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We construct the geometric optical knot in 3-dimensional Euclidean (vacuum or weak-field) space using the
Abelian Chern-Simons integral and the variables (the Clebsch variables) of the complex scalar field, i.e. the
function of amplitude and the phase related to the refractive index. The result of numerical simulation shows
that in vacuum or weak-field space, there exists such a knot.
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I. INTRODUCTION

It is commonly believed there exists no topological
object in the linear theory, such as Maxwell’s theory.
It is because a topological theory must be a non-linear
theory1. The existence of a topological object, a knot, in
Maxwell’s linear theory so far has not been well known2.
How could a knot exist in Maxwell’s linear theory?

In Maxwell’s theory, the electromagnetic fields (the set
of the solutions of Maxwell equations) in a vacuum space
has a subset field with a topological structure1. Any
electromagnetic field is locally equal to a subset field i.e.
any electromagnetic field can be obtained by patching
together subset fields (except in a zero measure set) but
globally different1. This means that the difference be-
tween the set of the subset fields and all the electromag-
netic fields in Maxwell’s theory in a vacuum is global
instead of local since the subset fields obey the topolog-
ical quantum condition that the electromagnetic helicity
(consists of electric and magnetic helicities) is equal to
an integer number1.

The electromagnetic field satisfies a linear field equa-
tion, but a subset field satisfies a non-linear field equa-
tion. Both fields, the electromagnetic field, and a subset
field, satisfy the linear field equation in the case of the
weak field3. It means that a non-linear subset field theory
reduces to Maxwell’s linear theory in the case of the weak
field. The space where the weak field lives approximately
represents the vacuum space. The electromagnetic helic-
ity or the electromagnetic knot could exist in the vacuum
Maxwell’s theory because of the vacuum Maxwell’s the-
ory is the weak field limit3 of a non-linear subset field
theory.

In this article, we propose there exists a knot in the
geometrical optics, as a solution of the eikonal equation.
The reason is indeed there exists a knot in Maxwell’s
theory1–3 and the geometrical optics (the eikonal equa-
tion) can be derived from Maxwell’s theory (Maxwell
equations)4–6. We treat the geometrical optics as an
Abelian U(1) local gauge theory7,8 the same as Maxwell’s
gauge theory. To the best of our knowledge, the formula-
tion of a knot in geometrical optics (a geometric optical
knot) has not been done yet1,2,9,10.

II. SUBSET FIELDS PROPERTY AND MAPS S3 → S2

Let us consider maps of subset fields (consisting of
complex scalar fields) from a finite radius r to an infi-
nite r implies from the stronger field to the weak field.
A scalar field has properties that, by definition, its value
for a finite r depends on the magnitude and the direc-
tion of the position vector, ~r, but for an infinite r it
is well-defined3 (it depends on the magnitude only). In
other words, for an infinite r, a scalar field is isotropic.
Throughout this article, we will work with the classical
scalar field.

The property of such scalar fields can be interpreted
as maps S3 → S21 where S3 and S2 are 3-dimensional
and 2-dimensional spheres, respectively i.e. after identi-
fying via stereographic projection, 3-dimensional physi-
cal space, R3∪{∞}, with the sphere S3 and the complete
complex plane, C ∪ {∞}, with the sphere S2.

These maps S3 → S2 can be classified in homotopy
classes, labelled by the value of the corresponding Hopf
indexes, integer numbers, the topological invariants1,3.
The other names of the topological invariants are the
topological charge, the winding number (the degree of a
continuous mapping)11. The topological charge which is
independent of the metric tensor could be interpreted as
energy12.

We see there exists (one) dimensional reduction in
such maps. We consider this dimensional reduction as
a consequence of the isotropic (well-defined) property
of a scalar field for an infinite r. The property of a
scalar field as a function of space seems likely in har-
mony with the property of space-time. Space-time could
be locally anisotropic but globally isotropic (the distri-
bution of matter-energy in the universe is assumed to be
homogeneous).

III. HOPF INVARIANT AND ABELIAN
CHERN-SIMONS

Let us discuss this more formally. As we mentioned
above we have a scalar field as a function of the position
vector, φ(~r), with a property that can be interpreted us-



ing the non-trivial Hopf map written below1,3

φ(~r) : S3 → S2 (1)

This non-trivial Hopf map is related to the Hopf
invariant13, H, expressed as an integral13–15

H =

∫
S3

ω ∧ dω (2)

where ω is a 1-form on S313.
The relation between the Hopf invariant and the Hopf

index, h, can be written explicitly as1

H = h γ2 (3)

where γ is the total strength of the field, that is the sum
of the strengths of all the tubes formed by the integral
lines of electric and magnetic fields1.

It can be interpreted naturally that the Hopf in-
variant has a deep relationship with the Abelian
Chern-Simons action13 (the Abelian Chern-Simons in-
tegral) in gauge field theory and the self-helicity in
magnetohydrodynamics13. The Hopf invariant is just the
winding number of Gauss mapping13. Hopf invariant or
the Chern-Simons integral is an important topological in-
variant to describe the topological characteristics of the
knot family13,16. In a more precise expression, the Hopf
invariant or the Chern-Simons integral is the total sum
of all the self-linking and all the linking numbers of the
knot family13,16.

In 3-dimensional Euclidean space, the Chern-Simons
integral could be written as2,16

h =

∫
E3

εαµν ~Aα ~Fµν d
3r (4)

where h is the electromagnetic helicity, a non-zero in-
teger number (if h is zero it implies zero energy), εαµν

is the Levi-Civita symbol, α, µ, ν = 1, 2, 3 denote the
3-dimensional space where the geometric optical knot

lives, ~Aα is the U(1) gauge potential, ~Fµν is the U(1)
gauge field tensor16 (the field strength tensor),

∫
E3 d

3r
shows that we work in 3-dimensional Euclidean space.
In Maxwell’s theory, this integer h determines the π3(S2)
topology of the electromagnetic knots2.

IV. GEOMETRIC OPTICAL KNOT

Let us derive how to obtain the geometric optical knot.
We will follow the steps of Ranada’s work. Using the
scalar field, φ(~r, t), the field strength can be written as1

~Fµν = ~fµν = θ
∂µφ

∗ ∂νφ− ∂νφ∗ ∂µφ
(1 + φ∗φ)2

(5)

where θ = 1/(2πi) and φ∗ is the complex conjugate of the
scalar field. We call eq.(5) as the non-linear field equation
where the nonlinearity is shown by the φ∗φ term. We see
that a scalar field in a non-trivial Hopf map is written

as φ(~r). It differs from a scalar field φ(~r, t) in Maxwell’s
theory. This problem is solved by interpreting some of
the quantities that appear in Hopf’s theories as Cauchy’s
initial time values17.

In the case of the weak field, i.e. φ << 1 so φ∗φ << 1
then the denominator in eq.(5) can be taken as being

equal to one and ~fµν(φ) (5) is equivalent to the Maxwell
linear theory1 as written below

~Fµν = ~fµν = θ (∂µφ
∗ ∂νφ− ∂νφ∗ ∂µφ) (6)

We interpret Maxwell’s linear theory in a vacuum as the
same as the non-linear field theory in the case of the
weak-field limit due to the field being taken far away
from the source (electric charge or current).

Assume that in general case the scalar field could be
written as17

φ(~r, t) = ρ(~r, t) eiq(~r,t) (7)

and

f(~r, t) = −1/[2π(1 + ρ2)] (8)

where ρ(~r, t) is the amplitude, q(~r, t) is the phase, f(~r, t)
is the function of amplitude. This assumption (7) is
based on the wave point of view of the field. We could
interpret the scalar field, φ, as the disturbance where the
physical disturbance is the real part of φ18.

In the case of the weak field (a vacuum space) the
scalar field (7) and the function of amplitude (8) becomes

φ(~r, t) = ρc e
iq(~r,t) (9)

and

f = −1/[2π(1 + ρ2c)] (10)

respectively, where ρc is a constant amplitude so f is also
a constant. We consider ρc as an analogy with a constant
amplitude of electromagnetic wave in a vacuum space31.

By using the components of the scalar field, f and q,
eq.(6) can be written as17

~Fµν = ~fµν = ∂µ(f ∂νq)− ∂ν(f ∂µq) (11)

where f and q are known as the Clebsch variables17. We
assume that eq.(11) is equal to

~Fµν = ∂µ ~Aν − ∂ν ~Aµ (12)

We call eqs.(11), (12) as the linear field equations.
By observing the equality of eq.(11) and (12), we see

that17

~Aν = f ∂νq (13)

Eq.(13) shows that the gauge (vector) potential can be
written using the Clebsch (scalar) variables.

By substituting eqs.(11), (13) into eq.(4), we obtain
the geometric optical knot as written below

hgo =

∫
E3

εαµνf ∂αq {∂µ(f ∂νq)− ∂ν(f ∂µq)} d3r

(14)
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where the phase is19,20

q(~r, t) = X(ψ1 − ct) = X

(∫ r2

r1

n(~r) d3r − ct
)

(15)

X = fθ/c, fθ is the angular frequency, c is the speed of
light in a vacuum space, ψ1(~r) is also called the phase,
t is time and n(~r) is the refractive index. The refractive
index is the real scalar function of coordinates (vector
position) with positive values, the slowness at a point7.
The refractive index is typically supplied as known input,
given, and we seek the solution, the phase7. The integral∫ r2
r1

d3r shows the propagation of ray from the initial

position, r1, to the final position, r2, in 3-dimensional
space.

By substituting eq.(15) into eq.(14), we obtain

hgo =

∫ r2

r1

εαµν f ∂α

[
X

(∫ r2

r1

n(~r) d3r − ct
)]

{
∂µ

{
f ∂ν

[
X

(∫ r2

r1

n(~r) d3r − ct
)]}

− ∂ν

{
f ∂µ

[
X

(∫ r2

r1

n(~r) d3r − ct
)]}}

d3r

(16)

We see from eq.(16) the geometric optical knot could be
formulated in relation to the refractive index. It means
that the knot could exist in the geometrical optics in the
case of the weak-field limit. Due to hgo is non-zero inte-
ger number we consider eq.(16) as a topological quantum
condition1.

V. NUMERICAL SIMULATION

Let us calculate eq.(16) numerically to show the ex-
istence of the geometric optical knot in our computer.
Numerical simulation is very important as a preliminary
work in order to reduce wasting much time, energy, and
money. We hope that this numerical simulation makes
sure the experimentalists and could be used as a guidance
for searching the geometric optical knot in a laboratory.

To simplify the complicated calculation of eq.(16), we
will calculate the simpler one i.e. the magnetic knot17

(the total geometric optical knot consists of the mag-
netic knot plus the electric knot) and we assume that
the physical system has a rotational symmetry. Now, we
have the magnetic knot equation in the form of rotational
symmetry as written below∫ r2

r1

~A · ~B r2dr = h a (17)

where ~A is magnetic (vector) potential, ~B = ~∇ × ~A is
magnetic field, h is an integer number excluding zero,
a = ~cµ0 = 3.97× 10−32J . s/C.

Using the value of parameters as follow: fθ =
299792458, c = 299792458, n0 = 1.6, A = 0.7499, r =

1, t = 1, ρ = ρc = linspace(−3, 3, 1000) and by the help

of AI and Octave, we obtain the graph of
∫ 1

0
~A · ~B r2 dr

versus ρ as Fig. 1 below

Fig. 1 The graph of
∫ 1

0
~A · ~B r2 dr versus ρ(~r, t).

We see from Fig. 1 above, roughly speaking, the
interval −3 < ρ < 0 or 0 < ρ < 3 gives the non-

zero value of
∫ 1

0
~A · ~B r2 dr. More precisely, ρ =

−0.49493 gives
∫ 1

0
~A · ~B r2dr = 0.013093. By substi-

tuting this value of integral to eq.(17) and ignore the
units, we obtain 0.013093 = h · 3.97 × 10−32. It gives
h = 3297984886649874× 1014.

VI. DISCUSSION AND CONCLUSION

The mathematical study of knots began in physics in
the nineteenth century. The names associated with the
first work on knots are those of Carl Friedrich Gauss and
Listing where Gauss gave an integral formula for the link-
ing number of two knots in 3-dimensional space22. No-
tice that the electric and magnetic field lines could form
closed loops and thus be linked, and this linking could
provide the topological structure. Let two closed field
lines be ~c1(s) and ~c2(s)2. They are linked if they have a
non-vanishing Gauss’ integral. The Gauss’ integral can
be written as2,23

L(~c1,~c2) =
1

4π

∫ (
~c1 − ~c2
|~c1 − ~c2|3

× ~c1
ds1

)
· ~c2
ds2

ds1 ds2

(18)

whereas for a single closed field line c(s), the self-linking
number L(~c,~c) describes the knottedness2,23.

Later, Maxwell interpreted Gauss’ integral, i.e. the
linking number of two knots as the energy required to
move an electric charge in a knotted charged wire com-
plement along the other knot. The other pioneers were
Tait and Kelvin where the aim of Tait was to construct
a table of knots22 and Kelvin proposed the idea of a
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knot, topologically stable matter, that the atoms could
be knots or links of vorticity lines of aether2. In other
words, Kelvin constructed his theory of vortex atoms, ac-
cording to which the matter is constituted by small knots
formed by something like vortex lines of smoke22.

A knot can be defined as a smooth-embedding of a
circle in E310, 3-dimensional Euclidean space24. In alge-
braic topology, a knot is defined by the Hopf index2. The
Hopf index is related to the Hopf invariant1. In turn, the
Hopf invariant is related to a non-trivial Hopf map13.
Two knots are equivalent if one knot can be deformed
continuously into the other without crossing itself10.

In the case of the electromagnetic field, a knot could be
formed by bending the electric and magnetic field lines
(the geometric concept of magnetic lines of force - those

lines of force are today designated by the symbol ~H, the
magnetic field - is due to Faraday25) so that they could
form closed loops2. A set of closed loops in space forms a
link26. These closed loops can be linked2 (although links
do not actually need to be linked27). The average of
the linking integral over all field lines pairs together with
the self-linking number of overall field lines giving rise to
the electromagnetic helicity given by the Chern-Simons
integral2.

We see from Fig. 1 above, roughly speaking, the in-
terval −3 < ρ < 0 or 0 < ρ < 3 gives the non-zero value

of
∫ 1

0
~A · ~B r2 dr. It means that the non-zero value of

integral shows the magnetic knot is a non-trivial knot.
The magnetic knot could really exist. The integer num-
ber h = 3297984886649874×1014 shows the total sum of
the linking number over all magnetic field lines pairs plus
the self-linking number of overall magnetic field lines.

So far, we formulate the theoretical and numerical ex-
istence of the geometric optical knot. Does the electro-
magnetic (geometric optical) knot really exist in the uni-
verse or a laboratory? Ball lightning29 probably is an
electromagnetic knot in the universe30 where tokamaks
and devices constructed to produce fireball are two pos-
sible laboratory settings to observe ball lightning30. A
(geometric optical) knot of light may be generated using
tightly focused circularly polarized laser beams23.
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