inverse metric tensor, which provides the dot product in
the reciprocal basis. It’s also diagonal with components:

gij =
1

h2
i

δij (15)

The beauty of orthogonal coordinates is that their existence simplifies many
mathematical and physical problems. The associated orthogonal basis aligns
naturally with the problem’s geometry, a feature that comes in handy when

dealing with problems involving Laplace’s equation and other partial
differential equations typically found in fields such as electromagnetism, fluid

dynamics, heat conduction, and quantum mechanics.

However, despite their utility, orthogonal coordinates are not always possible
or convenient for every problem. As a result, the study of more general

curvilinear coordinates remains an integral part of differential geometry and
its applications to physics.

One fascinating property of orthogonal coordinate systems is the expression
for the differential of arc length ds. It can be written in terms of the scale

factors as:

ds2 = h2
1du

2
1 + h2

2du
2
2 + h2

3du
2
3 = gijduiduj (16)

This expression, in effect, generalizes the Pythagorean theorem to curvilinear
coordinates. This feature makes it particularly useful for dealing with

geometric and physical problems in curvilinear spaces.

Let’s also consider the gradient of a scalar function Φ(u1, u2, u3), which in an
orthogonal coordinate system is given by:

∇Φ =
1

h1

∂Φ

∂u1
ê1 +

1

h2

∂Φ

∂u2
ê2 +

1

h3

∂Φ

∂u3
ê3 (17)

Here, êi are the unit vectors in the direction of increasing ui. This formula
generalizes the standard Cartesian formula to orthogonal curvilinear

coordinates, a key feature in areas such as fluid dynamics and
electromagnetism where the gradient often arises.

Other important differential operators also have specific forms in orthogonal
coordinates. For instance, the divergence of a vector field F = F iêi is:

∇ · F =
1

h1h2h3

[
∂

∂u1

(
h2h3F

1
)
+

∂

∂u2

(
h3h1F

2
)
+

∂

∂u3

(
h1h2F

3
)]

(18)

And for the curl of F, the expression becomes:
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∇× F =
1

h1h2h3

∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3

∂
∂u1

∂
∂u2

∂
∂u3

h1F
1 h2F

2 h3F
3

∣∣∣∣∣∣ (19)

While these expressions are more complex than their Cartesian counterparts
due to the presence of scale factors, they still allow us to calculate these

essential quantities in any orthogonal coordinate system.

2.4 Cylindrical Coordinates
Let’s now delve into cylindrical coordinates, represented as (r, θ, z). These are

a practical way to describe points in three-dimensional space and prove
especially useful when we encounter problems that exhibit cylindrical

symmetry. This system is essentially an extension of the 2D polar coordinates
into three dimensions by adding an extra coordinate, z, which is identical to

that in Cartesian coordinates.

In this cylindrical coordinate system, r represents the radial distance of a
point from the origin in the x-y plane, θ is the angle from the positive x-axis

(in the range 0 ≤ θ < 2π), and z is the height above the x-y plane.

The transformation relations between Cartesian and cylindrical coordinates
are given by:

x = r cos θ

y = r sin θ

z = z

And the inverse transformations are:

r =
√
x2 + y2

θ = arctan
(y
x

)
z = z

As an example of a problem well-suited to cylindrical coordinates, consider
calculating the volume of a cone with base radius a and height h. The volume

V can be computed using the integral:

V =

∫ h

0

∫ 2π

0

∫ a(1−z/h)

0

rdrdθdz.

This example shows that when dealing with problems featuring cylindrical
symmetry, cylindrical coordinates can be a much more effective tool than

Cartesian coordinates.
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2.5 The Intricacies of Spherical Coordinates
The concept of spherical coordinates introduces an alternative way to express

points within the vast expanse of three-dimensional space. Most often, we
denote these coordinates as (r, θ, ϕ) or (r, ϕ, θ), depending on our chosen

convention. In certain circumstances, particularly those entailing spherical
symmetry, spherical coordinates provide a significantly more practical

approach.

Within the realm of spherical coordinate systems, we identify r as the radial
distance of a point from the origin. The angle θ (or ϕ, depending on

convention) is measured from the positive z-axis, adhering to the boundary
conditions 0 ≤ θ ≤ π or 0 ≤ ϕ ≤ π. Meanwhile, the azimuthal angle ϕ (or θ) is

gauged from the positive x-axis within the x-y plane, confined to the range
0 ≤ ϕ < 2π or 0 ≤ θ < 2π.

The relationship between Cartesian and spherical coordinates is well-defined
and expressed by the following transformation equations:

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ

The reverse transformation, conversely, is formulated as follows:

r =
√

x2 + y2 + z2

θ = arccos

(
z√

x2 + y2 + z2

)
ϕ = arctan

(y
x

)
The spherical coordinate system defines its unit vectors as r̂, θ̂, and ϕ̂, each

pointing in the directions of increasing r, θ, and ϕ, respectively. The
differentials for length, area, and volume elements in spherical coordinates are

defined by the following expressions:

dl = drr̂ + rdθθ̂ + r sin θdϕϕ̂

dA = r2 sin θdθdϕ

dV = r2 sin θdrdθdϕ

Consider, for instance, a sphere with a radius denoted by R. We can exploit
the benefits of spherical coordinates to calculate its volume, using the volume
element dV = r2 sin θdrdθdϕ. The boundaries for r span from 0 to R, for θ

from 0 to π, and for ϕ from 0 to 2π. Thus, the volume V of our sphere can be
expressed as:
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V =

∫ R

0

∫ π

0

∫ 2π

0

r2 sin θdrdθdϕ.

Application of conventional calculus methods to evaluate this integral delivers
the commonly known result V = 4

3πR
3.

This example underscores the effectiveness of spherical coordinates for
problems imbued with spherical symmetry, problems that would otherwise

prove cumbersome to tackle using Cartesian coordinates.

2.6 Exploring Gradients, Divergences, and Rotationals
When navigating the territories of curvilinear coordinates, especially
orthogonal coordinates like cylindrical and spherical coordinates, we

frequently come across three fundamental vector calculus operations: the
gradient, divergence, and curl (or rotational). These operations, when

articulated in the language of the coordinate system’s scale factors, offer
profound insights into the nature of vector fields in these coordinate systems.

2.6.1 The Gradient

Marked by the symbol ∇, the gradient operation converts a scalar function
into a vector field. The resulting vector field’s direction corresponds to the

function’s maximum rate of increase, with its magnitude signifying the rate of
change in that direction.

For curvilinear coordinates (u1, u2, u3) carrying scale factors h1, h2, h3, the
gradient of a scalar function f(u1, u2, u3) is denoted as follows:

∇f =
1

h1

∂f

∂u1
e1 +

1

h2

∂f

∂u2
e2 +

1

h3

∂f

∂u3
e3

2.6.2 The Divergence

The divergence of a vector field is a scalar function that reveals the quantity
of the field’s source or sink at a given point. For a vector field

A = A1e1 +A2e2 +A3e3 in the same curvilinear coordinates, the divergence
is expressed by:

∇ ·A =
1

h1h2h3

[
∂(h2h3A1)

∂u1
+

∂(h3h1A2)

∂u2
+

∂(h1h2A3)

∂u3

]
2.6.3 Curl (Rotational)

The curl of a vector field is a vector function that characterizes the field’s
rotationality. In the same curvilinear coordinates, the curl of the vector field

A = A1e1 +A2e2 +A3e3 is given by:
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∇×A =
1

h1h2h3

∣∣h1e1 h2e2 h3e3
∂

∂u1

∂
∂u2

∂
∂u3

h1A1 h2A2 h3A3

∣∣
These formulae generalize the standard expressions for gradient, divergence,
and curl in Cartesian coordinates and simplify to the standard forms when
the scale factors h1, h2, h3 are all equal to 1. These operations are central to

the statement and solution of many problems in physics and engineering,
particularly those described by partial differential equations involving vector
fields, such as Maxwell’s equations in electromagnetism or the Navier-Stokes

equations in fluid dynamics.

2.6.4 Unveiling the Laplacian

The Laplacian operator, represented either by ∇2 or ∆, is a cornerstone in an
extensive range of scientific domains, such as heat conduction, fluid dynamics,

electromagnetism, and quantum mechanics. Its essence is captured as the
divergence of the gradient of a scalar field, or analogously, as the trace of the

Hessian matrix, fostering its significance as a second-order differential
operator.

The manifestation of the Laplacian, in the realm of curvilinear coordinates
(u1, u2, u3) fortified with scale factors h1, h2, h3, for a scalar function

f(u1, u2, u3) is encoded in the following expression:

∇2f =
1

h1h2h3

[
∂

∂u1

(
h2h3

h1

∂f

∂u1

)
+

∂

∂u2

(
h3h1

h2

∂f

∂u2

)
+

∂

∂u3

(
h1h2

h3

∂f

∂u3

)]
When we transplant this expression into the Cartesian coordinates setting,

where every scale factor equals 1, it morphs into the familiar form
∂2f
∂x2 + ∂2f

∂y2 + ∂2f
∂z2 .

2.6.5 Maxwell’s Equations

Originating from the pioneering work of physicist James Clerk Maxwell,
Maxwell’s equations represent the fundamental laws of electromagnetism.

These four seminal equations describe the intricate dynamics between electric
and magnetic fields. They stand as the pillars of classical electrodynamics,

optics, and the theory of electric circuits. Maxwell’s equations can be
presented in two incarnations: the "microscopic" form, where the influences of

charges and currents are explicitly included, and the "macroscopic" form,
where the effects of electrical polarization and magnetization in matter are
accounted for. In this context, we will explore the microscopic form of the

equations, given as:

• Gauss’s law for electricity:

∇ ·E =
ρ

ε0
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• Gauss’s law for magnetism:

∇ ·B = 0

• Faraday’s law of induction (inclusive of Lenz’s law):

∇×E = −∂B

∂t

• Maxwell–Ampère’s law (inclusive of Maxwell’s modification):

∇×B = µ0J+ µ0ε0
∂E

∂t

In these equations, E and B embody the electric and magnetic fields
respectively, ρ symbolizes the electric charge density, J represents the electric
current density, ε0 is the vacuum permittivity, and µ0 signifies the vacuum
permeability. The operators ∇· and ∇× express the divergence and curl

respectively, and ∂
∂t denotes the time derivative.

Interpreting Maxwell’s Equations

Let us delve into the physical meanings and implications of each of these
equations.

• Gauss’s law for electricity postulates that the divergence of the elec-
tric field E at a specific point in space is directly proportional to the
electric charge density ρ at that point. This suggests that electric field
lines spring from positive charges and conclude at negative charges.

• Gauss’s law for magnetism asserts that the divergence of the mag-
netic field B is zero. This implies the nonexistence of magnetic monopoles;
that is, magnetic field lines do not commence or end at any point but
rather form unbroken loops.

• Faraday’s law of induction conveys that an electric field is induced
by a time-varying magnetic field. This fundamental principle underpins
the operation of numerous electrical generators and transformers. The
negative sign in the equation is a testament to Lenz’s law, which sug-
gests that the induced electric field strives to counteract the alteration
in the magnetic field.

• Maxwell–Ampère’s law states that magnetic fields are engendered by
electric currents and oscillating electric fields. The term µ0J corresponds
to Ampère’s circuital law, explicating the magnetic field surrounding a
current-carrying wire. Simultaneously, the term µ0ε0

∂E
∂t is Maxwell’s

contribution, which considers the displacement current owing to fluctu-
ating electric fields.

15



Electrostatic Fields: Electric forces in motion, shaping our world.

Adapting Maxwell’s Equations to Curvilinear Coordinates

When engaging with Maxwell’s equations in non-Cartesian (curvilinear)
coordinate systems, such as cylindrical or spherical systems, the differential

operations in these equations - namely the gradient, divergence, curl, and time
derivative - necessitate their expression in terms of the appropriate coordinate

system.

• Gauss’s law for electricity in curvilinear coordinates takes the form:

1

h1h2h3

(
∂(h2h3E1)

∂u1
+

∂(h3h1E2)

∂u2
+

∂(h1h2E3)

∂u3

)
=

ρ

ε0

• Gauss’s law for magnetism in curvilinear coordinates is presented as:

1

h1h2h3

(
∂(h2h3B1)

∂u1
+

∂(h3h1B2)

∂u2
+

∂(h1h2B3)

∂u3

)
= 0

• Faraday’s law of induction and Maxwell–Ampère’s law in curvi-
linear coordinates involve the curl expression in these coordinates. The
curl in curvilinear coordinates presents a more complex expression than
the divergence and is not detailed here due to its intricacy.

These forms exhibit greater generality and applicability across any coordinate
system. However, computation of the terms can be significantly more

complicated compared to Cartesian coordinates. It should be noted that the
time derivative ∂

∂t remains consistent across all coordinate systems, as it does
not involve spatial variables.

2.7 Volume Integrals
The relevance and importance of volume integrals in physics and engineering
cannot be overstated. These mathematical constructs are often utilized to
calculate key quantities such as mass, charge, energy, or even volume of a
specified object or area. Notably, in the field of electromagnetism, volume

integrals are instrumental in determining the total electric charge in a
particular spatial region and in the derivation of different forms of Maxwell’s

equations.

2.7.1 Definition and Interpretation Explicated

To gain insight into volume integrals, consider a scalar function f(r) defined
in a certain region V in space. The volume integral of this function over V is

mathematically defined as:

∫
V

f(r), dV
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This integral effectively sums up all contributions of f(r) across all
infinitesimal volume elements dV within the region V . If f(r) is understood
to represent a density (such as mass, charge, or energy), the volume integral
thus calculated gives us the total quantity of that density enclosed within V .

2.7.2 Volume Integrals in Various Coordinate Systems

In different coordinate systems, the volume element dV varies, which
subsequently alters the expression for the volume integral. In Cartesian

coordinates, spherical coordinates, and cylindrical coordinates, the volume
element dV is denoted by dx, dy, dz, r2 sin θ, dr, dθ, dϕ, and r, dr, dϕ, dz,

respectively. Consequently, in these systems, the volume integral of a function
f(r) over a region V can be written as:

• Cartesian coordinates:∫
V

f(x, y, z), dx, dy, dz

• Spherical coordinates:∫
V

f(r, θ, ϕ), r2 sin θ, dr, dθ, dϕ

• Cylindrical coordinates:∫
V

f(r, ϕ, z), r, dr, dϕ, dz

2.7.3 Use in Maxwell’s Equations

In electromagnetism, volume integrals are often used to derive the integral
forms of Maxwell’s equations from their differential forms. For instance,

integrating Gauss’s law for electricity over a volume V bounded by a surface
S, and applying the divergence theorem, gives us the integral form:

∫
V

∇ ·E, dV =

∫
S

E · dS =
Q

ε0

In this equation, Q =
∫
V
ρ, dV represents the total charge enclosed by the

surface S, with dS being the vector differential of the surface, oriented
outwards. This equation states that the total electric flux exiting any closed
surface is equal to the total enclosed electric charge divided by the vacuum

permittivity.

In a similar fashion, volume integrals can be used to derive the integral forms
of other Maxwell’s equations.
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2.7.4 A Closer Look at the Integral Form of Ampere’s Law

Ampere’s Law creates a bridge between the magnetic field surrounding a
closed loop and the electric current passing through it. By integrating the

differential form of Ampere’s Law over a particular volume and applying the
Stokes’ theorem, we can arrive at the integral form.

Ampere’s Law, when enhanced with Maxwell’s displacement current term,
assumes the following differential form:

∇×B = µ0J+ µ0ε0
∂E

∂t

Carrying out the integration over a volume V that is bounded by a surface S
and applying Stokes’ theorem, we arrive at:

∫
S

(∇×B) · dS =

∮
∂S

B · dl = µ0

∫
S

J · dS+ µ0ε0

∫
S

∂E

∂t
· dS

Here, ∂S signifies the boundary of S. According to this equation, the
integrated magnetic field circling a closed loop equals the electric current
through the loop plus its electric field’s rate of change over time, both

multiplied by the permeability of free space.

2.7.5 Understanding the Integral Form of Faraday’s Law

Faraday’s Law of electromagnetic induction postulates that changes in the
magnetic field within a certain space will induce an electromotive force. We
can derive the integral form of Faraday’s Law by starting with its differential

form and applying a similar method as discussed above.

Faraday’s Law in its differential form is expressed as:

∇×E = −∂B

∂t

By integrating this equation over a volume V , bounded by a surface S, and
applying the Stokes’ theorem, we obtain:

∫
S

(∇×E) · dS =

∮
∂S

E · dl = −
∫
S

∂B

∂t
· dS

According to this equation, the electromotive force around a closed loop is
equal to the negative rate of change of the magnetic flux traversing the loop.
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2.7.6 The Integral Form of Gauss’s Law for Magnetism

Gauss’s Law for Magnetism asserts that the total magnetic flux through any
closed surface is zero, an assertion that mirrors the non-existence of magnetic

monopoles. As this law is inherently integral, no further transformation is
needed:

∫
S

B · dS = 0

This equation essentially implies that the quantity of magnetic field lines
entering and exiting any closed surface must be balanced, corresponding to

the non-existence of magnetic monopoles.

2.8 Assigning Coordinates to a Surface
When we delve into fields, such as electromagnetic fields, in spaces that aren’t

exclusively Euclidean, we need to define coordinates on a surface. This
subject is a cornerstone in differential geometry and forms the basis for
general relativity mathematics and many theoretical physics aspects.

A surface in three-dimensional space is a two-dimensional entity living within
that space. When we refer to a surface S, we are addressing a set of points
that adhere to specific conditions or rules. These rules enable us to identify

which points are part of the surface and which are not. A key aspect of
handling surfaces is parametrization, a procedure that simplifies the

description of points on the surface in an orderly and convenient manner.

We start by proposing two parameters, let’s call them u and v, which can
vary over certain values. These parameters serve as unique identifiers for each
point on the surface. The position vector r(u, v), which is a function of these

parameters, connects our coordinate system’s origin to the surface point
labelled by (u, v). In Cartesian coordinates, we can express the position vector

as:

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

Here, x(u, v), y(u, v), and z(u, v) are scalar functions that map the parameters
(u, v) to the respective x, y, and z coordinates of a surface point. The vectors
i, j, and k are unit vectors directed towards the x, y, and z axes, respectively.

To mathematically infer the position vector r(u, v), we think of an arbitrary
point (x, y, z) in the space. We can express this point’s coordinates in terms
of the parameters u and v using the functions x(u, v), y(u, v), and z(u, v).

Therefore, the position vector of this point relative to the origin of the
coordinate system is given by:
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r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

This function r(u, v) assigns each pair of parameters (u, v) a unique point in
the space, creating a one-to-one correspondence between the points on the

surface and the parameter pairs.

The utility of parametrization stems from its ability to transform the
challenge of managing a surface in three-dimensional space into a simpler
problem in a two-dimensional parameter plane. This streamlined approach

lays the groundwork for many vector calculus operations, such as
differentiation and integration over surfaces.

2.8.1 Understanding Unit Tangent Vectors

In vector calculus, we often grapple with quantities that are defined over a
curve, a surface, or even in space. The capability to define direction at a given

point is fundamental to many operations in this field. When we work on a
curved surface, such directionality is usually embodied by unit tangent

vectors.

Imagine a curved surface, like a sphere’s surface or a saddle-shaped surface, to
visualize this. At any specific point on this surface, you can conceive a plane
that merely touches the surface at that point (known as the "tangent plane").
Vectors resting in this plane can offer a direction to any quantity defined at

that point.

For a surface parameterized by two parameters, say u and v, we identify the
unit tangent vectors at a point (u, v) as the vectors obtained by differentiating
the position vector r(u, v) concerning each of the parameters. Mathematically,

these are expressed as:

eu =
∂r

∂u
, ev =

∂r

∂v

The vectors eu and ev inhabit the tangent plane and point in the direction of
increasing u and v respectively. They offer a ’local’ set of axes at the point
r(u, v), providing a basis for measuring other quantities (like a velocity or a

force).

Grasping these unit tangent vectors is crucial for studying fields (scalar or
vector) defined over a surface. They form the foundation for differentiating
and integrating such fields, and for characterizing their behavior in terms of

directionality and magnitude.
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2.8.2 Understanding Surface Elements

When exploring the core concepts of calculus, the differential element emerges
as a key feature. We can view dx as a differential length element that traces a

path along a line. In a similar vein, we introduce dS as a differential area
element that traces a path on a surface. However, a key distinction to note is

that dx is a scalar, while dS is a vector. This means that dS not only
represents the differential area, but also a specific direction.

dS = eu × ev, du, dv

In this equation, the term eu × ev can be visualized as a vector standing
perpendicular to the tangent plane at the point (u, v). The magnitude of this
vector is the same as the area of the infinitesimal parallelogram stretched out
by the vectors eu and ev. Consequently, the vector dS directs itself normal to
the surface, and its magnitude equates to the area of the differential surface

element.

A pivotal aspect to note is that any plane has two vectors that are
perpendicular to it and point in opposite directions. The direction that dS

follows is typically chosen based on the specifics of the problem or the
context.

2.8.3 Decoding Surface Integrals

With the definitions of the unit tangent vectors and the differential surface
element in hand, we can now delve into integrating scalar or vector fields

across a surface. These integrals, aptly named surface integrals, essentially
summarize the field across the entire surface. This process can be perceived as

calculating the overall "value" of the field across the surface.

Let’s kick off this exploration by investigating the surface integral of a scalar
field f(u, v). This integral aggregates the value of the scalar field at all points
on the surface, with each point being weighted by the area of the differential

element at that point. Mathematically, this can be expressed as:

∫
S
f(u, v), dS =

∫ ∫
f(u, v), |eu × ev|, du, dv

Moving on, let’s delve into the surface integral of a vector field F(u, v), also
referred to as the flux of F across the surface. This integral measures the total

"flow" of the vector field through the surface, computed by taking the dot
product of the vector field and the differential surface element. This can be

mathematically captured as:
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∫
S
F(u, v) · dS =

∫ ∫
F(u, v) · (eu × ev), du, dv

Now, to understand the concept of a double integral, imagine a scalar function
f(x, y) defined over a region R in the xy-plane. The double integral of f(x, y)

over the region R is framed as the limit of a Riemann sum:

∫∫
R

f(x, y), dA = lim
∆A→0

∑
i,j

f(xi, yj)∆Ai,j

Here, the sum is calculated over all the minute areas ∆Ai,j in the region R,
with (xi, yj) being a point in the ith, jth small area.

Imagine now a surface S in a 3-dimensional space. We can assign parameters
to this surface using u and v, so that every point (x, y, z) on the surface
matches a unique pair (u, v), and vice versa. This can be represented as:

r(u, v) = x(u, v)i+ y(u, v)j+ z(u, v)k

The differential area element on the surface dS can be expressed in terms of
du and dv as:

dS =

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du, dv
Here, ∂r

∂u and ∂r
∂v are vectors tangent to the surface at the point (u, v), in the

directions of increasing u and v respectively. Their cross product results in a
vector normal to the surface. The magnitude of this cross product, which

represents the area of the parallelogram spanned by the tangent vectors, forms
the differential area element on the surface.

Let’s say we have a scalar field f(r) defined over the surface S. The surface
integral of f over S is the double integral of f over the parameter region D,

with each point being weighted by the differential area element dS:

∫
S

f, dS =

∫
D

f(r(u, v))

∣∣∣∣ ∂r∂u × ∂r

∂v

∣∣∣∣ du, dv
This formula offers the mathematical definition of a surface integral, which
has been derived from the concept of a double integral over a plane region.
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In electrostatics, the electric field is a fundamental quantity. This vector field
assigns a force to each point in space that a positive test charge would

experience. A key principle of electrostatics is Gauss’s law, which links the
electric field to the distribution of electric charge. Often, this law is expressed

using aized.

ΦB =

∫
S
B · dS

Now we turn our attention to Gauss’s law for magnetism, a cornerstone of our
understanding of magnetic fields and a constituent of the four Maxwell’s

equations, which together form the bedrock of classical electrodynamics. This
law brings out the stark contrast between electric and magnetic fields,
emphasizing a fundamental property of magnetism - that there are no

magnetic monopoles. This is encapsulated mathematically in a
straightforward, yet deeply insightful equation:

ΦB = 0

This uncomplicated equation carries profound implications, namely, the
nonexistence of ’magnetic monopoles’. In nature, magnetic poles are always

observed in pairs, in the form of a dipole with a North and a South pole. This
starkly contrasts with electric charges, which can and do exist independently

as positive or negative charges.

ΦB =

∫
S
B · dS

In the equation above, ΦB is the total magnetic flux across a closed surface S.
It sums up the contributions of the magnetic field B across every infinitesimal
area element dS on the surface. The dot product operation B · dS implies that
we consider only the component of B that is perpendicular to dS, thus giving

us the magnetic flux through each infinitesimal area element.

However, Gauss’s law for magnetism takes this a step further by stating that
the total magnetic flux across any closed surface is zero. This forms the

mathematical embodiment of Gauss’s law for magnetism:

∫
S
B · dS = 0

This elegantly simple yet profound equation tells us that for any closed
surface, the total magnetic flux - or in other words, the total number of

magnetic field lines entering and leaving the surface - must always be zero.
This law forms a fundamental part of our understanding of magnetic fields
and their behavior, reinforcing the notion that we cannot isolate north or

south magnetic poles.

23



Electrostatic Fields: Electric forces in motion, shaping our world.

3 Irrotational and Solenoidal Vectors
In the vast realm of physics, spanning from fluid dynamics to electrodynamics

and field theory, the notions of irrotational and solenoidal vectors serve as
instrumental tools. These concepts allow us to delve deeper into the

characteristics of vector fields, particularly focusing on their local rotation and
divergence behaviors. By understanding these classifications, we can gain

insight into the vector fields we encounter in the natural world.
Quantitatively, we can evaluate these behaviors using the divergence and curl
operators. The divergence of a vector field quantifies how much the field acts
as a source or a sink at a given point. Conversely, the curl of a vector field
assesses the rotation of the field around that point. A vector field is termed
solenoidal if its divergence is zero, indicating the absence of sources or sinks,

and irrotational if its curl is zero, signifying a lack of local rotation.

3.1 Reducible Curves and Surfaces
In the study of vector fields, particularly those found in electromagnetism and
fluid dynamics, irrotational and solenoidal vectors stand out for their unique

properties. They offer a unique lens to interpret and solve a multitude of
physical problems. In addition, these vector types’ relationships with

reducible curves and surfaces allow for simplification and deeper
understanding of complex relationships.

Let’s first consider irrotational vector fields. These fields, whose curl is zero at
all points, do not exhibit any "rotation" or "curl". A common example is the
electrostatic field produced by stationary electric charges, which we express

mathematically as:

∇×E = 0,

This equation is a mathematical representation of the irrotational property of
an electrostatic field, where ∇×E symbolizes the curl of the field E.

On the other hand, we have solenoidal vector fields, characterized by zero
divergence at all points. This implies the absence of sources or sinks within
the field. A magnetic field is a prime example of such a field, conforming to

Gauss’s law for magnetism. This is mathematically represented as:

∇ ·B = 0,

In this case, ∇ ·B signifies the divergence of the magnetic field B, and this
equation captures the solenoidal property of a magnetic field.
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Understanding these properties, we can now explore how reducible curves and
surfaces interact with these types of vector fields. A reducible curve or surface

is one that can be broken down into simpler components. We can leverage
this property to simplify the calculations of line integrals for irrotational fields

and surface integrals for solenoidal fields.

In the case of an irrotational field F = ∇f , where f is a scalar potential
function, the line integral of F along a reducible curve C can be obtained by

summing up the line integrals along its individual parts C1, C2, ..., Cn:

∫
C

F · dr =

n∑
i=1

∫
Ci

F · dr =

n∑
i=1

(f(ri)− f(ri− 1)),

where ri and ri− 1 are the endpoints of curve Ci.

Likewise, for a solenoidal field G, the surface integral over a reducible surface
S can be computed as the sum of the surface integrals over its individual

parts S1, S2, ..., Sm:

∫
S

G · dS =

m∑
j=1

∫
Sj

G · dS,

These relationships provide a strategic way to simplify the calculation of line
and surface integrals, particularly in scenarios exhibiting high symmetry.

More than just computational tools, they deepen our understanding of the
geometric structure of irrotational and solenoidal vector fields.

3.2 Irrotational Vectors
In our exploration of vector fields, we encounter the concept of an irrotational
vector field, also known as a conservative or curl-free vector field. This type of

field is characterized by having zero curl, which indicates that there is no
rotational motion at any given point within the field. In mathematical

language, this condition is conveyed as

∇× F = 0.

This equation signifies the absence of rotation at every point within the field.
To better understand this, we consider a vector field F represented in
Cartesian coordinates as F = Fxî+ Fy ĵ + Fz k̂. The curl of F can be
calculated using the determinant of a specific matrix, expressed as:
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∇× F =

∣∣∣∣∣∣
î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Fx Fy Fz

∣∣∣∣∣∣ =
(
∂Fz

∂y
− ∂Fy

∂z

)
î−
(
∂Fz

∂x
− ∂Fx

∂z

)
ĵ +

(
∂Fy

∂x
− ∂Fx

∂y

)
k̂.

Equating this to the zero vector results in three individual partial differential
equations, expressed as:

∂Fz

∂y
− ∂Fy

∂z
= 0,

∂Fz

∂x
− ∂Fx

∂z
= 0,

∂Fy

∂x
− ∂Fx

∂y
= 0.

These equations must hold true at every point (x, y, z) in the domain of F for
the field to be deemed irrotational.

The core characteristic of an irrotational vector field is that the line integral
across the field is path independent, meaning the value of the integral only

depends on the endpoints and not the specific path taken. This unique
property allows us to define a potential function V for the field, whereby

F = ∇V.

In this scenario, V is a scalar field where its gradient at each point results in
the vector field F. The ability to define such a potential function stems

directly from the path independence of line integrals in the field, significantly
simplifying the analysis of physical problems involving irrotational fields.

Given that an irrotational vector field F has a unique potential function V , it
simplifies the computation of line integrals in such a field.

Ordinarily, the line integral of a vector field F along a curve C from point A
to point B is calculated as:

∫
C

F · dr =

∫ B

A

F · dr
dt

dt,

Here, dr/dt is the tangent vector to the curve at each point, and F · dr/dt
provides the component of the vector field that is parallel to the direction of

movement along the curve. However, in an irrotational field, due to the
existence of the potential function V , the line integral simplifies to:
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∫
C

F · dr = V (B)− V (A).

This equation indicates that the line integral of an irrotational vector field
between two points is merely the difference in the potential function evaluated

at these points. This result remains unaffected by the path taken,
demonstrating the path independence characteristic of irrotational fields.

If we consider a closed loop where the start and end points coincide, the line
integral manifests as circulation around the loop. This is represented

mathematically with a circle on the integral sign:

∮
C

F · dr,

In this context, the loop C can be any closed curve in the field. For an
irrotational vector field, this integral equals zero, indicative of the fact that

the potential function V is identical at the start and end of the loop.
Therefore, we have:

∮
C

F · dr = V (A)− V (A) = 0.

This denotes that the circulation of an irrotational vector field around any
loop is always zero, a crucial property of such fields.

The distinctive properties of irrotational vector fields, especially the path
independence of the line integral and the zero circulation around any closed

loop, have significant implications in the domain of electrostatics.

Within electrostatics, the electric field E produced by a distribution of
charges represents an example of an irrotational vector field. The electric field
is conservative, indicating that the work done by the field on a charge moving
along any closed path is zero. This demonstrates the physical aspect of the

zero circulation property of irrotational fields.

To demonstrate this, consider a charge q moving in the electric field E. The
work conducted by the electric field on the charge as it moves from point A to

point B is provided by the line integral of the electric field along the path.
This work corresponds to the change in the electrostatic potential energy U of

the charge, and is expressed as:

WA→B = −∆U = −q[V (B)− V (A)],
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where V (A) and V (B) are the electric potentials at points A and B,
respectively. The minus sign indicates that the work done by the field is

negative when the potential energy increases.

To continue the thread of our exploration, the line integral of the electric field
from point A to point B simplifies to the difference in potential at these

points, represented as follows:

∫ B

A

E · dr = V (B)− V (A).

Drawing a parallel to our earlier discussion, it becomes evident that the work
done by the electric field mirrors −q times the line integral of the electric

field. This equivalency forms the cornerstone of the principle that the work
done by the electric field on a charge as it traverses any closed path in the
field is always zero. This phenomenon is an instance of the zero circulation
property of irrotational fields, colloquially referred to as the work-energy

theorem within the scope of electrostatics.

As we delve deeper into the complexities of vector fields, the concept of speed
potential emerges as a useful tool in the realm of fluid dynamics, specifically
when dealing with irrotational flows. In an idealized irrotational flow, the

movement of fluid particles follows the streamlines so meticulously that the
cumulative rotation around any given point within the fluid is nullified.

In such instances of irrotational flow, the introduction of a scalar potential,
aptly named the speed potential and denoted by Φ, allows the velocity field v

of the flow to be illustrated as the gradient of Φ. Mathematically, this
relationship is denoted as:

v = ∇Φ

In this expression, ∇Φ signifies the gradient of the scalar field Φ. This results
in a vector field pointing in the direction of the maximum rate of increase of

Φ, with its magnitude echoing the rate of change in that direction.

The inception of the speed potential concept marks a significant milestone in
fluid dynamics due to its ability to simplify the analysis of irrotational flows.
This is primarily because it allows the problem of deciphering the velocity

field, inherently a vector field, to be redefined as a quest to find a scalar field.

However, it is pertinent to note that, akin to the scalar potential in
electrostatics, the speed potential is not uniquely defined. The addition of a
constant to it does not alter the velocity field, reinforcing the fact that the
absolute value of the potential is not of physical significance; only potential

differences bear meaning.
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3.3 Solenoidal Vectors
Delving into the domain of vector fields, we encounter a specific kind that is
referred to as solenoidal. This type of vector field is characterized by the fact
that its divergence is zero in all points within its defined space. In layman’s

terms, this implies that the quantity of the vector field exiting an
infinitesimally small volume surrounding a point matches the quantity

entering it. When this concept is applied in the field of fluid dynamics, we
find that a solenoidal field parallels an incompressible flow. Allow us to

scrutinize this idea in greater depth.

From a mathematical standpoint, if we have a vector field symbolized as F,
we can categorize F as solenoidal under one condition:

∇ · F = 0

Here, the symbol ∇ · F represents the divergence of F, and the symbol ∇,
often referred to as nabla or del, denotes the vector differential operator.

Suppose we have a vector field F, which we choose to express in Cartesian
coordinates (x, y, z). We can present F in the form Fxi+ Fyj+ Fzk, where
Fx, Fy, and Fz represent the components of F in the x, y, and z directions

respectively, and i, j,k correspond to the relevant unit vectors. With this, the
divergence of F simplifies to:

∇ · F =
∂Fx

∂x
+

∂Fy

∂y
+

∂Fz

∂z

Therefore, F can be considered solenoidal if and only if the equation
∂Fx

∂x +
∂Fy

∂y + ∂Fz

∂z = 0 is satisfied.

One of the defining traits of solenoidal fields is that they can be represented
as the curl of another vector field. That is, if we establish that F is solenoidal,
there exists a vector field, let’s call it A, for which F = ∇×A, with ∇×A

being the curl of A. This finding is encapsulated in what is known as
Helmholtz’s theorem.

3.3.1 Helmholtz’s Theorem

Helmholtz’s theorem, also referred to as the fundamental theorem of vector
calculus, postulates that any vector field in three dimensions that is

sufficiently smooth and diminishes rapidly can be decomposed into the sum of
an irrotational (free from curl) vector field and a solenoidal (free from

divergence) vector field. In other words, if we are given a vector field F that
adheres to the appropriate criteria for smoothness and behavior at infinity, we

can find a vector field A and a scalar field ϕ that satisfy the following
condition:
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F = −∇ϕ+∇×A

We assign the name scalar potential to the scalar field ϕ, and the term vector
potential to the vector field A.

The proof of Helmholtz’s theorem requires an intricate understanding of
several advanced mathematical concepts, predominantly rooted in the sphere
of functional analysis. Nevertheless, we can provide a broad overview of the

procedure of proving this theorem:

Existence of Scalar Potential ϕ: The process begins with the definition of
the scalar potential ϕ(r) as the solution to Poisson’s equation:

∇2ϕ = −∇ · F

We can confirm that such a ϕ does indeed exist and is unique (up to an addi-
tive constant), in accordance with the stipulations of Helmholtz’s theorem.
Existence of Vector Potential A: We then subtract this irrotational field
from the original field, resulting in a solenoidal vector field denoted as G =
F + ∇ϕ. We can then express G as the curl of a different vector field, which
we call A:

G = ∇×A

Utilizing vector calculus, we can solve for A and ascertain its existence and
uniqueness in line with the provisions of Helmholtz’s theorem.
Verification: The final stage involves substituting the derived expressions for
ϕ and A into the equation of Helmholtz’s theorem and verifying its validity.
When we place this theorem within the realm of electrostatics, it provides the
mathematical foundation for representing electric and magnetic fields in terms
of scalar and vector potentials. This simplifies the examination of these fields
and lays the groundwork for the sophisticated techniques employed in disci-
plines such as electrodynamics, fluid dynamics, and the theory of elasticity.

To delve deeper into the mathematical derivation of Helmholtz’s theorem, we
need to consider the conditions that the vector field F must fulfill. The

theorem holds when F is twice continuously differentiable and decreases faster
than 1/r2 as r tends towards infinity, where r denotes the distance from the

origin.

F = −∇ϕ+∇×A

To unearth the scalar potential ϕ, we solve Poisson’s equation for ϕ:
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∇2ϕ = −∇ · F

The solution to Poisson’s equation in three dimensions, under the given
conditions on F, is furnished by:

ϕ(r) =
1

4π

∫
∇′ · F(r′)
|r− r′|

d3r′

In this equation, the integral is taken over all space, and the prime indicates
quantities evaluated at r′.

Following this, we define the solenoidal field G as the difference between the
initial field F and the gradient of the scalar potential:

G = F+∇ϕ

According to the properties of the divergence and curl operators, it holds that
∇ ·G = 0. Thus, G is indeed a solenoidal field.

To represent G as the curl of a vector potential A, we can solve the following
equation:

∇×A = G

The solution in three dimensions, under the conditions imposed on F, is given
by:

A(r) =
1

4π

∫
G(r′)× (r− r′)

|r− r′|3
d3r′

Substituting these expressions for ϕ and A back into Helmholtz’s equation, we
verify the truth of the equation. With this, we conclude the derivation of

Helmholtz’s theorem.

3.3.2 Decomposition of Vector Fields

In the realm of vector calculus and physics, the decomposition of vector fields
stands as a pivotal procedure. This operation simplifies the field’s

examination and engenders an easier path to the comprehension of its
properties. The chief mechanisms for the decomposition of a vector field

engage the gradient of a scalar field and the curl of a vector field. This notion
is encapsulated in the Helmholtz’s theorem, a critical principle in

mathematical physics. Let us embark on an analytical journey to understand
how this mathematical decomposition transpires.
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Initially, let’s envisage a vector field F that fulfills the prerequisites set by
Helmholtz’s theorem. In other words, the vector field F is required to be twice

continuously differentiable and diminish faster than 1/r2 as r gravitates
towards infinity, where r signifies the distance from the origin. The power of

Helmholtz’s theorem lies in its ability to articulate this vector field as:

F = −∇ϕ+∇×A

In this expression, the term −∇ϕ corresponds to a vector field whose
divergence matches that of F, while the term ∇×A aligns with a vector field
whose curl mirrors F. Here, ϕ and A are the scalar and vector potentials of

the field F respectively.

To unearth the scalar potential ϕ, we should address Poisson’s equation:

∇2ϕ = −∇ · F

Solving this equation under the established conditions on F unveils the scalar
potential as:

ϕ(r) =
1

4π

∫
∇′ · F(r′)
|r− r′|

d3r′

Subsequently, let’s introduce the vector field G = F+∇ϕ. By computing its
divergence, we can affirm that G is solenoidal:

∇ ·G = ∇ · F+∇ · ∇ϕ = 0

This finding confirms that G is indeed solenoidal, meaning it possesses zero
divergence.

Our next step is to represent G as the curl of a vector potential A by
resolving the equation ∇×A = G. Under the conditions attributed to F, the

solution is expressed as:

A(r) =
1

4π

∫
G(r′)× (r− r′)

|r− r′|3
d3r′

By incorporating these expressions for ϕ and A into the Helmholtz’s equation,
we are able to validate that the equation is upheld. This validation brings our
mathematical journey of vector field decomposition in line with Helmholtz’s

theorem to a close.
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3.4 Applications in Electromagnetism
In the study of electromagnetism, the decomposition of vector fields holds a
crucial role. Our primary focus in this context will be Maxwell’s equations,

which encapsulate the cornerstone laws of electromagnetism:

∇ ·E =
ρ

ϵ0
∇ ·B = 0

∇×E = −∂B

∂t

∇×B = µ0J+ µ0ϵ0
∂E

∂t

In these equations, E and B represent the electric and magnetic fields
respectively, while ρ denotes the charge density. The permittivity of free space

is represented by ϵ0, the permeability of free space by µ0, and the current
density by J. We note that the divergence of B is zero, which implies that B

is a solenoidal field.

In a region devoid of sources (that is, when ρ = 0 and J = 0), Maxwell’s
equations transform into a more simplified form:

∇ ·E = 0

∇×E = −∂B

∂t

∇×B = µ0ϵ0
∂E

∂t

Under these conditions, it’s possible to express both the electric field E and
the magnetic field B as the curl of some vector fields. Our subsequent step is
to derive the potentials that satisfy these conditions, a process also known as

solving the inhomogeneous wave equation in electromagnetism.

By initiating from the third equation and taking the curl of both sides, we
arrive at:

∇×∇×E = − ∂

∂t
(∇×B)

Utilizing the vector identity ∇× (∇×A) = ∇(∇ ·A)−∇2A and substituting
it into the equation above, we get:
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∇(∇ ·E)−∇2E = −µ0ϵ0
∂2E

∂t2

Given that the divergence of E is zero, the equation simplifies to:

∇2E = µ0ϵ0
∂2E

∂t2

This results in the inhomogeneous wave equation for the electric field E in
regions devoid of sources.

By applying similar procedures, we can also derive the inhomogeneous wave
equation for the magnetic field B in source-free regions:

∇2B = µ0ϵ0
∂2B

∂t2

These pair of equations are the pillars that support the concept of
electromagnetic waves. This process exemplifies the significance of the

Helmholtz decomposition and the properties of solenoidal vectors in the
theory of electromagnetism.

4 Electrostatic Fields
The notion of electrostatic fields is fundamental in the realm of

electromagnetism. These are fields created by static electric charges, where
’static’ indicates that the charges are not in motion. The influence of a
stationary charge extends to all points in its surroundings through the

medium of an electric field. This field is described mathematically by a vector
quantity denoted by E, the electric field vector. Its direction is conventionally
defined as the direction that a positive test charge would experience a force.
The magnitude of E at a point in space is the force experienced by a positive

test charge placed at that point, divided by the charge itself, or
mathematically:

E =
F

q

where F is the force and q is the charge. This equation forms the basis for our
understanding of electrostatic fields.

34



Electrostatic Fields: Electric forces in motion, shaping our world.

Coulomb’s law provides us with an additional layer of understanding. It states
that the force between two point charges is directly proportional to the
product of their charges and inversely proportional to the square of the

distance between them. In mathematical terms:

F = ke
|q1q2|
r2

where ke is Coulomb’s constant, q1 and q2 are the charges, and r is the
distance between them.

By incorporating Coulomb’s law into the concept of an electric field, we can
define the electric field created by a single point charge as:

E = ke
q

r2

In this equation, the direction of E is radially outward from the charge if the
charge is positive and radially inward if the charge is negative.

These definitions and laws lay the groundwork for the study of electrostatic
fields, enabling the exploration of more complex arrangements of charges and

their resulting electric fields.

4.1 Gauss’s Law in Electrostatics
Gauss’s law, named after the German mathematician Carl Friedrich Gauss, is
a powerful tool in the study of electrostatics. This law is based on the notion
of electric flux, a measure of the number of electric field lines passing through

a given area. Specifically, Gauss’s law states that the total electric flux
passing outward through any closed surface is equal to the total electric

charge enclosed by the surface, divided by the permittivity of free space ε0. In
mathematical terms, we express Gauss’s law as:

∮
S
E · dA =

Qenc

ε0

where E is the electric field, dA is an infinitesimal area vector on the closed
surface S, Qenc is the total charge enclosed by the surface, and ε0 is the

permittivity of free space. The symbol
∮

signifies that the integral is taken
over the entire closed surface S. This equation, known as Gauss’s law, asserts

that the total electric flux emanating from a volume is proportional to the
total electric charge within that volume.
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The left side of this equation represents the total electric flux through the
surface S. This is calculated by integrating the dot product E · dA over the

entire surface. The dot product ensures that only the component of the
electric field that is perpendicular to the infinitesimal area element contributes
to the flux. To gain more insight into this, consider the definition of the dot

product in terms of the angle θ between E and dA:

E · dA = E, dA, cos(θ)

where E is the magnitude of the electric field, dA is the magnitude of the area
element, and cos(θ) is the cosine of the angle between the electric field vector

and the normal to the surface.

The right side of Gauss’s law represents the total charge enclosed by the
surface, divided by the permittivity of free space ε0. The term Qenc/ε0 thus

signifies the source of the electric field lines that pierce the surface.

Given the integral form of Gauss’s law, we can move further to derive its
differential form, which reveals the local relationship between the electric field

and its sources. This form of Gauss’s law is particularly useful in solving
problems in electrostatics where the charge distribution is known.

To get the differential form of Gauss’s law, we recall the divergence theorem
from vector calculus, which is also known as Gauss’s divergence theorem. It
states that the flux of a vector field out of a closed surface is equal to the
divergence of the vector field integrated over the volume enclosed by the

surface. Mathematically, this theorem is expressed as:

∮
S
F · dA =

∫
V
∇ · F, dV

where F is any vector field, ∇ · F is the divergence of F, dA is an infinitesimal
area vector on the closed surface S, dV is an infinitesimal volume element
inside S, and V is the volume enclosed by the surface. The left side of this
equation represents the flux of F through the surface, while the right side

represents the divergence of F integrated over the volume.

Applying the divergence theorem to the left side of Gauss’s law, we get:

∮
S
E · dA =

∫
V
∇ ·E, dV

Comparing this with Gauss’s law, we have:
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∫
V
∇ ·E, dV =

Qenc

ε0

Given that the volume integral of any quantity over a volume is equal to the
total amount of that quantity in the volume, it follows that the total charge
enclosed by the surface is simply the volume integral of the charge density ρ

over the volume, i.e., Qenc =
∫
V ρ, dV . Therefore, the above equation becomes:

∫
V
∇ ·E, dV =

∫
V

ρ

ε0
, dV

Since this equation holds for all volumes V, it must also hold for the
integrands. Thus, we arrive at the differential form of Gauss’s law:

∇ ·E =
ρ

ε0

This equation tells us that the divergence of the electric field at a point in
space is equal to the charge density at that point, divided by the permittivity
of free space. In other words, the divergence of the electric field measures the
density of the electric field lines emanating from or converging to the charges.

4.2 Point Charges
Let’s consider a simple case where Gauss’s law can be quite helpful:

determining the electric field generated by a point charge. A point charge is a
charged object that can be treated as if all of its charge is concentrated at a

single point in space.

We have a charge q at the origin of our coordinate system. We are interested
in finding the electric field E at a point r located at a distance r from the
charge. Due to the spherical symmetry of the problem, it’s reasonable to

assume that E points radially outward from the charge if q is positive, and
radially inward if q is negative. Therefore, in this case, E is parallel to dA,

the vector area element of a Gaussian surface surrounding the charge.

dA = r2, dΩ, r̂

where dΩ is the solid angle subtended by dA at the origin, and r̂ is the radial
unit vector. The flux of E through dA is then E · dA = E, r2, dΩ, where

E = |E| is the magnitude of the electric field.
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By Gauss’s law, the total flux of E through a spherical surface of radius r
centered on the charge is equal to the charge enclosed by the surface divided
by the permittivity of free space ε0. We can express this mathematically as:

ΦE =

∮
S
E · dA =

q

ε0

Substituting E · dA = E, r2, dΩ into this equation, and noting that the
integral of dΩ over a sphere is 4π, we get:

E, r2, 4π =
q

ε0

Solving for E, we find the electric field due to a point charge:

E =
q

4πε0r2

In vector form, this becomes:

E =
q

4πε0r2
r̂

This equation describes the strength and direction of the electric field at any
point in space due to a point charge. As expected, it confirms that the electric
field strength decreases with the square of the distance from the charge, and
that the direction of the field is along the line connecting the point and the
charge, pointing away from the charge if it’s positive and towards it if it’s

negative.

4.3 Spatial Charges
Let’s consider a small volume element dv at position r within the charge
distribution. The volume element contains a charge dq = ρ(r), dv, which

produces an infinitesimal electric field dE at a point r′ in space. According to
Coulomb’s law, dE is given by:

dE =
1

4πε0

dq

|r′ − r|2
r′ − r

|r′ − r|
=

1

4πε0

ρ(r), dv

|r′ − r|2
r′ − r

|r′ − r|

The total electric field E(r′) at r′ due to the charge distribution is obtained
by integrating dE over the entire volume V occupied by the charge:
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E(r′) =

∫
V

dE =
1

4πε0

∫
V

ρ(r), dv

|r′ − r|2
r′ − r

|r′ − r|

This integral is generally difficult to evaluate, except in cases where the charge
distribution and the point r′ possess certain symmetries. Nevertheless, this

expression provides a fundamental theoretical basis for understanding electric
fields due to spatial charge distributions. It clearly illustrates that each

infinitesimal volume element of charge contributes to the total electric field at
a point in space, with contributions from different elements adding up as

vectors.

4.4 Improper Integrals
In the study of electromagnetism and many other fields of physics, we

frequently encounter integrals over infinite domains or involving integrands
that become infinite at some points. Such integrals, known as improper

integrals, require special care in their evaluation. To help navigate this topic,
we’ll review the definition and some key properties of improper integrals.

An improper integral of the first kind is an integral over an infinite domain. It
is defined as a limit of definite integrals over finite domains. For instance, the

integral of a function f(x) from a to infinity is defined as:

∫ ∞

a

f(x), dx = lim
b→∞

∫ b

a

f(x), dx

If the limit exists, the integral is said to converge; otherwise, it diverges.

An improper integral of the second kind is an integral involving an integrand
that becomes infinite at some points in the interval of integration. It is also
defined as a limit of definite integrals over finite domains. For example, the

integral of a function f(x) from a to b, where f(x) has a singularity at
c ∈ [a, b], is defined as:

∫ b

a

f(x), dx = lim
ϵ→0+

(∫ c−ϵ

a

f(x), dx+

∫ b

c+ϵ

f(x), dx

)

Again, if the limit exists, the integral is said to converge; otherwise, it
diverges.

These concepts allow us to make mathematical sense of situations that may
seem counterintuitive or impossible at first glance. For instance, the idea that
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we can calculate the value of an integral over an infinite domain or one with a
singularity might seem impossible, but by carefully defining these integrals as

limits of more standard ones, we can often obtain finite and physically
meaningful results.

However, not all improper integrals converge. Some improper integrals do not
have a finite value and are said to diverge. For instance, the integral of 1/x

from 1 to infinity is an example of an improper integral that diverges:

∫ ∞

1

1

x
, dx = lim

b→∞

∫ b

1

1

x
, dx = lim

b→∞
[ln(b)− ln(1)] = ∞

In some cases, divergent integrals can be regularized, or manipulated in such a
way that a finite result is obtained. This is often done in the context of

quantum field theory, where certain calculations yield divergent integrals that
need to be regularized in order to obtain physically meaningful results. Two
common regularization techniques are cutoff regularization and dimensional

regularization.

4.5 Cutoff Regularization
Cutoff regularization is a simple and intuitive method to handle divergent
integrals. The idea is to introduce an artificial cutoff parameter Λ, which
effectively limits the domain of integration. The integral is first calculated
with this cutoff in place, and then the cutoff is taken to infinity (or zero, in

the case of a singularity at the origin). If the limit exists, the divergent
integral is said to be regularizable, and the limit gives its regularized value.

For example, the divergent integral of 1/x from 1 to infinity can be
regularized as follows:

∫ Λ

1

1

x
, dx = [ln(Λ)− ln(1)]

If we then take the limit as Λ goes to infinity, we find:

lim
Λ→∞

[ln(Λ)− ln(1)] = ∞

Thus, the divergent integral of 1/x from 1 to infinity is not regularizable by
the cutoff method.
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4.6 Dimensional Regularization
Dimensional regularization is another method that is often used to tame

divergent integrals. This method is more sophisticated than cutoff
regularization and is widely used in theoretical physics, especially in quantum
field theory. The idea behind dimensional regularization is to generalize the
integral to an arbitrary number of dimensions, then analytically continue the
result back to the physical dimensionality. This can often remove or tame the

divergence, yielding a finite result.

Let’s take a simple integral as an example to illustrate the concept of
dimensional regularization. Consider the integral of 1/k2 over all

three-dimensional momentum space, from −∞ to +∞:

∫
d3k,

1

k2

This integral diverges, as the integrand does not fall off fast enough at infinity.
However, we can regularize it by extending it to D dimensions, where D is not

necessarily an integer:

∫
dDk,

1

k2

The exact form of this D-dimensional integral depends on the details of the
system under consideration, but in many cases, it can be brought to a form
where the divergence as D → 3 (the physical dimensionality) is manageable.

For instance, the above integral can be written in spherical coordinates as:

∫
dDk,

1

k2
= SD

∫ ∞

0

dk, kD−1 1

k2
= SD

∫ ∞

0

dk, kD−3

where SD is the surface area of a unit sphere in D dimensions. This integral
now converges for D < 3, so we can calculate it in this range and then
analytically continue the result back to D = 3. This is the essence of

dimensional regularization.

4.7 Values Inside the Charged Region
Let’s extend our discussion to a slightly more complex situation: a uniformly
charged solid cylinder of radius R with a linear charge density λ. The goal is
to determine the electric field at a point within the cylinder at a distance r

from the axis.
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Due to the symmetry of the problem, we can anticipate that the electric field
will be directed radially outward and its magnitude will depend only on the

distance r from the axis. Therefore, it’s beneficial to use cylindrical
coordinates. Let’s choose a Gaussian surface as a cylindrical shell with radius

r and length L, coaxial with the charged cylinder.

The flux of the electric field E through the curved part of this Gaussian
surface is E · 2πrL, as E is perpendicular to this part of the surface and has

constant magnitude E on it.

By Gauss’s law, the electric flux through the Gaussian surface equals the total
charge enclosed by the surface divided by ε0. The charge enclosed is just the

charge density times the volume of the Gaussian surface, or λL.

E · 2πrL =
λL

ε0

Solving for E, we get:

E =
λ

2πε0r

So, within a uniformly charged cylinder, the electric field magnitude decreases
linearly with the distance from the axis, which is the opposite of what we

found for the uniformly charged sphere.

It’s worth noting that our derivation relied heavily on Gauss’s law and the
symmetries of the problem, which allowed us to simplify the calculation of the

flux. This emphasizes the power of Gauss’s law when applied to problems
with a high degree of symmetry.

Now, let’s turn our attention to regions outside the charged cylinder or
sphere. We shall again use Gauss’s law, but now our Gaussian surface will

need to enclose the entire charge distribution.

Let us proceed by examining the electric field outside the charged cylinder.
As before, we choose a Gaussian surface that is a cylindrical shell, but now

with radius r such that r > R.

Since the Gaussian surface now encloses all the charge in the cylinder, the
total charge enclosed Qenc is simply the charge density times the volume of
the cylinder, or λπR2L. Thus, by Gauss’s law, the electric flux through the
Gaussian surface equals this total charge enclosed divided by ε0, giving us:

E · 2πrL =
λπR2L

ε0
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Canceling L on both sides and solving for E, we find:

E =
λR2

2πε0r2

So, outside a uniformly charged cylinder, the electric field decreases with the
square of the distance from the axis, the same as the field from a point charge

or from a charged sphere.

This result aligns with our expectation that, from a large enough distance,
any charge distribution appears as a point charge. However, it’s intriguing

that this point-charge behavior emerges already at distances greater than the
radius of the cylinder, unlike for a uniformly charged sphere, where it emerges

only at distances greater than the sphere’s radius.

Let’s summarize our results graphically. The magnitude of the electric field E
as a function of the distance r from the axis of the cylinder decreases linearly

for r < R and as 1/r2 for r > R, always being directed radially outward.

4.8 Higher Order Derivatives of Potential
Now that we’ve examined the fundamental properties of electric potential,
let’s delve deeper into higher-order derivatives of potential, specifically the
second derivatives, and their physical implications. These derivatives are

crucial in the study of electric fields, as they highlight how the field changes
within a charged region.

Remember that the electric field E is related to the electric potential V by the
negative gradient, E = −∇V . This indicates that the electric field is

proportional to the change in potential.

By extending this idea to second derivatives, we can gain insight into the rate
of change of the electric field itself. The second derivative of the potential, or
the Laplacian of V , denoted as ∇2V , plays a key role in electromagnetism.

For a three-dimensional Cartesian coordinate system (x, y, z), the Laplacian
operator is defined as follows:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

When we apply the Laplacian operator to the potential V , we get:

∇2V =
∂2V

∂x2
+

∂2V

∂y2
+

∂2V

∂z2
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Interestingly, this operator leads us to one of the fundamental equations of
electromagnetism known as Poisson’s equation:

∇2V = − ρ

ε0

where ρ is the charge density and ε0 is the permittivity of free space. This
equation tells us how the second derivative of the potential (a measure of how

rapidly the electric field is changing) relates to the distribution of electric
charge in space.

In regions of space where there is no charge (ρ = 0), Poisson’s equation
simplifies to Laplace’s equation:

∇2V = 0

Laplace’s equation stipulates that the Laplacian of potential is zero in regions
without charge, signifying that the potential has no local maxima or minima

within these regions. In the absence of charge, the potential only changes
uniformly.

Given the fundamental nature of Laplace’s equation, let us explore some of its
implications, particularly the uniqueness theorem. The theorem asserts that,
for a given set of boundary conditions, the solution to Laplace’s equation is

unique. Let’s explore this concept in more depth.

Assume that there are two potential functions V1(r) and V2(r) that satisfy
Laplace’s equation within a particular volume V and on its boundary surface
S. We can also define a function ∆V (r) = V1(r)− V2(r). As both V1 and V2

satisfy Laplace’s equation, the function ∆V must also satisfy it. So, we can
write

∇2∆V = ∇2V1 −∇2V2 = 0

This indicates that ∆V also satisfies Laplace’s equation within the volume V .
Now, let’s multiply both sides of the equation by ∆V and integrate over the

volume V :

∫
V

∆V∇2∆V dV = 0

We can use the identity ∇ · (∆V∇∆V ) = ∆V∇2∆V +∇∆V · ∇∆V to rewrite
the left-hand side of the equation as an integral of a divergence:
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∫
V

∆V∇2∆V dV =

∫
V

∇ · (∆V∇∆V )dV −
∫
V

∇∆V · ∇∆V dV

By applying the divergence theorem, we can transform the volume integral of
the divergence into a surface integral:

∫
V

∇ · (∆V∇∆V )dV =

∫
S

∆V∇∆V · dS

Since the potentials V1 and V2 are identical on the surface S, ∆V = 0 on this
surface, and therefore, the surface integral is also zero.

∫
S

∆V∇∆V · dS = 0

Inserting these results back into the original equation gives:

∫
V

∇∆V · ∇∆V dV = 0

The integrand is a square of the gradient and is therefore always non-negative.
If the integral of this non-negative quantity over the volume V is zero, it

implies that the integrand itself must be zero everywhere within V . Hence, we
find:

∇∆V = 0

which implies ∆V = constant. But, since ∆V is zero on the boundary surface
S, this constant must be zero, so ∆V = 0 everywhere. This result, therefore,
shows that V1(r) = V2(r) throughout the volume V . Hence, the solution to

Laplace’s equation, given a set of boundary conditions, is indeed unique. This
conclusion, known as the uniqueness theorem, is a cornerstone for solving

electrostatic problems as it guarantees the uniqueness of the solution once the
boundary conditions are specified.
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Conclusion
In this comprehensive reference paper on "Electrostatic Fields," we have
delved into the intricate world of electrostatics, uncovering the profound

principles that govern the behavior of electric charges and potentials.
Through a meticulous exploration of the mathematical foundations,

fundamental equations, and boundary conditions, we have shed light on the
nuances of electric field theory.

Moreover, the elucidation of Laplace’s equation and the rigorous proof of the
Uniqueness Theorem have contributed to our understanding of the uniqueness
and stability of solutions within the electrostatic context. These concepts are

of paramount importance in electrostatics, providing the fundamental
framework for solving practical problems in areas ranging from classical

electrodynamics to semiconductor physics.

As we conclude this reference paper, it is our hope that the knowledge
presented herein serves as a valuable resource for both students embarking on

their journey through the intricacies of electrostatic fields and seasoned
practitioners seeking a robust foundation for the analysis and design of

electric systems. The mastery of these principles is not only essential in the
world of scientific exploration but also in the practical applications that shape

our modern technological landscape.
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