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The most beautiful form of the Dirac equation, and some
speculations re "123 mystery"

Warren D. Smith, June 2023

Abstract. Dirac 1928's relativistic electron wave equation had involved 4×4 matrices. We show
how to reformulate it using 2×2 matrices only, and also that we can get rid even of them provided
we make the wavefunction be biquaternion-valued. The Majorana equation then has quaternion-
valued wavefunction. We then speculate that extensions of this idea might be able to solve one or
two of the oft-cited "great mysteries" of physics.

In 1928, Dirac famously found his electron relativistic wave equation. To do so, he had to make the
wavefunction Ψ be a vector with four complex components, and he needed to employ certain
special 4×4 matrices with just the right algebraic properties. It was rather annoying that the
matrices needed to be 4×4, but Dirac proved that no smaller matrix size was possible without
disobeying at least some of his algebraic demands, so there the matter rested for the next 95
years.

However, I now point out that you can meet Dirac's algebraic demands using 2×2 matrices
only, provided Ψ is not a 4-vector, but rather 2×2 matrix, with complex entries. I believe that it is
most natural to regard "spinors" Ψ as 2×2 complex matrices, not 4-vectors, in which case Dirac and
his followers were foolishly missing out on this opportunity. I find it quite surprising that Dirac, as
probably the most noted connoisseur of mathematical beauty among 20th century physicists, failed
to see this.

Let σ1, σ2, σ3 denote the three Pauli 2×2 spin matrices

                       0 1        0 -i        1  0
                       1 0        i  0        0 -1

Each Pauli matrix is both Hermitian and unitary, has square equal to the identity, determinant=-1,
trace=0, and they all anticommute. σ1σ2=iσ3, σ2σ3=iσ1, σ3σ1=iσ2. Many people also define an
additional "zeroth Pauli matrix" σ0 to be the 2×2 identity matrix. It has det=+1, trace=2, and
commutes with everything.

Let Du=(∂u-ieAu) for u=0,1,2,3 denote the "Maxwell gauge-covariant derivative" operator, where Au
is the Maxwell 4-potential, (-e) is the electron charge, and ∂u is partial differentiation with respect to
the uth spatial coordinate (or if u=0 then with respect to ct where t is time and c the speed of light).

Dirac's form of his equation using four 4×4 "gamma matrices" and column-4-vector Ψ is

(γ0 D0 + γ1 D1 + γ2 D2 + γ3 D3 + i mc/ℏ) Ψ = 0

Here m is the electron mass and ℏ the reduced Planck constant. This also is writeable as (D̸+imc/

https://en.wikipedia.org/wiki/Dirac_equation
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ℏ)Ψ=0 using "Feynman slash" notation B̸=∑uγ
uBu. My form of the gamma matrices γ0, γ1, γ2, γ3

(mine is one particular among many acceptable forms) is:

                         0 -iσ0      0 iσ1      0 iσ2      0 iσ3

                         iσ0  0      iσ1 0      iσ2 0      iσ3 0

[My basis can be reached by starting with wikipedia's "alternate Weyl basis," then multiplying on the
left by diag(1,-i) and on the right by its inverse diag(1,i), which plainly is a unitary conjugation.] The
last three gammas are antiHermitian, but γ0 is Hermitian.

My new form of the Dirac equation using 2×2 matrix-valued Ψ is

D0 Ψ σ3 + (σ1 D1 + σ2 D2 + σ3 D3) Ψ + Ψ σ1 mc/ℏ = 0

My form is readily seen to be equivalent to the old form: multiply my equation on the right by iσ1 to
get the old form (the 4-vector entry-ordering 0123 corresponds to ordering the matrix entries Ψab
going down columns starting with the leftmost column).

But some people consider even 2×2 matrices to be too large – they want the ultimate in
conciseness, 1×1 matrices, i.e. scalars! That desire also can be satisfied if we regard -i times the
Pauli matrices as isomorphic to Hamilton's quaternions !,",#.

Review of reals, complexes, quaternions, and the "biquaternions." The reader hopefully is
aware that the complex numbers ℂ arise by adjoining a symbol i obeying i2=-1 to the reals ℝ.
Then every complex number z may be written as z=x+iy with x,y real. Useful notation then includes
the complex conjugate z*=x-iy, the absolute value |z|=[x2+y2]1/2, the nonnegative-real-valued norm
|z|2=zz*=z*z=x2+y2, the reciprocal z-1=z*/|z|2 if z≠0, the real part re(z)=x, and the imaginary part
im(z)=y. If ab=c then ba=c and a*b*=c*.

The quaternions ℍ (the "H" stands for their inventor W.R.Hamilton) arise by adjoining three new
symbols !,",# (which I'll occasionally instead call !1,!2,!3), to the reals, obeying

!2 = "2 = #2 = -1,   !" = # = -"!,   "# = ! = -#",   #! = " = -!#.

Note these three symbols anticommute. Then every quaternion Q may be uniquely written
Q=w+x!+y"+z# with w,x,y,z real. If y=z=0 then the quaternions become the complexes (which form
a subalgebra). Useful notation then includes the quaternionic conjugate Q̅=w-x!-y"-z#, where ab=c
⇔ b̅a̅=c̅; the absolute value |Q|=[w2+x2+y2+z2]1/2; the nonnegative-real-valued norm
|Q|2=QQ̅=Q̅Q=w2+x2+y2+z2; the reciprocal Q-1=Q̅/|Q|2 if Q≠0; and the real part re(Q)=w. If Q=w is
then Q is called "pure real," while if w=0 then Q is a "pure imaginary" quaternion.

If both i and !,",# are adjoined to the reals, or equivalently if we adjoin !,",# to the complex numbers,

http://en.wikipedia.org/wiki/Gamma_matrices
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then we get the biquaternions B=w+x!+y"+z# with w,x,y,z complex. Our use of two different
notations for complex and quaternionic conjugation then comes in handy: B̅*=w*-x*!-y*"-z*# and
B*=w*+x*!+y*"+z*# and B̅=w-x!-y"-z# and re(B)=x (where here x in general is complex). But the
biquaternions are not a "division algebra" because B has no reciprocal whenever
|B|2=w2+x2+y2+z2=0, (where note the left hand side can be a general complex number), which is a
larger un-invertible set of complex 4-tuples than just (w,x,y,z)=(0,0,0,0)

Then my new biquaternion-valued-Ψ form of the Dirac equation involving the quaternions !,",#
becomes

D0 Ψ # + (! D1 + " D2 + # D3) Ψ + Ψ ! mc/ℏ = 0

I personally consider the biquaternions more annoying than the 2×2 complex matrices (although
the two are isomorphic algebras) hence would not normally be excited about this biquaternion
reformulation. However, what is interesting here is that we also can use this equation with ordinary
(not bi) quaternion Ψ, because all the constants in the equation are plain quaternions. What we
then have is Majorana's wave equation instead of Dirac's. E.Majorana in 1937 proposed his
equation as suitable for uncharged spin-1/2 positive-mass fermions, such as neutrinos. Since they
are uncharged, set Au=0 in the formula for the covariant derivative, replacing D by ∂:

∂0 Ψ # + (! ∂1 + " ∂2 + # ∂3) Ψ + Ψ ! mc/ℏ = 0

We then see Majorana's equation has a very natural formulation using quaternion Ψ.

Also, H.Weyl in 1929 had proposed two equations suitable for massless fixed-helicity-chirality
neutrinos. This was before neutrinos were discovered to have mass. If you do not believe that any
massless fermions exist, then Weyl's equations are physically irrelevant. But in any case, our form
of Weyl's equation is the same as our form of Dirac's equation with A=0 and m=0

∂0 Ψ + (σ1 ∂1 + σ2 ∂2 + σ3 ∂3) Ψ = 0

except that Ψ now is a column 2-vector with complex entries. We also have the second Weyl
equation

∂0 Ψ - (σ1 ∂1 - σ2 ∂2 - σ3 ∂3) Ψ = 0;

the first Weyl equation governs right-handed massless neutrinos, and the second left-handed.

Now let us translate various common expressions between the old and new formats. Here is a
dictionary (AH where A is a matrix, denotes the complex-conjugated transpose of that matrix; AT

the plain transpose, so AT=AH*, (AB)H=BHAH. For Majorana plain quaternions, simply omit all * in
the biquaternion column):
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name column 4-
vector Ψ

2×2 matrix Ψ biquaternion
Ψ

real-valued inner product A*·B = AHB trace(AHB)=trace(ABH)
2 re(A̅*B) = 2
re(AB̅*)

Charge conjugation=complex
conjugation Ψ* Ψ* Ψ*

Left-multiply by γ0 γ0 Ψ -Ψ σ2 i Ψ "

Left-multiply by γu, u∈{1,2,3} γu Ψ σu Ψ σ1 i -!u Ψ ! i

Feynman slash B̸ (γ0,γ1,γ2,γ3)·B (σ⃖3, σ⃗1, σ⃗2, σ⃗3)·B σ1i -i (#⃖, ! ,⃗ " ⃗, #⃗)·B !

Left-multiply by " γ5 " iγ0γ1γ2γ3 Ψ Ψ σ3 -i Ψ #
Matrix Hermitian adjoint  ΨH Ψ̅*

Matrix transpose  ΨT Ψ̅

Matrix trace (complex valued)  trace(Ψ) 2 re(Ψ)
Matrix determinant (complex
valued)  det(Ψ) |Ψ|2

(Nonneg. real) Probability
density Ψ*·Ψ = ΨHΨ

||
Ψ||F

2=trace(ΨHΨ)=trace(ΨΨH)
  

2 re(Ψ̅*Ψ) = 2
re(ΨΨ̅*)

Dirac "spinor adjoint" (γ0Ψ)H -σ2 ΨH -" Ψ̅* i

Pauli spin matrices  σu for u∈{1,2,3} !u i = i !u   (σ0

becomes 1)

In the "Feynman slash" line, the arrows indicate on which side (left or right) of the matrix or
quaternion is the object (component of indexed-quantity B) it operates upon.

Charge conjugation is an outer automorphism of the gamma group. For my choice of gamma
matrices, complex conjugation of Ψ, is, physically, charge conjugation: Ψ(chargeconj)=Ψ*. That is, Ψ*

obeys the same Dirac equation as Ψ except with negated charge: e ↔ -e. The existence and
properties of the charge conjugation operation were first realized by H.Weyl, and not by
P.A.M.Dirac, who indeed initially regarded his equation as a "theory of electrons and protons" and
thought that there was some other factor which somehow disturbed the symmetry, thus explaining
why protons were 1836 times heavier than electrons. However, Weyl then pointed out the exact
charge conjugation symmetry, causing Dirac to predict the existence of the "positron," which then
was observed in cosmic ray photographs by C.D.Anderson in 1932. I suggest that if Dirac had
employed my "beautiful" forms of his equation instead of his uglier form, then this symmetry would
have been too obvious to escape his notice.
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Dirac's old non-negative-real conserved "probability density" |Ψ|2 where |X|2 denotes sum of
absolute squared vector entries, now is replaced by the squared Frobenius matrix norm

probdens = ||Ψ||F
2 = trace(ΨHΨ) = trace(ΨΨH)

where the H denotes Hermitian matrix conjugation (i.e. complex conjugate transpose of 2×2
matrix).

Here note that ΨHΨ automatically is a nonnegative-definite hermitian matrix, so both its
eigenvalues are nonnegative reals. Thus det(ΨHΨ) is also always a nonnegative real, although in
general det(Ψ) is complex-valued.

In the biquaternion or quaternion world, this is

probdens = 2 re(Ψ̅*Ψ) = 2 re(ΨΨ̅*).

Confusingly, many authors often write the "Dirac spinor adjoint of Ψ" as "Ψ̅" but we refuse to do that
because we reserve the overline symbol for quaternion conjugation.

Dirac's 3-vector "probability current"

Ju = (γ0 Ψ)* · γu Ψ

(also valid when u=0, in which case we get a 4-current; J0 is the probability density), in the 2×2
matrix world becomes (albeit the following is only valid for u∈{1,2,3} and not when u=0):

Ju = trace( σ3 ΨH σu Ψ ) = trace( ΨH σu Ψ σ3 )

while in the biquaternion world it becomes

Ju = -2 re( # Ψ̅* !u Ψ ) = -2 re( Ψ̅* !u Ψ # )

Parity (changing the signs of x,y,z):   Ψ(par) = γ0 Ψ obeys the negated-(x,y,z) Dirac equation,
including if also multiply by any complex scalar. However, only the particular values ±1 for that
scalar cause "par" to be a self-inverse transformation. All other unit-norm-complex values would
yield transformations which are self-inverse except for introducing a constant complex phase angle
factor, which may or may not bother you. In the 2×2 matrix world this is Ψ(par) = -Ψ σ2. In the
biquaternion world this is Ψ(par) = -Ψ " i. For Majorana (plain quaternion Ψ) this fails to preserve
realness, but if we ignored the phase factor i then it would be Ψ(par) = Ψ ", which would cause
Ψ(par)(par) = -Ψ. Also in the Weyl case, one is not allowed to multiply a column-2-vector on the right
by a 2×2 matrix, therefore again this map fails. There are reasons for these failures: the Majorana
and Weyl equations are not symmetric under either parity or time reversal!

Time reversal (changing sign of t):   By the CPT theorem time reversal is the same thing as
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charge-conjugation combined with parity, Ψ(timerev) = γ0 Ψ* with our gamma matrices. In the 2×2
matrix world this becomes Ψ(timerev) = -Ψ* σ2. In the biquaternion world it is Ψ(timerev) = -Ψ* " i. For
Majorana, if we were to ignore the phase factor i which destroys realness, we would have Ψ(timerev)

= Ψ* ". In any case (i.e. without any phase factor cheating) with either biquaternions or Majorana
we have Ψ(timerev)(par) = Ψ*. Similarly with Weyl, multiplying a column-2-vector on the right by a 2×2
matrix, although forbidden in general, is unobjectionable if the matrix happens to be the identity
matrix, which, here, it is because (-σ2)2 equals the identity matrix. So again Ψ(timerev)(par) = Ψ*.

The Dirac Lagrangian is L=(γ0Ψ)H(iℏcD̸-mc2)Ψ.   To save space switch to units in which ℏ=c=1, so
that

L = (γ0Ψ)H (iD̸-m) Ψ = (γ0Ψ)H (γ0D0+γ1D1+γ2D2+γ3D3+im) Ψ i.

In the 2×2 matrix world this becomes

L = σ2ΨH [iD0Ψσ
2 +σ1D1Ψσ

1 +σ2D2Ψσ
1 +σ3D3Ψσ

1 +mΨ].

In the biquaternion world it is

L = 2 re( "Ψ̅*i [-D0Ψ" -!D1Ψ! -"D2Ψ! -#D3Ψ! +mΨ] ).

A speculation

Somebody might complain "this all was merely a reformulation which does not yield any new
physics" – therefore its value is merely aesthetic/cosmetic. But I speculate that complaint might not
be correct... which will lead to a wider interesting idea.

Note Ψ now is a member of the non-commutative ring of 2×2 complex matrices – or in the
Majorana case, the division ring of quaternions. Therefore we now are allowed to multiply Ψs, and
in the Majorana case also divide them, whereas with Dirac's original formalism we only could add
and subtract them. And if for some reason we did want to multiply two Ψs, then their complex-
valued determinants, and nonnegative-real-valued |determinants|, would also multiply – or in the
Majorana case their nonnegative-real-valued quaternion norms would multiply. (The 2×2 matrix
determinant equals the biquaternion norm in the biquaternion view.)

These new abilities to multiply and/or divide Ψs open interesting new possibilities that simply could
never happen with the old way of doing things.

Consider – what many physicists claim are among the top mysteries:

1. Why did Nature base the standard model (SM) on the gauge group U(1)×SU(2)×SU(3), from
among the infinite number of gauge groups Nature could have chosen? Here U(1)×SU(2),
loosely speaking, arises from the Glashow-Weinberg-Salam electroweak lepton model, while
SU(3) comes from quark-gluon chromodynamics. SU(3) has 8 real degrees of freedom (the
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same count as the Cayley-Graves octonions '), SU(2) has 3, and U(1) has 1.
2. Why does SM contain three "generations" of quarks and leptons? (As opposed to some other

number?) Where the hell does the number "3" come from? Threes tend not to arise.

Well, two obvious possible sources for the number "3" are (a) the number of space dimensions, and
(b) the fact that in our biquaternion form of the Dirac equation, the symbols (!,",#) could be replaced
by any of its three cyclic shifts, to get an equivalent equation. Actually, we also could swap two
while negating the third symbol e.g. (",!,-#), or negate all three while reversing their order (-#,-",-!),
... the full group of allowable permutations and symbol-negations has cardinality 4!=24 and consists
of the even permutations with an even number of sign changes, and the odd permutations with an
odd number of sign changes. (This group is isomorphic to S4.) But anyhow 24 includes a factor of
3, and this "3" is indeed coming from the number of space dimensions.

But I'm not sure that all makes sense when we consider that, more generally, (!,",#) could be
replaced by (Q-1!Q, Q-1"Q, Q-1#Q) for any quaternion Q, wlog with |Q|=1, which is a continuum-
infinite number of symmetries. The new Dirac equation is equivalent to the old one in the sense
that: If Ψ solved the original equation, then Q-1ΨQ would solve the new one. These symmetries Q
form the Lie group SU(2), which is isomorphic to the multiplicative group of unit-norm quaternions,
and also to the automorphism group of that. The 3-element cyclic group discussed above is a tiny
subgroup of that, but perhaps nevertheless could explain the "3 generations" mystery given
suitable "symmetry breaking."

Which brings us to my possible solution to the U(1)×SU(2)×SU(3) question.

"Nature likes normed division rings" speculation: Nature wants wavefunctions Ψ
not merely to be objects with nonnegative-real-valued norms that can be added and
subtracted, but also demands the ability to multiply and divide them (and when you do,
their norms multiply or divide).

This speculation would tremendously reduce the number of possibilities, because famous
theorems state that:

1. The only linear division algebras over the reals with a multiplicative identity element 1 (or we
can even permit 1 not to exist if we demand power-associativity for powers≤4: AA·A=A·AA,
AA·AA=A·AAA=AAA·A) and a nonnegative-real-valued multiplicative norm are ℝ, ℂ, ℍ, and
the non-associative 8-dimensional Cayley-Graves "octonions" '.

2. The only linear division algebras over the reals with multiplication obeying or AA·B=A·AB are
ℝ, ℂ, ℍ, '. (and this remains true even if the word "division" is weakened to the demand that
there be no nilpotent ideals besides {0}).

3. Any continuous map from Sn-1×Sn-1→Sn-1 with a 2-sided identity, is 1, 2, 4 or 8 dimensional.

If Nature includes scalar particles with complex-valued wavefunctions (and it does: the Higgs
boson), then physics should be expected to be symmetric under the ℂ-norm-preserving group, that
is, U(1). Also if Nature includes photons obeying the Maxwell equations (and it does) we also get
U(1). If Nature includes particles with quaternion-valued wavefunctions (Majorana fermions) then
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physics should be expected to be symmetric under the Aut(ℍ) group, that is, SU(2). If Nature
includes particles with octonion-valued wavefunctions then physics should be expected to be
symmetric under the Aut(') group, that is, the simple exceptional Lie group G2, which has 14 real
degrees of freedom.

Oops – G2 is not what Standard Modelers wanted to hear, which would have been SU(3). And
another apparent "oops" is that we've argued Dirac fermions may be regarded as biquaternions,
and the biquaternions are algebraically isomorphic to GL2(ℂ), and the Aut(GL2(ℂ)) group is SL2(ℂ)
at least (which has 6 real degrees of freedom), anyhow something considerably larger than SU(2).

However, I riposte that SU(2) is the stabilizer of ℍ inside the biquaternions. And SU(3) is the
elementwise stabilizer of ℂ inside G2=Aut('). And SO(4)⊂G2 is the stabilizer of ℍ inside '; and the
intersection of that SO(4) and that SU(3) is U(2). And G2 does not contain any simple Lie groups
besides these and their subgroups. And a theorem by Gell-mann, Glashow, and Weinberg (see
appendix A of Weinberg's ch.15) indicates that the only physically permissible gauge groups are
direct products of simple Lie groups, and U(1)'s.

Given these facts, it is plausible to hope that the "Nature likes division" speculation plus some
structural compatibility demands or partial-gauge-fixing terms in the Lagrangian might actually force
U(1)×SU(2)×SU(3), or at most that plus a small finite set of rival possibilities. Certainly it would
suffice to forbid F4, E6, E7, E8, SU(n) for all n≥4, SO(n) for all n≥5, and USp(2n) for all n≥2. In other
words, this speculation would explain the "great U(1)×SU(2)×SU(3) mystery" up to at most a small
finite number of rival options.

Suggested Future Project: Explore reformulations of the Standard Model based on quaternions,
octonions, and possibly bi-octonions.
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