Symmetry of the conductivity matrix

Matthew Stephenson*
Stanford University

1. The Green's function equation

Let us first consider the conductivity matrix on a non-compact manifold in $d=2$ dimensions. The differential equation that describes the behaviour of α,

$$
\begin{equation*}
\partial_{i}\left[Z \sqrt{\gamma} \gamma^{i j}\left(E_{j}+\partial_{j} \alpha\right)\right]=0, \tag{1}
\end{equation*}
$$

can be formally solved by writing

$$
\begin{equation*}
\alpha(\vec{x})=\int d^{2} y G(\vec{x}-\vec{y}) \frac{\partial}{\partial y^{i}}\left[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{i j}(\vec{y})\right] E_{j}, \tag{2}
\end{equation*}
$$

which leads to the Green's function equation

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}\left[Z \sqrt{\gamma} \gamma^{i j} \frac{\partial}{\partial x^{j}} G(\vec{x}-\vec{y})\right]=-\delta^{(2)}(\vec{x}-\vec{y}) . \tag{3}
\end{equation*}
$$

On a torus, the right-hand-side needs to be modified so that the integral over the expression vanishes. Hence, we can write down a new Green's function equation

$$
\begin{equation*}
\frac{\partial}{\partial x^{i}}\left[Z \sqrt{\gamma} \gamma^{i j} \frac{\partial}{\partial x^{j}} G(\vec{x}-\vec{y})\right]=-\delta^{(2)}(\vec{x}-\vec{y})+\frac{1}{\int d^{2} x^{\prime} \sqrt{\gamma\left(x^{\prime}\right)}} \sqrt{\gamma(\vec{x})} . \tag{4}
\end{equation*}
$$

Note that this extension of the Green's function equation is consistent with the defining differential equations as the addition is purely a function of x. Hence, we can formally define $G(x-y)=$ $\tilde{G}(x-y)+R(x)$, so that

$$
\begin{align*}
& \frac{\partial}{\partial x^{i}}\left[Z \sqrt{\gamma} \gamma^{i j} \frac{\partial}{\partial x^{j}} R(x)\right]=\frac{1}{\int d^{2} x^{\prime} \sqrt{\gamma\left(x^{\prime}\right)}} \sqrt{\gamma(x)}, \tag{5}\\
& \frac{\partial}{\partial x^{i}}\left[Z \sqrt{\gamma} \gamma^{i j} \frac{\partial}{\partial x^{j}} \tilde{G}(\vec{x}-\vec{y})\right]=-\delta^{(2)}(\vec{x}-\vec{y}) \tag{6}
\end{align*}
$$

This implies that

$$
\begin{equation*}
\alpha(\vec{x})=\int d^{2} y \tilde{G}(\vec{x}-\vec{y}) \frac{\partial}{\partial y^{i}}\left[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{i j}(\vec{y})\right] E_{j}=\int d^{2} y G(\vec{x}-\vec{y}) \frac{\partial}{\partial y^{i}}\left[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{i j}(\vec{y})\right] E_{j}, \tag{7}
\end{equation*}
$$

as the following divergence integral over a torus vanishes (the metric and Z are single-valued):

$$
\begin{equation*}
R(x) \int d^{2} y \frac{\partial}{\partial y^{i}}\left[Z(\vec{y}) \sqrt{\gamma(\vec{y})} \gamma^{i j}(\vec{y}) E_{j}\right]=R(x) \int d^{2} y \sqrt{\gamma} \nabla_{i}\left(Z(y) E^{i}\right)=0 . \tag{8}
\end{equation*}
$$

[^0]
2. Symmetry of the conductivity matrix

The next important thing is to understand whether $G(x-y)$ is symmetric under the interchange of x and y. Instead of this statement, we will prove a somewhat weaker statement, which will be sufficient to show that the conductivity matrix is symmetric. Consider the integral

$$
\begin{align*}
I & =\int d^{2} y \sqrt{\gamma(y)}\left\{G(y-x) \nabla_{i}\left[Z(y) \nabla^{i} G\left(y-x^{\prime}\right)\right]-G\left(y-x^{\prime}\right) \nabla_{i}\left[Z(y) \nabla^{i} G(y-x)\right]\right\} \\
& =\int d^{2} y \nabla_{i}\left\{\sqrt{\gamma(y)} G(y-x) Z(y) \nabla^{i} G\left(y-x^{\prime}\right)-\sqrt{\gamma(y)} G\left(y-x^{\prime}\right) Z(y) \nabla^{i} G(y-x)\right\} \\
& =0 \tag{9}
\end{align*}
$$

where all covariant derivatives act w.r.t. y. Since the integrand is a total derivative, and we are integrating over a compact torus without a boundary (and $G(x-y)$ is single valued by construction), the integral automatically vanishes.

Consider now another integral, which also clearly vanishes,

$$
\begin{equation*}
I^{\prime}=\frac{\partial^{2}}{\partial x^{i} \partial x^{\prime j}} I=0 \tag{10}
\end{equation*}
$$

By using Eq. (4), we find that

$$
\begin{align*}
I^{\prime} & =\frac{\partial^{2}}{\partial x^{i} \partial x^{\prime j}}\left[G\left(x-x^{\prime}\right)-G\left(x^{\prime}-x\right)+\frac{1}{\tilde{V}_{2}} \int d^{2} y \sqrt{\gamma(y)}\left[G(y-x)-G\left(y-x^{\prime}\right)\right]\right] \tag{11}\\
& =\frac{\partial^{2}}{\partial x^{i} \partial x^{\prime j}}\left[G\left(x-x^{\prime}\right)-G\left(x^{\prime}-x\right)\right]=0 . \tag{12}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{i} \partial y^{j}} G(x-y)=\frac{\partial^{2}}{\partial x^{i} \partial y^{j}} G(y-x) . \tag{13}
\end{equation*}
$$

The solution for the conserved "auxiliary" current can be written as

$$
\begin{align*}
e^{2} \mathcal{J}^{i} & =Z \sqrt{\gamma} \gamma^{i j}\left(E_{j}+\partial_{j} \alpha\right) \tag{14}\\
& =\left[Z(\vec{x}) \sqrt{\gamma(\vec{x})} \gamma^{i j}(\vec{x})-\int d^{2} y Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x}) \gamma(\vec{y})} \gamma^{i k}(\vec{x}) \gamma^{j l}(\vec{y}) \frac{\partial^{2}}{\partial x^{k} \partial y^{l}} G(\vec{x}-\vec{y})\right] E_{j}, \tag{15}
\end{align*}
$$

and the conductivity matrix is given by

$$
\begin{align*}
e^{2} \sigma^{i j}= & \frac{1}{V_{2}} \int d^{2} x Z(\vec{x}) \sqrt{\gamma(\vec{x})} \gamma^{i j}(\vec{x}) \\
& -\frac{1}{V_{2}} \int d^{2} x d^{2} y Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x}) \gamma(\vec{y})} \gamma^{i k}(\vec{x}) \gamma^{j l}(\vec{y}) \frac{\partial^{2}}{\partial x^{k} \partial y^{l}} G(\vec{x}-\vec{y}) . \tag{16}
\end{align*}
$$

To show that $\sigma^{i j}$ is symmetric, consider

$$
\begin{align*}
e^{2}\left(\sigma^{i j}-\sigma^{j i}\right) & =-\frac{1}{V_{2}} \int d^{2} x d^{2} y Z(\vec{x}) Z(\vec{y}) \sqrt{\gamma(\vec{x}) \gamma(\vec{y})} \gamma^{i k}(\vec{x}) \gamma^{j l}(\vec{y}) \frac{\partial^{2}}{\partial x^{k} \partial y^{l}}[G(\vec{x}-\vec{y})-G(\vec{y}-\vec{x})] \\
& =0 \tag{17}
\end{align*}
$$

due to the symmetry of the metric tensor $\gamma_{i j}$ and Eq. (13).
The analysis in other dimensions is trivial due to our ability to eliminate Z from (1) with conformal transformations and the fact that we didn't use any special properties of two dimensional spaces in the proof.

[^0]: * matthewjstephenson@icloud.com

