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Abstract

In this paper we prove that the relationship ωτ = 1 is a property of log-
arithmic scale of the horizontal axis in Bode plots. We illustrate the results
of our derivations and mathematical conclusions by calculating the point
of intersection of the horizontal and the oblique asymptote in a magnitude
plot and the point of symmetry in a phase plot.

1 Bode plot

Bode plots are used in the field of electrical and control engineering to display
the gain or magnitude and the phase shift of a linear, time–invariant system as a
function of frequency. The exact behaviour of a linear, time–invariant system as a
function of frequency is graphically and mathematically simplified by horizontal
and oblique asymptotes intersecting at a frequency ω := ω0, the so called corner–
frequency. In the following, we limit the discussion of the calculation of the corner
frequency to two cases.

1.1 Case 1

Refering Example 1, Figure 1, consider the first order transfer function

H1 (p) :=
1

1 + ȷ · p
, p :=

ω

ω0

ρ1 (p) := |H1 (p) |
φ1 (p) := arg (H1 (p)){

x̃ (p) :=g log (p)

ỹ (p) :=g log (ρ1(p))
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ρ̃1 (x̃) := ρ1 (p) = ρ1
(
gx̃
)

ρ1 (p) = |H1 (p) | =
1√

1 + p2
=

1

p
· 1√

1 +
(

1
p

)2

ỹ (p) = glog (H1(p)) =
glog

1

p
· 1√

1 +
(

1
p

)2


= glog

(
1

p

)
+ glog

 1√
1 +

(
1
p

)2


= − glog (p)− glog

√1 +

(
1

p

)2


ỹ (p) = −x̃ (p)− glog

√1 +

(
1

p

)2


ỹ (p) + x̃ (p) = − glog

√1 +

(
1

p

)2


p → ∞ ⇔ x̃ (p) → +∞

lim
p→∞

(ỹ (p) + x̃ (p)) = lim
p→∞

− glog

√1 +

(
1

p

)2
 = − glog (1) = 0

Oblique asymptote of the graph of the function ρ̃1 (x̃):

ỹ + x̃ = 0 ⇔ ỹ = −x̃, x̃ > 0

p ↓ 0 ⇔ x̃ (p) =→ −∞

lim
p↓0

ỹ (p) = lim
p↓0

glog (ρ1(p)) = lim
p↓0

glog

(
1√

1 + (p2)

)
= glog (1) = 0

Horizontal asymptote of the graph of the function ρ̃1 (x̃) : ỹ = 0, x̃ < 0.
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φ1 (p) := arg (H1 (p))

φ̃1 (x̃) := φ1 (p) = φ1

(
gx̃
)

Point symmetry of the function φ̃1 (x̃), symmetrically with respect to the point:

(x̃, φ̃) =
(
0,−π

4

)
φ1 (p) = arg

(
1

1 + ȷ · p

)
= arg

(
1− ȷ · p
1 + p2

)
= arg (1− ȷ · p) = arctan (−p)

φ1 (p) = − arctan (p) ∈
〈
−π

2
, 0
〉

φ̃1 (x̃) := − arctan (p) = − arctan
(
gx̃
)

φ̃1 (−x̃) = − arctan
(
g−x̃

)
= − arctan

(
1

gx̃

)
= −

(π
2
− arctan

(
gx̃
))

φ̃1 (−x̃) = −
(π
2
+ φ1 (x̃)

)
= −π

2
− φ̃1 (x̃)

φ̃1 (0− x̃)−
(
−π

4

)
= −

(
φ̃1 (0 + x̃)−

(
−π

4

))
Translation {

x := x0 + x̃

y := y0 + ỹ

Oblique asymptote of the function ρ̃1 (x− x0):

ỹ = −x̃, x̃ > 0,⇔ y − y0 = − (x− x0) , x > x0

Horizontal asymptote of the function ρ̃1 (x− x0):

ỹ = 0, x̃ < 0 ⇔ y = y0, x < x0

Intersection of the horizontal asymptote and the oblique asymptote of the func-
tion ρ̃1 (x− x0):

(x̃, ỹ) = (0, 0) ⇔ (x, y) = (x0, y0)

Point symmetry of the function ρ̃1 = (x− x0), symmetrically with respect to the
point:

(x̃, φ̃) =
(
0,−π

4

)
⇔ (x, y) =

(
x0,−

π

4

)
1.2 Case 2

Refering to Example 2, Figure 4, consider the first order transfer function

H2 (p) :=
1

1− ȷ · 1
p

, p :=
ω

ω0

ρ2 (p) := |H2 (p) |
φ2 (p) := arg (H2 (p))

ρ̃2 (x̃) := ρ2 (p) = ρ2
(
gx̃
)

φ̃2 (x̃) := φ2 (p)
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2 Lemma

H2

(
1

p

)
=

1

1− ȷ · 1
1
p

=
1

1− ȷ · p
=

(
1

1 + ȷ · p

)∗
= H1 (p)

∗ ⇔ H2 (p) = H1

(
1

p

)∗
ρ2 (p) =

∣∣∣∣H1

(
1

p

)∗∣∣∣∣ = ∣∣∣∣H1

(
1

p

)∣∣∣∣ = ρ1

(
1

p

)
φ2 (p) = arg

(
1

1− ȷ · 1
p

)
= arg

(
1

1 + ȷ · p
· ȷ · p

)
= arg (H1 (p) · ȷ · p)

= arg (H1 (p)) + arg (ȷ · p)

φ2 (p) = φ1 (p) +
π

2
∈ ⟨0, π

2
⟩

3 Theorem

From the lemma it follows, that

ρ̃2 (−x̃) = ρ2
(
g−x̃

)
= ρ2

(
1

gx̃

)
= ρ2

(
1

p

)
= ρ1 (p) = ρ̃1 (x̃)

φ̃2 (x̃) = φ2 (p) = φ1 (p) +
π

2
= φ̃1 (x̃) +

π

2

Translation {
x := x0 + x̃

y := y0 + ỹ

Oblique asymptote of the function ρ̃2 (x− x0) = ρ̃2 (x̃) = ρ̃1 (−x̃) = ρ̃1 (x0 − x):

ỹ = − (−x̃) = x̃, x̃ < 0 ⇔ y − y0 = x− x0, x < x0

Horizontal asymptote of the function
ρ̃2 (x− x0) = ρ̃2 (x̃) = ρ̃1 (−x̃) = ρ̃1 (x0 − x):

ỹ = 0, x̃ > 0 ⇔ y = y0, x > x0

Intersection of the horizontal asymptote and the oblique asymptote of the func-
tion ρ̃2 (x− x0):

(x̃, ỹ) = (0, 0) ⇔ (x, y) = (x0, y0)

Point symmetry of the function φ̃2 (x− x0) = φ̃2 (x̃) = φ̃1 (x̃)+
π
2 = φ̃1 (x− x0)+

π
2 with respect to the point:

(x̃, φ̃) =
(
0,

π

4

)
⇔ (x, φ) =

(
x0,

π

4

)
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4 Example 1

Figure 1

Given (x0, y0) = (2, 3), ω0 = 1 000 rad/s, Z1 = ȷ · ω
ω0

·R,Z2 = R

H1 (p) :=
Z2

Z1 + Z2
=

R

ȷ · ω
ω0

·R+R
=

1

1 + ȷ · ω
ω0

=
1

1 + ȷ · p
, p :=

ω

ω0

Oblique asymptote of the function ρ̃1 (x− x0) : y = x0 + y0 − x = 2 + 3 − x =
5− x, x > x0 = 2
Horizontal asymptote of the function ρ̃1 (x− x0) : y = y0 = 3, x < x0 = 2
Intersection of the horizontal asymptote and the oblique asymptote of the func-
tion ρ̃1 (x− x0) at the point (x0, y0) = (2, 3)

Figure 2

Point symmetry of the function φ̃1 (x− x0) , symmetry with respect to the

point (x, φ) =
(
x0,−

π

4

)
=
(
2,−π

4

)

5



Figure 3

5 Example 2

Figure 4

Given (x0, y0) = (2, 3), ω0 = 1 000 rad/s, Z1 = R,Z2 = ȷ · ω
ω0

·R

H2 (p) :=
Z2

Z1 + Z2
=

ȷ · ω
ω0

·R
ȷ · ω

ω0
·R+R

=
ȷ · ω

ω0

1 + ȷ · ω
ω0

=
1

1− ȷ · ω0

ω

=

=
1

1− ȷ · 1
p

, p :=
ω

ω0

Oblique asymptote of the function ρ̃2 (x− x0) : y = x0 + y0 − x = 3 − 2 + x =
1 + x, x < x0 = 2
Horizontal asymptote of the function ρ̃2 (x− x0) : y = y0 = 3, x > x0 = 2
Intersection of the horizontal asymptote and the oblique asymptote of the func-
tion ρ̃2 (x− x0) at the point (x0, y0) = (2, 3)
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Figure 5

Point symmetry of the function φ̃2 (x− x0) , symmetry with respect to the

point (x, φ) =
(
x0,

π

4

)
=
(
2,

π

4

)

Figure 6
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