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Abstract
It is well known that memristors can be classified into the four classes according to the complex-
ity of their mathematical representation. Furthermore, the four classes of memristors are used to
qualitatively simulate many of the experimentally measured pinched hysteresis loops. In this pa-
per, we define the 2-terminal devices, which do not belong to the above four classes of memristors,
but have the same non-volatile property as the ideal memristor. We then study the non-volatile
mechanism of these devices and the memristors that can retain the previous value of the state even
when the driving signal is set to zero. We show that the ideal generic memristors and the general-
ized 2-terminal devices can have interesting applications: non-volatile multi-valued memories and
two-element chaotic oscillators, if we remove the condition that no state change occurs after the
zero driving signal. We also show that the 2-terminal devices and the four classes of memristors
can exhibit a wide variety of pinched hysteresis loops similar to those measured experimentally.
Furthermore, we show that a wide variety of Lissajous curves are possible, depending on whether
the direction of the Lissajous curve is clockwise or counterclockwise and which quadrants the
Lissajous curve passes through.
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memristor; memristive device; 2-terminal device; non-volatility; pinched hysteresisloop; Lissajous
curve; non-volatile multiple-valued memory; reconstruction method; Duffing oscillator; Josephson
junction circuit; Mathieu equation.

1 Introduction
A number of experimentally measured pinched hysteresis loops are shown in [1], which are extracted from
dozens of literature. These pinched hysteresis loops are made of different materials, processes, and phys-
ical mechanisms [1]. It is well known that memristors are classified into the four classes according to the
complexity of their mathematical representation [2]. Furthermore, many of the experimentally measured
pinched hysteresis loops are qualitatively simulated using the four classes of memristors [1, 2, 3].

In this paper, we define the 2-terminal devices, which do not belong to the above four classes of mem-
ristors, but have the same non-volatile property as the ideal memristor. We then study the non-volatile
mechanism of these devices and memristors, which can maintain the previous value of the state even when
the driving signal is set to zero. We also show that the 2-terminal devices and the four classes of memristors
can exhibit a wide variety of pinched hysteresis loops similar to those measured experimentally. Further-
more, we show that a wide variety of Lissajous curves are possible, depending on whether the direction
of the Lissajous curve is clockwise or counterclockwise and which quadrants the Lissajous curve passes

1Since his retirement in 2010, he has continued to study the nonlinear dynamics of memristors.
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through. Finally, we study the case where the state evolves with time even when the drive signal is set to
zero. That is, we remove the condition that no state change occurs after the drive signal is zero. In this
case, the ideal generic memristors and the generalized 2-terminal devices can have interesting applications:
non-volatile multi-valued memories and two-element oscillators such as the Duffing oscillator, the forced
Josephson junction circuit, and the Mathieu equation.

2 Non-Volatility Property of Memristors
In this section, we study the non-volatility conditions for the four classes of memristors defined in [2].

2.1 Ideal memristors
The Memristor is a 2-terminal electronic device, which was postulated in [4, 5, 6]. An ideal memristor can
be described by a constitutive relation between the charge q and the flux φ,

q = g(φ) or φ = f(q), (1)

where g(·) and f(·) are differentiable scalar-valued functions. Its terminal voltage v and terminal current i
are described by

i = G(φ)v or v = R(q)i, (2)

where

v =
dφ

dt
and i =

dq

dt
, (3)

which represent Faraday’s law of induction and its dual law, respectively. The nonlinear functions G(φ) and
R(φ), called memductance and memristance, respectively, are defined by

G(φ)
△
=

dg(φ)

dφ
, and R(q)

△
=

df(q)

dq
. (4)

They represent the slope of the scalar function q = g(φ) and φ = f(q), respectively (called the memristor
constitutive relation).

Thus, the voltage-controlled ideal memristor is defined by Eq. (1) or the state-dependent Ohm’s law and
its associated state equation given by

voltage-controlled ideal memristor

i = G(φ)v,

dφ

dt
= v.

 (5)

Similarly, those for the current-controlled ideal memristor are given by

current-controlled ideal memristor

v = R(q)i,

dq

dt
= i.

 (6)
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The classification of the more generalized memristors is shown in Appendix A [2].2
Let us apply the voltage source vs(t) to the voltage controlled ideal memristor (5). Assume that the

output of the voltage source vs(t) is set to zero for t ≥ t0
3, that is,

vs(t) = v(t) = 0 for t ≥ t0. (7)

Then we obtain
φ(t) = φ(t0) for t ≥ t0, (8)

since the flux φ(t) satisfies dφ

dt
= v = 0 for t ≥ t0, Thus, if there is a real number M > 0 such that

| G(φ(t0)) |≤ M, (9)

then we obtain

i(t) = G(φ(t0)) v(t) = 0 for t ≥ t0, (10)

since v(t) = 0 for t ≥ t0
4.5 6

The charge q(t) also holds the value q(t0) = g(φ(t0)) for t ≥ t0, since dq

dt
= i = 0 for t ≥ t0, Thus the

voltage-controlled ideal memristor (5) exhibits the following non-volatile state:

non-volatile state

v(t) =
dφ(t)

dt
= 0,

i(t) =
q(t)

dt
= 0,

φ(t) = φ(t0),

q(t) = q(t0).


( for t ≥ t0). (11)

That is, all state variables do not evolve for t ≥ t0, and the voltage-controlled ideal memristor (5) has the
non-volatility property.

Similarly, if there is a real number M > 0 such that

| R(q(t0)) |≤ M, (12)

then the current-controlled ideal memristor (6) driven by the current source is(t) has the non-volatility
property, where we set is(t) = 0 for t ≥ t0. Thus we conclude as follows:

2We slightly modified the definition of the extended memristor.
3Equivalently, we can assume that the memristor is short-circuited for t ≥ t0, that is, v(t) = 0 for t ≥ t0 [7]).
4If there exists a real number M such that | G(x) |≤ M for all x, then G(x) is bounded. If G(x) is bounded, then Eq. (9)

is automatically satisfied. For example, 1

x2 + 1
, sin(x), or tanh(x) are bounded, however, tan(x), ln(x), and 1

x
are unbounded.

5Consider the memristor defined by i = G(φ)v =
v

φ
, where G(φ) =

1

φ
. Its constitutive relation is given by q = ln | φ |. If

φ(t0) = 1, then | G(φ(t0) | = 1, but if φ(t0) = 0, then lim
φ(t0)→0

| G(φ(t0) | → ∞. In this case, | G(φ) |< M does not hold for all

φ and a real number M > 0. Thus, we assume that | G(φ(t0)) |< M for certain value of φ(t0).
6f(x) is locally bounded if for any x there exists a neighborhood A of x such that f(A) is a bounded set, that is, for some

M > 0, f(x) ≤ M for all x ∈ A.
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If there exists a real number M > 0 such that | G(φ(t0)) |≤ M and | R(q(t0)) |≤ M , then
the ideal memristor has the non-volatility property:

• The voltage-controlled ideal memristor (5) driven by the voltage source vs(t) does not lose
the values of the flux φ(t0) and the charge q(t0) when we set vs(t) = 0 for t ≥ t0.
• The current-controlled ideal memristor (6) driven by the current source is(t) does not lose
the values of the flux φ(t0) and the charge q(t0) when we set is(t) = 0 for t ≥ t0.

The voltage-controlled ideal memristor (5) and the current-controlled ideal memristor (6)
function as non-volatile memories.

The above property can be reformulated as follows from the point of view of the trajectory:

If the trajectories (v(t), i(t)) of Eqs. (5) and (6) remain at the origin on the (v, i)-plane
for t ≥ t0, then the flux φ(t) and q(t) remain unchanged from φ(t0) and q(t0) for t ≥ t0,
respectively.

2.1.1 Example of the non-volatility property

Consider the flux-controlled ideal memristor defined by

q = g(φ) = tanh(φ). (13)

Its terminal voltage v and terminal current i are described by

i = G(φ)v =
(
1− tanh2(φ)

)
v, (14)

where v =
dφ

dt
and G(φ) = 1 − tanh2(φ). Let us drive the voltage-controlled ideal generic memristor (13)

with the voltage source vs(t) as shown in Fig. 3. Here, the voltage source vs(t) is given by

vs(t) =


r sin2(ωt) for 0 ≤ t < 4π,
0 for 4π ≤ t ≤ 8π,
−r sin2(ωt) for 8π < t < 12π,
0 for 12π ≤ t,

(15)

where r = 0.8 and ω = 0.5. The initial condition is given by φ(0) = 0.5. We can observe from Figs. 4 and
5 that the flux φ(t) and the charge q(t) remain unchanged during the period when vs(t) = 0. Furthermore,
the trajectory (v(t), i(t)) remains at the origin during the period when vs(t) = 0. We can also observe that
the Lissajous curve of i(t) and vs(t) is pinched at the origin as shown in Figs. 4(d) and 5(c).

4



2.2 Ideal generic memristors
In this subsection we show that the ideal generic memristors defined in Appendix A have the same non-
volatility property as the ideal memristor. Their Ohm’s law and associated state equation are given by

voltage-controlled ideal generic memristor

i = G(x)v,

dx

dt
= ĝ(x, v).

 (16)

current-controlled ideal generic memristor

v = R(x)i,

dx

dt
= f̂(x, i).

 (17)

Here, i, v, and x are the terminal current, the terminal voltage, and the state variable of the memristor,
G(·), R(x), ĝ(·), and f̂(·) are continuous scalar-valued functions.

Let us drive the voltage-controlled ideal generic memristor (16) with the voltage source vs(t). Assume
that the output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0.
Furthermore, we assume that ĝ(x, v) satisfies the following condition [1]

no state change after v = 0

ĝ(x, 0) = 0 for all x. (18)

Then the state equation is given by

dx

dt
= ĝ(x, 0) = 0 for t ≥ t0. (19)

Thus, x(t) satisfies x(t) = x(t0) for t ≥ t0. Furthermore, if there is a real number M > 0 such that

| G(x(t0)) |≤ M, (20)

then we obtain
i(t) = G(x(t0))v(t) = 0 for t ≥ t0, (21)

where v(t) = 0 for t ≥ t0. Thus, if the voltage-controlled ideal generic memristor (17) satisfies Eqs. (18) and
(20), then we obtain the following non-volatile state:

non-volatile state

x(t) = x(t0) and v(t) = i(t) = 0 for t ≥ t0. (22)

Similarly, if the current-controlled ideal generic memristor (17) driven by the current source is(t) satisfies
the following conditions7 [1]

no state change after i = 0

f(x, 0) = 0 for all x, (23)

and if there is a real number M > 0 such that

| R(x(t0)) |≤ M, (24)

7If | R(x) |< ∞ for all x, then Eq. (24) is automatically satisfied.
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then they also have the non-volatility property, where the current source is(t) is set to zero for t ≥ t0, that
is, is(t) = i(t) = 0 for t ≥ t0. Thus, we obtain

non-volatility property
• If the voltage-controlled memristors (16) satisfy Eqs. (18) and (20), then they have the same
non-volatility property as the ideal memristor.
• If the current-controlled memristors (17) satisfy Eqs. (23) and (24), then they have the same
non-volatility property as the ideal memristor.

2.3 Generic and extended memristors
In this subsection, we show that the generic and extended memristors defined in Appendix A have the same
non-volatility as the ideal memristor, if the additional condition is satisfied. Their Ohm’s law and associated
state equation are given by

voltage-controlled generic memristor

i = G̃(x)v,

dx

dt
= g̃(x, v).

 (25)

current-controlled generic memristor

v = R̃(x)i,

dx

dt
= f̃(x, i).

 (26)

voltage-controlled extended memristor

i = Ĝ(x, v)v,

dx

dt
= g̃(x, v).

 (27)

current-controlled extended memristor

v = R̂(x, i)i,

dx

dt
= f̃(x, i).

 (28)

Here, i, v, and x = (x1, x2, · · · , xn) ∈ Rn indicate the terminal current, the terminal voltage, and the state
variables of the memristor, respectively, G̃(·), Ĝ(·), R̃(·), and R̂(·) are continuous scalar-valued functions,
g̃ = (g̃1, g̃2, · · · , g̃n) : Rn → Rn, and f̃ = (f̃1, f̃2, · · · , f̃n) : Rn → Rn.

Assume that the voltage-controlled memristors (25) and (27) are driven by the voltage source vs(t) and
assume that g̃(x, v) satisfies the following state conservation condition [1]

no state change after v = 0

g̃(x, 0) = 0 for all x. (29)

where 0 denotes a zero vector whose components are all 0, i.e., 0 = (0, 0, · · · , 0).
Assume next that the output of the voltage source is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for

t ≥ t0. Then we get
dx

dt
= g̃(x, v) = 0, for t ≥ t0, (30)

and therefore
x(t) = x(t0) for t ≥ t0, (31)

Furthermore, if there is a real number M > 0 such that
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| G̃(x(t0)) |≤ M and | Ĝ(x(t0), 0) ≤ M, (32)

then we obtain

i(t) = G̃
(
x(t0)

)
v(t) = 0 and i(t) = Ĝ

(
x(t0), v(t)

)
v(t) = 0, (33)

for t ≥ t0, where vs(t) = v(t) = 0 for t ≥ t0
8. Thus, if the voltage-controlled memristors (25) and (27) satisfy

Eqs. (29) and (32), then we obtain the following non-volatile state:

non-volatile state

x(t) = x(t0) and v(t) = i(t) = 0 for t ≥ t0. (34)

Similarly, if the current-controlled memristors (26) and (28) driven by the current source is(t) satisfy the
following condition [1]

no state change after i = 0

f̃(x, 0) = 0 for all x, (35)

then they also have the non-volatility property. Here we have assumed that there is a real number M > 0
such that 9

| R̃(x(t0)) |≤ M and | R̂(x(t0), 0) |≤ M, (36)

and we set the output of the current source is set to zero for t ≥ t0, that is, is(t) = i(t) = 0 for t ≥ t0.

• If the voltage-controlled memristors (25) and (27) satisfy Eqs. (29) and (32), then they have the
same non-volatility property as the ideal memristor.
• If the current-controlled memristors (26) and (28) satisfy Eqs. (35) and (36), then they have the
same non-volatility property as the ideal memristor.

8If if there is a real number M > 0 such that | G̃(x) |≤ M and | Ĝ(x, 0) |< M for all x, then Eq. (32) are automatically
satisfied.

9If there is a real number M > 0 such that | R̃(x) |≤ M and | R̂(x, 0) |< M for all x, then Eq. (36) are automatically
satisfied.
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3 Non-volatility Conditions for 2-terminal Devices
In this section, we show the 2-terminal devices, which do not belong to the above four classes of memristors,
but have the same non-volatile property as the ideal memristor.

3.1 2-terminal devices
Consider the voltage-controlled 2-terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v),
dφ

dt
= v,

}
(37)

or equivalently

voltage-controlled 2-terminal device

dq

dt
= W

(
φ,

dφ

dt

)
, (38)

where i, v, q and φ are the terminal current, the terminal voltage, the charge, and the flux, respectively, and
W (φ, v) is a scalar-valued function.

Let us drive the voltage-controlled 2-terminal device (37) by the voltage source vs(t), where we set
vs(t) = 0 for t ≥ t0. Then, we get

dφ

dt
= v = 0, (39)

and
φ(t) = φ(t0), for t ≥ t0, (40)

where vs(t) = v(t) for t ≥ t0. Assume that voltage-controlled 2-terminal device (37) satisfies the following
condition10

non-volatility condition

W (φ(t0), v) = 0 for v = 0. (41)

Then, we obtain
i(t) =

dq(t)

dt
= W (φ(t0), 0) = 0 for t ≥ t0. (42)

if we substitute
v(t) =

dφ(t)

dt
= 0, (43)

into Eqs. (37). Thus, we obtain the following non-volatile state:

If vs(t) = 0 for t ≥ t0, then v(t) = i(t) = 0, φ(t) = φ(t0), and q(t) = q(t0) for t ≥ t0. (44)

10If W (φ, 0) = 0 for all φ, then Eq. (41) is automatically satisfied. Note that we cannot always factor φ out of W (φ, v).
That is, W (φ, v), which satisfies W (φ, 0) = 0, does not always have the form G(φ)v, where G(φ) is a scaler-valued function.

For example, if W (φ, v) =
v + 0.5(| v − 1 | − | v + 1 |)

φ
, then W (φ(t0), 0) = 0 except for φ(t0) = 0. However, we cannot factor

φ out of W (φ, v).
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That is, the 2-terminal device (37) has the same non-volatility property as the ideal memristor (5):

The 2-terminal device (37) driven by the voltage source vs(t) has the same non-volatility property
as the ideal memristor.
That is, the device (37) does not lose the values of the flux φ(t0) and the charge q(t0) when we set
vs(t) = 0 for t ≥ t0 and we assume that W (φ(t0), 0) = 0.

Similarly, consider the 2-terminal device defined by

current-controlled 2-terminal device

v = Z(q, i),
dq

dt
= i,

}
(45)

Assume that Z(q, v) satisfies the following non-volatility condition

non-volatility condition

Z(q(t0), v) = 0 for v = 0. (46)

Then the 2-terminal device (45) has the non-volatility property. However, the 2-terminal devices (37) and
(45) cannot be described by a constitutive relation between the charge q and the flux φ.

The 2-terminal devices defined by Eqs. (37) and (45) can have the same non-volatility
property as the ideal memristor, but do not belong to the four classes of memristors, which
are defined in Appendix A. For this reason, we use the term “2-terminal devices” instead of
“memristors” or “memristive systems”.

3.2 Generalized 2-terminal devices
In this section, we generalize the 2-terminal device defined in Sec. 3.1. It has the same non-volatility property
as the ideal memristor, which can be described as follows:

• generalized voltage-controlled 2-terminal device

i = W (x, v),
dx

dt
= g̃(x, v).

}
(47)

• generalized current-controlled 2-terminal device

v = Z(x, i),
dx

dt
= f̃(x, i).

}
(48)

where x = (x1, x2, · · · , xn) ∈ Rn, g̃ = (g̃1, g̃2, · · · , g̃n) : Rn → Rn, f̃ = (f̃1, f̃2, · · · , f̃n) : Rn → Rn,
and W (x, v), Z(x, i), g̃(x, i), and f̃(x, i) are scalar-valued functions.
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The generalized 2-terminal devices (47) and (48) do not belong to the four classes of memris-
tors in Appendix A. However, they include the four classes of memristors as a special case.

Let us drive the voltage-controlled 2-terminal device (47) by the voltage source vs(t), where we set
vs(t) = 0 for t ≥ t0. Assume that

g̃(x, 0) = 0 for all x. (49)

Then, we obtain

x(t) = x(t0) for t ≥ t0. (50)

since dx(t)

dt
= g̃(x(t), v(t)) = 0, for vs(t) = v(t) = 0 and t ≥ t0.

Assume next that11.

W (x(t0), 0) = 0. (51)

Then, we obtain

i(t) = W
(
x(t), v(t)

)
= 0, (52)

since x(t) = x(t0) and v(t) = 0 for t ≥ t0. Thus, the device (47) has the following non-volatile state:

non-volatile state

x(t) = x(t0) and v(t) = i(t) = 0 for t ≥ t0. (53)

Thus, the non-volatility condition for Eq. (47) is given by

non-volatility condition for Eq. (47)

W (x(t0), 0) = 0,

g̃(x, 0) = 0 for all x.

}
(54)

Similarly, let us drive the current-controlled 2-terminal device (48) by the current source is(t), where
is(t) = 0 for t ≥ t0. Then, this device has the same non-volatile state if the following condition is satisfied:

non-volatility condition for Eq. (48)

Z(x(t0), 0) = 0,

f̃(x, 0) = 0 for all x.

}
(55)

11If W (x, 0) = 0 for all x, then Eq. (51) is automatically satisfied.
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Our conclusion is as follows:

The generalized voltage-controlled 2-terminal device (47) has the non-volatility property if
Eq. (54) is satisfied, that is,

• The voltage-controlled generalized 2-terminal device (47) driven by the voltage source vs(t)
does not lose the values of x(t0) when we set vs(t) = 0 for t ≥ t0.

The generalized current-controlled 2-terminal device (48) has the non-volatility property if
Eq. (55) is satisfied, that is,

• The current-controlled generalized 2-terminal device (48) driven by the current source is(t)
does not lose the values of x(t0) when we set is(t) = 0 for t ≥ t0.

4 Pinched Hysteresis Loops
As shown in Sec. 2.1, the Lissajous curve of i(t) and vs(t) is pinched at the origin. In this section, we
observe the pinched hysteresis loops of the four classes of memristors and the 2-terminal devices by applying
a sinusoidal voltage source.

• Example 1. flux-controlled ideal memristor
Consider the flux-controlled ideal memristor defined by

flux-controlled ideal memristor

q = g(φ) = tanh(φ). (56)

Its terminal voltage v and terminal current i are given by

state-dependent Ohm’s law

i = G(φ)v =
(
1− tanh2(φ)

)
v = sech2(φ) v, (57)

where G(φ) ≜ 1− tanh2(φ) = sech2(φ), and Faraday’s law is is given by

v =
dφ

dt
(58)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 6(a)-(h). The Lissajous curve shown in Fig. 6(f) is similar to the pinched hysteresis loop
shown in [8]. We conclude as follows:

Since the function G(φ) is bounded, the current i(t) = G(φ(t)) v(t) = 0 when v(t) = 0.
This means that the Lissajous curve of i(t) and v(t) passes through the origin and is
pinched at the origin as shown in Fig. 6(a)-(h).
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The flux-controlled ideal memristor (56) has the non-volatility property, that is, φ(t)
and q(t) do not change during the period when v(t) = 0, as shown in the example of
Sec. 2.1.1.

• Example 2. flux-controlled ideal memristor
Consider the flux-controlled ideal memristor defined by

flux-controlled ideal memristor

q = g(φ) = tanh(φ) + dφ, (59)

where d > 0 is the parameter. Its terminal voltage v and terminal current i are given by

state-dependent Ohm’s law

i = G(φ)v =
(
1 + d− tanh2(φ)

)
v = (sech2(φ) + d) v, (60)

where G(φ) ≜ sech2(φ) + d, and Faraday’s law is is given by

v =
dφ

dt
(61)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 6(i)-(j). The Lissajous curve shown in Fig. 6(i) is very similar to the pinched hysteresis
loops shown in [8]. We conclude as follows:

Since the function G(φ) is bounded, the current i(t) = G(φ(t)) v(t) = 0 when
v(t) = 0. This means that the Lissajous curve of i(t) and v(t) passes through
the origin and is pinched at the origin as shown in Fig. 6(i)-(j).

The flux-controlled ideal memristor (59) has the non-volatility property, that is,
φ(t) and q(t) do not change during the period when v(t) = 0. This is because
dφ

dt
= 0 for this period and q(t) satisfies the constitutive relation q(t) = g(φ(t)).

• Example 3. voltage-controlled extended memristor
Consider next the voltage-controlled extended memristor defined by

voltage-controlled extended memristor

i = G(φ, v)v =
{(

1− tanh2(φ)
)
eav

}
v,

dφ

dt
= v,

 (62)
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where a is the parameter and G(φ, v) ≜
(
1− tanh2(φ)

)
eav.

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 6(k)-(l). We conclude as follows:

Since the function G(φ, 0) = 1 − tanh2(φ) is bounded, the current i(t) = G(φ(t)) v(t) = 0
when v(t) = 0. This means that the Lissajous curve of i(t) and v(t) passes through the origin
and is pinched at the origin as shown in Fig. 6(k)-(l).

The voltage-controlled extended memristor (62) has the non-volatility property, that is, φ(t)
does not change during the period when v(t) = 0, since dφ

dt
= 0 for this period.

• Example 4. voltage-controlled extended memristor
Consider next the voltage-controlled extended memristor defined by

voltage-controlled extended memristor

i = G(φ, v)v =
{(

1− tanh2(φ)
)
u(v + b)

}
v,

dφ

dt
= v,

 (63)

where b is the parameter, u(v) is the unit step function12, which is equal to 0 for v < 0 and 1 for v ≥ 0,
and G(φ, v) ≜

(
1− tanh2(φ)

)
u(v + b) is bounded.

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 7(m)-(o). We conclude as follows:

Since G(φ, v) is bounded, the current i(t) = G
(
φ(t), v(t)

)
v(t) = 0 when v(t) =

0. This means that the Lissajous curve of i(t) and v(t) passes through the origin
and is pinched at the origin as shown in Fig. 7(m)-(o).

The voltage-controlled extended memristor (62) has the non-volatility property,
that is, φ(t) does not change during the period when v(t) = 0, since dφ

dt
= 0 for

this period.

• Example 5. voltage-controlled 2-terminal device
Consider the voltage-controlled 2-terminal device defined by

12A smooth approximation of the unit step function u(v) is given by the function 1 + tanh(kv)

2
=

1

1 + e−2kv
for k ≫ 1,

which can be practically used in place of u(v).
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voltage-controlled 2-terminal device

i = W (φ, v) = H(k(φ, v)),

dφ

dt
= v,

 (64)

where
H(s) ≜ 0.5(| s+ 1 | − | s− 1 |),

k(φ, v) ≜
(
1− tanh2(φ)

)
v.

}
(65)

The function W (φ, v) satisfies

W (φ, v) = H(k(φ, v)) = 0 for v = 0, (66)

since k(φ, 0) = 0 and H(0) = 0.
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 7(p)-(s). The Lissajous curve shown in Fig. 7(p) is very similar to the experimentally
measured pinched hysteresis loop shown in [9]. We conclude as follows:

Since W (φ, 0) = 0, the current i(t) = W
(
φ(t), v(t)

)
= 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) passes through the origin and is
pinched at the origin as shown in Fig. 7(p)-(s).

The voltage-controlled 2-terminal device (64) has the non-volatility property,
that is, φ(t) does not change during the period when v(t) = 0, since dφ

dt
= 0 for

this period.

• Example 6. voltage-controlled 2-terminal device
Consider the voltage-controlled 2-terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v) = H(k(φ, v)),

dφ

dt
= v.

 (67)

Here H(s) and k(φ, v) is defined by

H(s) ≜ tanh(cs),

k(φ, v) ≜
(
1− tanh2(φ)

)
v,

}
(68)

where c is a constant. The function W (φ, v) satisfies

W (φ, v) = H(k(φ, v)) = 0 for v = 0, (69)

since k(φ, 0) = 0 and H(0) = 0.
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 7(t)-(u). We conclude as follows:

14



Since W (φ, 0) = 0, the current i(t) = W
(
φ(t), v(t)

)
= 0 when v(t) = 0. This means

that the Lissajous curve of i(t) and v(t) passes through the origin and is pinched at
the origin as shown in Fig. 7(t)-(u).

The voltage-controlled 2-terminal device (67) has the non-volatility property, that is,
φ(t) does not change during the period when v(t) = 0, since dφ

dt
= 0 for this period.

• Example 7. voltage-controlled 2-terminal device
Consider next the voltage-controlled 2-terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v),

dφ

dt
= v.

 (70)

Here we consider the case where W (φ, v) is defined by

W1(φ, v) =
(
1− tanh2(φ)

)
v,

W2(φ, v) = −
(
1− tanh2(φ)

)
v,

W3(φ, v) = sign(v)
(
1− tanh2(φ)

)
v,

W4(φ, v) = −sign(v)
(
1− tanh2(φ)

)
v,

W5(φ, v) = u(v)
(
1− tanh2(φ)

)
v,

W6(φ, v) = −u(−v)
(
1− tanh2(φ)

)
v,

W7(φ, v) = u(−v)
(
1− tanh2(φ)

)
v,

W8(φ, v) = −u(v)
(
1− tanh2(φ)

)
v,

W9(φ, v) = H
(
| v |

(
1− tanh2(φ)

))
,

W10(φ, v) =
(
1− tanh2(φ)

)
evv,

W11(φ, v) = ln | W1(φ, v) | .



(71)

where the sign function: sgn(v) is defined by 13

sgn(v) =

 −1 for v < 0,
0 for v = 0,
1 for v > 0.

(72)

and
H(s) = 0.5

(
| s+ 1 | − | s− 1 |

)
. (73)

The function W11(φ, v) is not bounded for v = 0. In this case, the 2-terminal device (70) does not
satisfy the non-volatility condition.

13A smooth approximation of sgn(v) is given by the function tanh(kv) for k ≫ 1, which can be practically used in place of
sgn(v).
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Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 8. We conclude as follows:

Since the function Wi(φ, 0) (i = 1, 2, · · · , 10) are equal to zero, the current i(t) =
Wi

(
φ(t), v(t)

)
= 0 when v(t) = 0. This means that the Lissajous curve of i(t) and v(t)

passes through the origin and is pinched at the origin as shown Fig. 8(a)-(j).

The voltage-controlled 2-terminal device (70) for Wi(φ, 0) (i = 1, 2, · · · , 10) has the non-
volatility property, that is, φ(t) does not change during the period when v(t) = 0, since
dφ

dt
= 0 for this period.

• Example 8. voltage-controlled extended memristor
Consider next the voltage-controlled extended memristor defined by

voltage-controlled extended memristor

i = G(φ, v) v

dφ

dt
= v,

 (74)

Here we consider the case where G(φ, v) is defined by

G1(φ, v) = u(φ− 1),

G2(φ, v) = 1− u(φ− 1),

G3(φ, v) = u(φ− 1) u(v + 1.5),

G4(φ, v) = u(φ− 1) + 0.1, ,

G5(φ, v) = 1.1− u(φ− 1),

G6(φ, v) = {u(φ− 1) u(v + 1.5) + 0.1},

G7(φ, v) = {u(φ− 1) + 0.1} e0.2v,

G8(φ, v) = (1.1− u(φ− 1)) e0.2v,

G9(φ, v) = {u(φ− 1) u(v + 1.5) + 0.1} e0.2v.



(75)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops shown
in Fig. 9. Observe the difference in the two turning points of the Lissajous curves. The Lissajous curve
shown in Fig. 9(c) is similar to the pinched hysteresis loop shown in [14]. Furthermore, the Lissajous
curve shown in Fig. 9(i) is similar to the pinched hysteresis loop (shoelace plot) shown in [2]. We
conclude as follows:

Since all Gi(φ, 0) is bounded, the current i(t) = Gi

(
φ(t), v(t)

)
v(t) = 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) passes through the origin and is pinched at
the origin as shown in Fig. 9.
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The voltage-controlled extended memristor (74) has the non-volatility property, that is, φ(t)
does not change during the period when v(t) = 0, since dφ

dt
= 0 for this period.

• Example 9. voltage-controlled 2-terminal device
Consider the voltage-controlled extended memristor defined by Consider the voltage-controlled 2-
terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v) = u(v + d) u(φ− 1) h(v),

dφ

dt
= v,

 (76)

where the scalar function h(v) is defined by

h(v) ≜ v − 0.5(| v + 1 | − | v − 1 |). (77)

The function W (φ, v) satisfies

W (φ, v) = u(v + d) u(φ− 1) h(v) = 0 for v = 0, (78)

where u(s) is bounded and h(v) = 0 for v = 0.
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given
by φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 10. Observe that as the parameter d increases, the newly created triangle becomes larger.
These Lissajous curves are very similar to the experimentally measured pinched hysteresis loops shown
in [10]. We conclude as follows:

Since W (φ, 0) = 0, the current i(t) = W
(
φ(t), v(t)

)
= 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) passes through the origin and is
pinched at the origin as shown in Fig. 10.

The voltage-controlled 2-terminal device (76) has the non-volatility property,
that is, φ(t) does not change during the period when v(t) = 0, since dφ

dt
= 0 for

this period.

• Example 10. voltage-controlled 2-terminal device
Consider the voltage-controlled extended memristor defined by Consider the voltage-controlled 2-
terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v)

dφ

dt
= v,

 (79)
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Assume that the function W (φ, v) is given by

W1(φ, v) = u(φ− 1) u(v) v,

W2(φ, v) = u(φ− 1) u(v) u(0.8− v) v,

W3(φ, v) = h1

(
W1(φ, v)

)
,

W4(φ, v) = h2

(
W2(φ, v)

)
,


(80)

where the scalar function hi(·) (i = 1, 2) is defined by

h1(s) ≜ v − 0.5(| s+ 0.8 | − | s− 0.8 |),

h2(s) ≜ v − 0.5(| s+ 0.5 | − | s− 0.5 |).

}
(81)

The functions W (φ, v)i (i = 1, 2) satisfy

Wi(φ, v) = 0 for v = 0, (82)

since u(φ − 1) is bounded, and u(0) = 0 and h(0) = 0. Thus, we obtain the following non-volatility
property:
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given
by φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis
loops shown in Fig. 11. Note that the Lissajous curve in the third quadrant is squashed into a line
segment. The Lissajous curve shown in Fig. 11(a) is similar to the pinched hysteresis loops shown
in [8]. Furthermore, the Lissajous curve shown in Fig. 11(e) is very similar to the experimentally
measured pinched hysteresis loops shown in [10]. We conclude as follows:

Since Wi(φ, 0) = 0, the current i(t) = Wi

(
φ(t), v(t)

)
= 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) passes through the origin and is
pinched at the origin shown in Fig. 11.

The voltage-controlled 2-terminal device (79) has the non-volatility property,
that is, φ(t) does not change during the period when v(t) = 0, since dφ

dt
= 0 for

this period.

• Example 11. voltage-controlled extended memristor
Consider the voltage-controlled extended memristor defined by

voltage-controlled extended memristor

i = G(φ, v) v,

dφ

dt
= v,

 (83)

where
G(φ, v) ≜ u(v)

{
u(0.95− φ) + 0.1

}
+ u(−v)

{
u(1.3− φ) + 0.1

}
. (84)

Since the unit step function u(·) is bounded, G(φ, 0) is bounded.
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0.8 and the parameters are given by r = 0.1 and ω = 0.3. By plotting the Lissajous curve of
i(t) and v(t), we obtain the pinched hysteresis loops shown in Fig. 12. The Lissajous curve in Fig.
12(b) is plotted on a semi-log graph. These Lissajous curves are very similar to the experimentally
measured Lissajous curves shown in [11]. We conclude as follows:
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Since G(φ, 0) is bounded, the current i(t) = G
(
φ(t), v(t)

)
v(t) = 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) on a linear-scale graph passes through the
origin and is pinched at the origin as shown in Fig. 12(a).

The voltage-controlled extended memristor (83) has the non-volatility property, that is, φ(t)
does not change during the period when v(t) = 0, since dφ

dt
= 0 for this period.

• Example 12. voltage-controlled 2-terminal device
Consider the voltage-controlled 2-terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v) = H
(
k(φ, v)

)
,

dφ

dt
= v,

 (85)

where
H(s) ≜ 0.5

(
| s+ 0.8 | − | s− 0.8 |

)
,

k(φ, v) ≜ u(1− φ) v.

}
(86)

The function W (φ, v) satisfies

W (φ, v) = H
(
k(φ, v)

)
= 0 for v = 0, (87)

since k(φ, 0) = 0 and H(0) = 0.
Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0.8. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Fig. 13. The Lissajous curves shown in Fig. 13(a) are very similar to the experimentally mea-
sured pinched hysteresis loop (plotted on a linear-scale graph) shown in [12]. Note that the Lissajous
curve in Fig. 13(b) is plotted on a semi-log graph.
The Lissajous curve on the semi-log graph does not remain in a bounded region, since i(t) = 0 when
v(t) = 0 (see Fig. 13(b)). Thus, we added the signal e(t) to the current i(t), that is,

ie(t) = i(t) + e(t) = H
(
k
(
φ(t), v(t)

))
+ e(t),

e(t) = sign
(
cos(ωt)

)
+ 1.5,

 (88)

where v(t) = vs(t) = r sin(ωt). Then, the Lissajous curve of ln(| ie(t) |) and v(t) moves in a bounded
region. Observe that the Lissajous curves shown in Fig. 13(c) are very similar to the experimentally
measured Lissajous curve (plotted on a semi-log graph) shown in [12]. We conclude as follows:

Since W (φ, 0) = 0, the current i(t) = W
(
φ(t), v(t)

)
= 0 when v(t) = 0. This

means that the Lissajous curve of i(t) and v(t) on a linear-scale graph passes
through the origin and is pinched at the origin as shown in Fig. 13(a).

The voltage-controlled 2-terminal device (85) has the non-volatility property, that is, φ(t)

does not change during the period when v(t) = 0, since dφ

dt
= 0 for this period.
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• Example 13. voltage-controlled 2-terminal device
Consider next the voltage-controlled 2-terminal device defined by

voltage-controlled 2-terminal device

i = W (φ, v),

dφ

dt
= v.

 (89)

Consider the case where W (φ, v) is defined by

Wa(φ, v) = WA −WB ,

Wb(φ, v) = WA +WC ,

Wc(φ, v) = −WA +WB ,

Wd(φ, v) = −WA −WC ,

We(φ, v) = WA +WB ,

Wf (φ, v) = WA −WC ,

Wg(φ, v) = −WA −WB ,

Wh(φ, v) = −WA +WC ,



(90)

where
WA(φ, v) ≜ u(| φ | −0.5) u(| v | −0.5) u(v),

WB(φ, v) ≜ u(| φ | −0.5) u(| v | −0.5) u(−v),

WC(φ, v) ≜ {u(| φ | −0.5)− 1} u(| v | −0.5) u(−v),

 (91)

and u(·) is the unit step function. Similarly, we consider the case where W (φ, v) is defined by

Wi(φ, v) = WD −WB ,

Wj(φ, v) = WD +WC ,

Wk(φ, v) = −WD +WB ,

Wl(φ, v) = −WD −WC ,

Wm(φ, v) = WD +WB ,

Wn(φ, v) = WD −WC ,

Wo(φ, v) = −WD −WB ,

Wp(φ, v) = −WD +WC ,



(92)

where
WD(φ, v) ≜ −

{
u(| φ | −0.5) − 1

}
u
(
| v | −0.5

)
u(v). (93)
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We also consider the case where W (φ, v) is defined by

Wq(φ, v) = u(φ− 1) u(v − 0.5),

Wr(φ, v) = u(φ− 1) u(−v − 0.5),

Ws(φ, v) = −u(φ− 1) u(−v − 0.5),

Wt(φ, v) = −u(φ− 1) u(v − 0.5),

Wu(φ, v) = −
{
u(φ− 0.5) − 1

}
u
(
v − 0.5

)
,

Wv(φ, v) = −
{
u(φ− 0.5) − 1

}
u
(
− v − 0.5

)
,

Ww(φ, v) =
{
u(φ− 0.5) − 1

}
u
(
− v − 0.5

)
,

Wx(φ, v) =
{
u(φ− 0.5) − 1

}
u
(
v − 0.5

)
.



(94)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops
shown in Figs. 14-16.
Observe that the different combinations are possible depending on whether the direction of the Lissajous
curve is clockwise or counterclockwise and in which quadrant the Lissajous curve is located, as shown in
Figs. 14-15. Observe also that the Lissajous curves shown in Fig. 16 have only one rectangle (another
rectangle is squashed into a line segment) and the direction of the Lissajous curves is either clockwise
or counterclockwise. By adding a resistor (10Ω) in parallel to the 2-terminal device, we can check
the rotation of the line segment part, since the Lissajous curve turns into one closed curve without a
squashed line segment as shown in Fig. 17(b).
We next consider the case where W (φ, v) is defined by

Wy(φ, v) = Wf (φ, v) + 0.1 | v |,

Wz(φ, v) =
{
| 1.1− u(φ− 1) | + 5 u

(
| v | −8

)}
| v | .

(95)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t) (on a linear-scale graph and a semi-log
graph), we obtain the interesting curve shown in Fig. 18. This Lissajous curve on a semi-log graph is
similar to the experimentally measured one shown in [13]. However, the path direction of the Lissajous
curve shown in Fig. 18(d) is different from that of [13].
In order to get the Lissajous curve of [13], we consider a slightly more complex function W (φ, v)
defined by

Wα(φ, v) = u
(
1− | v |

)
| v | Wβ(φ, v) + 0.3 | v | +u

(
| v | −1.7

)
, (96)

where
Wβ(φ, v) =

{
−u(| φ | −0.5) − 1

}
u(v) + u

(
| φ | −0.5

)
u(−v). (97)

Let us apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given by
φ(0) = 0. By plotting the Lissajous curve of i(t) and v(t) (on a linear-scale graph and a semi-log
graph), we obtain the curves shown in Fig. 19. The Lissajous curve on a semi-log graph is similar to
the experimentally measured ones shown in [13]. We conclude as follows:

Since all Wi(φ, 0) are equal to zero, the current i(t) = Wi

(
φ(t), v(t)

)
= 0 when v(t) = 0.

This means that the Lissajous curves of i(t) and v(t) on a linear-scale graph pass through
the origin and are pinched at the origin as shown in Figs. 14-19, although some portion of
the Lissajous curve is squashed into a line segment.
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The voltage-controlled 2-terminal device (89) has the non-volatility property, that is, φ(t)

does not change during the period when v(t) = 0 since dφ

dt
= 0 for this period.

5 Application of 2-terminal devices and Generic Memristors
In the previous sections we assumed that no state change occurs after setting v = 0, i.e., g̃(x, 0) = 0 for all
x in the case of the generalized 2-terminal devices. If we remove this condition, the state x(t) can exhibit
much more interesting behavior. We will show some examples.

5.1 Discrete non-volatile memories
Consider the generalized voltage-controlled 2-terminal devices defined by

generalized voltage-controlled 2-terminal device

i = W (x, v),

dx

dt
= g̃(x, v),

 (98)

where i, v, and x denote the terminal current, the terminal voltage, and the state variable of the 2-terminal
device, G(·) and g̃(·) are scalar-valued functions.

Let us first assume that the generalized voltage-controlled 2-terminal device (98) is driven by by the
voltage source vs(t), where the output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) =
v(t) = 0 for t ≥ t0.

• Example 1. non-volatile binary memory
Consider the case where g̃(x, v) is given by [1]

g̃(x, v) = x− x3 − h(v), (99)

which does not satisfy g̃(x, 0) = 0 for all x and the scalar function h(v) is defined by

h(v) = v − 0.5(| v + 1 | − | v − 1 |). (100)

Let us drive the generalized voltage-controlled 2-terminal device (98) by the voltage source vs(t), where
the output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0. Then
the state equation for v = 0 is given by

dx

dt
= g̃(x, 0) = x− x3 = −x(x− 1)(x+ 1). (101)

It has two asymptotically stable equilibrium points p1 and p−1, and it also has one unstable equilibrium
point p0. Here, p1 is situated at x = 1, p−1 is situated at x = −1, and p0 is situated at x = 0. Thus
we get the following relation:
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■ state of x(t) for t ≫ t0

• If x(t0) > 0, then x(t) converges to the asymptotically stable equilibrium point p1,
that is, x(t) ≈ 1 for t ≫ t0.
• If x(t0) < 0, then x(t) converges to the asymptotically stable equilibrium point p−1,
that is, x(t) ≈ −1 for t ≫ t0.
• If x(t0) = 0, then x(t) = 0, but this point (origin) is unstable.

Next, assume that W (x, v) is defined by

W (x, v) = sgn(xv). (102)

Then i(t) = W (x(t), v(t)) = sgn
(
v(t)x(t)

)
. Since x(t) converges to one of the asymptotically stable

points or remains at one of the equilibrium points, there exists a real number M > 0 such that
| x(t) |≤ M for t ≥ t0. Thus, we obtain

i(t) = W (x(t), v(t)) = sgn
(
v(t)x(t)

)
= 0 when v(t) = 0. (103)

To observe the state x(t), we inject a single voltage pulse vs(t) consisting of sufficiently small amplitude
a > 0 and sufficiently small width w > 0 at t = t1 ≫ t0. Then the state equation for v = a is given by

state equation

dx

dt
= g̃(x, 0) = x− x3, (104)

where h(a) = 0 and t1 ≤ t ≤ t1 + w ≜ t2. Since Eqs. (101) and (104) are identical, Eq.(104) has the
same equilibrium points as those of Eq. (101), that is, two asymptotically stable equilibrium points p1
and p−1 and one unstable equilibrium point p0. Thus the behavior of the state x(t) is given by

if x(t0) > 0 then x(t) tends to 1,

if x(t0) = 0 then x(t) = 0,

if x(t0) < 0 then x(t) tends to − 1,

 (105)

where t0 ≪ t1 ≤ t ≤ t2. However, the origin x(t) = 0 is unstable. Thus the current i(t) is given by

i(t) = sgn
(
v(t)x(t)

)
=


1 if x(t0) > 0,

0 if x(t0) = 0,

−1 if x(t0) < 0,

(106)

where vs(t) = v(t) = a > 0 for t1 ≤ t ≤ t2. Thus, the observable current i(t) for the injected single
pulse is described by

observable currents for the injected single pulse

i(t) = sgn
(
v(t)x(t)

)
= ±1, (107)
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where t1 ≤ t ≤ t2. Therefore, the generalized voltage-controlled 2-terminal device (98) is available for
the non-volatile binary memory (see [1], for more details). The results of the computer simulations are
shown in Fig. 20, where the injected single pulse is defined by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise
vs(t) = 0 and x(0) = 2.7. The parameters are given by

t0 = 0, t1 = 5.0, t2 = 5.3, a = 0.1, w = 0.3. (108)

If x(0) ̸= 0, then we can observe that the current i(t) is equal to 1 or −1 during the period when
the injected single pulse is applied to the 2-terminal device (98). Furthermore, the state x(t) is
approximately equal to the value x(5.3) even after the pulse signal is turned off. Observe also that the
injected single pulse does not affect the behavior of x(t).
Next, we change the state x(t) by applying the second single voltage pulse, which is defined by vs(t) = 3
for 8 ≤ t ≤ 9. The results of the computer simulations are shown in Fig. 21. Note that the state x(t)
tends to 1 until t = 9, and then x(t) tends to −1 by injecting the second single pulse. Also, the current
i(t) behaves differently for the first and second pulses.
Finally, we apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given
by x(0) = 2.7. By plotting the Lissajous curve of i(t) and v(t), we obtain the curve shown in Fig.
22(a). Since the sign function sgn(z) used in Eq. (102) is discontinuous at z = 0, the Lissajous curve
is not pinched at the origin. If we approximate the sign function by the continuous function tanh(kz)
for k ≫ 1, then we can observe the pinched hysteresis loop as shown in Fig. 22(b) (k = 10). This does
not mean that the generalized voltage-controlled 2-terminal device (98) in this example has the normal
non-volatile property. However, it does have the non-volatile binary memory property as described
above.

• Example 2. non-volatile multiple-valued memory
Consider the case where g̃(x, v) is given by

g̃(x, v) = sin(πx)− h(v), (109)

which does not satisfy g̃(x, 0) = 0 for all x.
Let us drive the generalized voltage-controlled 2-terminal device (98) by the voltage source vs(t), where
the output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0. Then
the state equation for v = 0 is given by

dx

dt
= g̃(x, 0) = sin(πx), (110)

and it has multiple asymptotically stable equilibrium points at x = ±(2n+1) and unstable equilibrium
points at x = ±2n, where n = 0, 1, 2, · · · .
We assume next that W (x, v) is defined by

W (x, v) = sgn(v)x. (111)

Since x(t) converges to one of the asymptotically stable points or remains at one of the equilibrium
points, there is a real number M > 0 such that | x(t) |≤ M for t ≥ t1. Thus, we obtain

i(t) = W (x(t), v(t)) = 0 when v(t) = 0. (112)
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To observe the state x(t), we inject a single voltage pulse vs(t) consisting of sufficiently small amplitude
a > 0 and sufficiently small width w > 0 at t = t1 ≫ t0. Then the state equation is given by

state equation

dx

dt
= g̃(x, a) = sin(πx), (113)

where h(a) = 0 and t1 ≤ t ≤ t1 + w ≜ t2. Since Eqs. (110) and (110) are identical, Eq. (113) has the
same equilibrium points as those of Eq. (110), that is, the asymptotically stable equilibrium points at
±(2n + 1) and the unstable equilibrium point at ±2n, where n = 0, 1, 2, · · · . Thus the trajectory
tends to one of the above asymptotically stable equilibrium points for t1 ≤ t ≤ t1 + w, assuming that
the initial state x(t0) is not at the equilibrium point.
Since v(t) = a > 0 for t1 ≤ t ≤ t2, the observable current i(t) is given by

observable current for the injected single pulse

i(t) = W (x(t), v(t)) = sgn(a)x(t) = x(t) ≈ ±(2n+ 1), (114)

where t1 ≤ t ≤ t2, and n = 0, 1, 2, · · · . Therefore, the generalized voltage-controlled 2-terminal device
(98) is available for the non-volatile multiple-valued memory, which is capable of holding m-valued logic
values, where m is three or more.
The results of the computer simulations are shown in Fig. 23, where the injected single pulse is defined
by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise vs(t) = 0. The parameters are given by

t0 = 0, t1 = 5.0, t2 = 5.3, a = 0.1, w = 0.3. (115)

Observe that the current i(t) takes approximately odd integer values during the period when the
injected single pulse (plotted in red) is applied to the 2-terminal device (98). Furthermore, the state
x(t) is approximately equal to the value x(5.3) even after the pulse signal is turned off. We can change
the state x(t) by applying the second single voltage pulse as stated in Example 1.
Finally, we apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given
by x(0) = 6.2. By plotting the Lissajous curve of i(t) and v(t), we obtain the curve shown in Fig.
24(a). Since the sign function sgn(z) used in Eq. (111) is discontinuous at z = 0, the Lissajous curve
is not pinched at the origin. If we approximate the sign function by the continuous function tanh(kz)
for k ≫ 1, then we can observe the pinched hysteresis loop as shown in Fig. 24(b) (k = 10). This
does not mean that the generalized voltage-controlled 2-terminal device (98) in this example has the
normal non-volatile property. It does, however, have the non-volatile multi-value memory property as
described above.

• Example 3. absolute value limitation
Consider the case where g̃(x, v) is given by

g̃(x, v) = m(x)− h(v) (116)

where

m(x) = −x+ 0.5
{
| x+ 1 | − | x− 1 |

}
=

 −x+ 1, if 1 < x,
0, if | x |≤ 1,

−x− 1, if x < −1,
(117)
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Note that the function g̃(x, v) does not satisfy g̃(x, 0) = 0 for all x.
Let us drive the generalized voltage-controlled 2-terminal device (98) by the voltage source vs(t).
Assume that the output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0
for t ≥ t0. Then the state equation for v = 0 is given by

dx

dt
= g̃(x, 0) =

 −x+ 1, if 1 < x,
0, if − 1 | x |≤ 1,

−x− 1, if x < −1.
(118)

Thus the state x(t) for t ≥ t0 is given by

• If x(t0) > 1, then x(t) converges to the point x = 1 as t tends to the infinity.
• If | x(t0) |≤ 1, then x(t) = x(t0).
• If x(t0) < −1, then x(t) converges to the point x = −1 as t tends to the infinity.

Assumed next that W (x, v) is defined by

W (x, v) = sgn(v)x. (119)

Since x(t) converges to one of the asymptotically stable points or remains x(t0), there is a real number
M > 0 such that | x(t) |≤ M for t ≥ t0. Thus, we obtain

i(t) = W (x(t), v(t)) = sgn
(
v(t)

)
x(t) = 0 when v(t) = 0.

To observe the state x(t), we inject a single voltage pulse vs(t) consisting of sufficiently small amplitude
a > 0 and sufficiently small width w > 0 at t = t1 ≫ t0. Then the state equation is given by

state equation

dx

dt
= g̃(x, a) =


−x+ 1, if x > 1,

0, if | x |≤ 1,

−x− 1, if x < −1,

(120)

where h(a) = 0 and 0 < aw ≪ 1 and t0 ≪ t1 ≤ t ≤ t1 + w ≜ t2.
Since Eqs. (118) and (120) are identical, the behavior of Eq. (120) is described by

• If x(t0) > 1, then x(t) tends to the point x = 1.
• If | x(t0) |≤ 1, then x(t) = x(t0).
• If x(t0) < −1, then x(t) tends to the point x = −1.

Here, t1 ≤ t ≤ t1 + w and aw ≪ 1. Thus x(t) is approximated by

x(t) ≈


1 if x(t0) > 1,

x(t0) if | x(t0) |≤ 1,

−1 if x(t0) < −1.

(121)
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The observable current i(t) is approximated by

observable approximated current for the injected single pulse

i(t) = W (x(t), v(t)) = sgn(v(t))x(t) ≈


1 if x(t0) > 1,

x(t0) if | x(t0) |≤ 1,

−1 if x(t0) < −1,

(122)

where v(t) = a for t0 ≪ t1 ≤ t ≤ t2. Thus, the generalized voltage-controlled 2-terminal device (98)
has the absolute value limitation property for the state x(t).
The results of the computer simulations are shown in Fig. 25, where the injected single pulse is defined
by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise vs(t) = 0. The other parameters are given by

t0 = 0, t1 = 5.0, t2 = 5.3, a = 0.1, w = 0.3. (123)

Observe that if x(0) > 1, then i(t) is approximately equal to 1 during the period when the injected
single pulse (plotted in red) is applied. Observe also that if | x(0) |≤ 1, then i(t) = x(0) during
the period when the injected single pulse (plotted in red) is applied. Furthermore, the state x(t) is
approximately equal to the value x(5.3) even after the pulse signal is turned off. We can change the
state x(t) by applying the second single voltage pulse as shown in Example 1.
Finally, we apply a sinusoidal voltage source vs(t) = r sin(ωt) for t ≥ 0. The initial condition is given
by x(0) = 2.7. By plotting the Lissajous curve of i(t) and v(t), we obtain the curve shown in Fig.
24(a). Since the sign function sgn(z) used in Eq. (119) is discontinuous at z = 0, the Lissajous curve
is not pinched at the origin. If we approximate the sign function by the continuous function tanh(kz)
for k ≫ 1, then we can observe the pinched hysteresis loop as shown in Fig. 26(b) (k = 10). This does
not mean that the generalized voltage-controlled 2-terminal device (98) in this example has the normal
non-volatile property. However, it does have the absolute value limitation property as mentioned above.

The generalized 2-terminal devices have the following properties:

• discrete non-volatility property

• absolute value limitation property

We suppose that generalized 2-terminal device (98) has much more interesting properties, if there is no
constraint on g̃(x, v).

5.2 Two element oscillators
Consider next the voltage-controlled generic memristor defined by

voltage-controlled generic memristor

i = G̃(x)v,

dx

dt
= g̃(x, v),

 (124)

27



where i, v, and x = (x1, x2, · · · , xn) ∈ Rn indicate the terminal current, the terminal voltage, and
the state variables of the memristor, respectively, G̃(·) is a continuous scalar-valued function, and g̃ =
(g̃1, g̃2, · · · , g̃n) : Rn → Rn.

• Example A. Two-element Duffing oscillator model
Assume that

g̃(x, v) =
(
g1(x, v), g2(x, v)

)
= (z, y − y3 − γz + v), (125)

where x = (y, z) and γ > 0. Note that g̃(x, v) does not satisfy g̃(x, 0) = 0 for all x.
Let us drive the voltage-controlled generic memristor (124) by the voltage source vs(t), where the
output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0. Then
the state equation v = 0 is described by is given by

dy

dt
= z,

dz

dt
= y − y3 − γz.

 (126)

It has two asymptotically stable equilibrium points at (y, z) = (±1, 0) and one unstable equilibrium
point at the origin. Thus the trajectory (y(t), z(t)) tends to one of the asymptotically stable equilibrium
points, if the initial point satisfies (x(t0), y(t0)) ̸= (0, 0).
Let us drive the voltage-controlled generic memristor (124) by a cosine wave vs(t) = r cos(ωt) for t ≥ t0.
Then the state equation is equivalent to the Duffing equation:

Duffing equation

dy

dt
= z,

dz

dt
= y − y3 − γz + r cos(ωt).

 (127)

Equation (127) exhibits chaotic behavior if we set γ = 0.2, r = 0.3, and ω = 1.
Let us define G̃(x) by

G̃(x) = G̃(y, z) = y2, (128)

for the passivity of the memristor. Then i(t) = G̃(x(t))v(t) = y(t)2v(t). The observable current
i(t) = y(t)2v(t) is also chaotic.

When the trajectory moves in a bounded region of the (y, z)-plane, there
is a real number M > 0 such that | y(t) |≤ M for t ≥ t0.

Then, we obtain

i(t) = y(t)2v(t) = 0 when v(t) = 0.
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Furthermore, the instantaneous power dissipated by the voltage-controlled generic memristor is given
by

p(t) = v(t)i(t) = v(t)× G̃(x(t))v(t) = y(t)2v(t)2 ≥ 0. (129)

The energy flow into the memristor from time 0 to t satisfies∫ t

0

p(τ)dτ ≥ 0, (130)

for all t, and this memristor is passive.

The state equation of the voltage-controlled generic memristor (124) can
be recast into the Duffing equation by the cosine wave drive signal.

The Duffing oscillator can be realized by the only two elements: the
passive voltage-controlled generic memristor and the cosine wave source.

We show the chaotic trajectory of Eq. (127) in Fig. 27(left). By plotting the Lissajous curve of i(t)
and v(t), we obtain the pinched hysteresis loops shown in Fig. 27(right). The initial condition is given
by y(0) = z(0) = 0, and the parameters are given by γ = 0.2, r = 0.3, and ω = 1.
It is difficult to observe the internal state (y(t), z(t)) with the observable current i(t) and the cosine
wave vs(t) = r cos(ωt). Therefore, we reconstruct the chaotic attractor by using the current i(t). That
is, we plot the trajectories of

(
i(t), i′(t)

)
and

(
i(t), i(t − τ)

)
on the two-dimensional plane, where

i′(t) ≜ di(t)/dt and τ = 0.7. The results of the computer simulations are shown in Fig. 28. Observe
that the reconstructed attractors are also chaotic, but the shapes of the attractors are slightly different
from that shown in Fig. 27(a). For the purpose of comparison, we also reconstruct the chaotic attractor
using the internal state y(t). The results of the computer simulations are shown in Fig. 29. The shape
of the attractor shown in Fig. 29(a) is very similar to the original chaotic attractor shown in Fig.
27(a).

• Example B. Two-element Josephson junction circuit model
Assume that

g̃(x, v) =
(
g1(x, v), g2(x, v)

)
= (z, − sin(y)− βz + v), (131)

where x = (y, z) and β > 0. Note that g̃(x, v) does not satisfy g̃(x, 0) = 0 for all x. Let us drive the
voltage-controlled generic memristor (124) by the voltage source vs(t), where the output of the voltage
source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0. Then the state equation v = 0
is equivalent to the circuit model of Josephson junction [15]

circuit model of Josephson junction

dy

dt
= z,

dz

dt
= − sin(y)− βz.

 (132)
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Equation (132) has multiple asymptotically stable equilibrium points at (y, z) = (±2nπ, 0) and
unstable equilibrium points at (y, z) = (±(2n + 1)π, 0), where n = 0, 1, 2, · · · . The trajectory
(y(t), z(t)) tends to one of the asymptotically stable equilibrium points, if the initial point is not
initially situated at the equilibrium point.
Let us drive the voltage-controlled generic memristor (124) by a voltage source vs(t) = A sin(ωt) +D
for t ≥ t0.

forced circuit model of Josephson junction

dy

dt
= z,

dz

dt
= − sin(y)− βz +A sin(ωt) +D.

 (133)

Then Eq. (133) exhibits chaotic behavior, if we set β = 0.3, A = 0.8, ω = 0.5, and D = 0.28. Note
that this equation is invariant under the following transformation:

y → y + 2π. (134)

Let us define G̃(x) by

G̃(x) = G̃(y, z) = z2. (135)

Then i(t) = G̃(x(t))v(t) = z(t)2v(t). The observable current i(t) = z(t)2v(t) is also chaotic, and the
voltage-controlled generic memristor (124) is passive.

When the trajectory moves in a bounded region of the (y, z)-plane, there
is a real number M > 0 such that | y(t) |≤ M .

Then, we obtain

i(t) = z(t)2v(t) = 0 when v(t) = 0.

We conclude the following:

■ The circuit model of Josephson junction is realized by only one passive element,
that is, it is realized by the passive voltage-controlled generic memristor.
■ The forced circuit model of Josephson junction can be realized by the two elements:
the passive voltage-controlled generic memristor and the sine wave source.

We show the chaotic trajectory of Eq. (133) in Fig. 30(a). Since Eq. (133) is invariant under the
transformation: y → y + 2π, we plotted the trajectory on the

(
Mod[y, 2π], z

)
-plane. By plotting the

Lissajous curve of i(t) and v(t), we obtain the pinched hysteresis loops shown in Fig. 30(b). The initial
condition is given by y(0) = z(0) = 0, and the parameters are given by β = 0.3, A = 0.8, ω = 0.5, and
D = 0.28.
Finally, we reconstruct the chaotic attractor by plotting the trajectories of

(
i(t), i′(t)

)
and

(
i(t), i(t−

τ)
)

on the two-dimensional plane, where τ = 1. The results of the computer simulations are shown in
Fig. 31. Observe that the reconstructed chaotic attractors are chaotic, but the shapes of the attractors
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are somewhat different from the original chaotic attractor shown in Fig. 30(a). For the purpose of
comparison, we also reconstruct the chaotic attractor using the internal state z(t). The results of the
computer simulations are shown in Fig. 32. The shape of the attractor shown in Fig. 32(a) is similar
to that shown in Fig. 27(a).

• Example C. Two-element Mathieu equation model
Assume that

g̃(x, v) =
(
g1(x, v), g2(x, v)

)
= (z, (v − a)y), (136)

where x = (y, z) and a > 0. Note that g̃(x, v) does not satisfy g̃(x, 0) = 0 for all x.
Let us drive the voltage-controlled generic memristor (124) by the voltage source vs(t), where the
output of the voltage source vs(t) is set to zero for t ≥ t0, that is, vs(t) = v(t) = 0 for t ≥ t0. Then
the state equation v = 0 is given by

dy

dt
= z,

dz

dt
= −ay.

 (137)

It has one equilibrium points at the origin, which is called a center.
Let us drive the voltage-controlled generic memristor (124) by a voltage source vs(t) = 2b cos(2t) for
t ≥ t0, that is, its dynamics is given by

dy

dt
= z,

dz

dt
= −ay + 2b cos(2t).

 (138)

where b is the parameter.
Then Eq. (124) exhibits a periodic oscillation, if we set a = 8 and b = 5. Furthermore, if we define
G̃(x) by

G̃(x) = G̃(y, z) = y2, (139)

then i(t) = G̃(x(t))v(t) = y(t)2v(t) exhibits a periodic waveform and the voltage-controlled generic
memristor (124) becomes passive.

When the trajectory moves in a bounded region of the (y, z)-plane, that
is, there is a real number M > 0 such that | y(t) |≤ M .

Then we obtain

i(t) = y(t)2v(t) = 0 when v(t) = 0.

Thus, we conclude the following:

31



The Mathieu equation can be realized by the only two elements: the
passive voltage-controlled generic memristor and the cosine wave source.

We show the trajectory of Eq. (138) in Fig. 33(left). By plotting the Lissajous curve of i(t) and
v(t), we obtain the pinched hysteresis loops shown in Fig. 33(right). The initial condition is given by
y(0) = 0.1 and z(0) = 0 and the parameters are given by a = 8 and b = 5.
Finally, we reconstruct the trajectory by plotting the trajectories of

(
i(t), i′(t)

)
and

(
i(t), i(t − τ)

)
on the two-dimensional plane, where τ = 0.1. The results of the computer simulations are shown in
Fig. 34. We can see that the internal state is oscillating, but the reconstructed trajectory is somewhat
different from that shown in Fig. 33(a). For the purpose of comparison, we also reconstruct the
trajectory using the internal state y(t). The results of the computer simulations are shown in Fig. 35.
The shape of the trajectory shown in Fig. 35(a) is similar to that shown in Fig. 33(a).

We conclude as follows:

• We can observe the internal state through the reconstruction method, although it is not
sufficient.
• We suppose that the generic memristor (98) has much more interesting properties when
there is no constraint on g̃(x, v).

6 Conclusion
We have defined the 2-terminal devices, which do not belong to the above four classes of memristors, but have
the same non-volatile property as the ideal memristor. We have shown that the above 2-terminal devices
and the ideal generic memristors can have interesting applications: non-volatile multi-valued memories and
two-element chaotic oscillators, if we remove the condition that no state change occurs after the zero driving
signal. We have also shown that the 2-terminal devices and the four classes of memristors can exhibit a
wide variety of pinched hysteresis loops similar to those measured experimentally. In addition, a variety
of Lissajous curves are possible, depending on whether the direction of the Lissajous curve is clockwise or
counterclockwise, and which quadrants the Lissajous curve passes through. We believe that many physical
systems will be realized or simulated by the four classes of memristors or 2-terminal devices defined in this
paper. It is also likely that simpler memristors or 2-terminal devices exist with qualitatively equivalent
pinched hysteresis curves.
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A Classification of Memristors
A voltage-controlled memristor can be classified into four classes [2]:

• voltage-controlled ideal memristor

i = G(φ)v,

dφ

dt
= v.

 (140)

• voltage-controlled ideal generic memristor

i = G(x)v,

dx

dt
= ĝ(x)v.

 (141)

• voltage-controlled generic memristor

i = G̃(x)v,

dx

dt
= g̃(x, v).

 (142)

• voltage-controlled extended memristor

i = Ĝ(x, v)v,

| Ĝ(x, 0) |< ∞,

dx

dt
= g̃(x, v).

 (143)

Here, i, v, φ, and x indicate the terminal current, the terminal voltage, the flux, and the state variable
of the voltage-controlled memristor, respectively, G(·), G̃(·), Ĝ(·), and ĝ(·) are continuous scalar-valued
functions, x = (x1, x2, · · · , xn) ∈ Rn, and g̃ = (g̃1, g̃2, · · · , g̃n) : Rn → Rn.

Similarly, a current-controlled memristor can be classified into four classes [2]:

• current-controlled ideal memristor

v = R(q)i,

dq

dt
= i.

 (144)

• current-controlled ideal generic memristor

v = R(x)i,

dx

dt
= f̂(x)i.

 (145)
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• current-controlled generic memristor

v = R̃(x)i,

dx

dt
= f̃(x, i).

 (146)

• current-controlled extended memristor

v = R̂(x, i)i,

| R̂(x, 0) |< ∞,

dx

dt
= f̃(x, i).

 (147)

Here, R(·), R̃(·), R̂(·), and f̂(·) are continuous scalar-valued functions, x = (x1, x2, · · · , xn) ∈ Rn,
and f̃ = (f̃1, f̃2, · · · , f̃n) : Rn → Rn.
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Figure 1: Constitutive relation: q = g(φ) = tanh(φ).

Figure 2: Memductance: G(φ) =
(
1− tanh2(φ)

)
.

Figure 3: Voltage-controlled ideal memristor driven by the voltage source vs(t).
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(a) Waveform of vs(t).

(b) Waveform of φ(t).

(c) Waveform of q(t).

(d) Pinched hysteresis loop.

Figure 4: Non-volatile property of the voltage-controlled ideal memristor (5). (a) Waveform of the voltage
source vs(t). (b)-(c) The values of the flux φ(t) and the charge q(t) does not change (plotted in red) during
the period when vs(t) = 0. (d) The flux φ(t) and the charge q(t) remain unchanged as shown in Figs. 4
(b) and (c) when the Lissajous curve of vs(t) and i(t) remains at the origin (plotted in red). Note that the
response during the period when vs(t) = 0 is the portion of the waveform and trajectory colored in red.

37



(a) Waveform of vs(t).

(b) Waveform of i(t).

(c) Pinched hysteresis loop.

Figure 5: Waveforms of vs(t) and i(t) and Lissajous curve of vs(t) and i(t). (a) Waveform of the voltage
source vs(t). (b) Waveform of the current i(t), which becomes zero during the period when vs(t) = 0. (c)
Lissajous curve of vs(t) and i(t) is pinched at the origin. Note that the response during the period when
vs(t) = 0 is the portion of the waveform and trajectory colored in red.
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(a) r = 1, ω = 10. (b) r = 1, ω = 3. (c) r = 1, ω = 1,

(d) r = 2, ω = 1. (e) r = 3, ω = 1. (f) r = 8, ω = 1.

(g) r = 20, ω = 1. (h) r = 50, ω = 0.5. (i) r = 10, ω = 1, d = 0.03.

(j) r = 10, ω = 1, d = 0.5. (k) r = 20, ω = 1, a = 0.2. (l) r = 0.5, ω = 0.2, a = 4.

Figure 6: (a)-(h) Lissajous curves of Eq. (57). (i)-(j) Lissajous curves of Eq. (60). (k)-(l) Lissajous curves of
Eq. (62). The Lissajous curve is plotted in purple (resp., orange) when the direction of the curve is clockwise
(resp., counterclockwise). The Lissajous curve in Fig. 6(f) is similar to the pinched hysteresis loop shown in
[8].
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(m) r = 1, ω = 0.2, b = 0. (n) r = 0.5, ω = 0.2, b = −0.2. (o) r = 0.5, ω = 0.2, b = 0.2.

(p) r = 1.2, ω = 1. (q) r = 1, ω = 0.5, (r) r = 1, ω = 0.35.

(s) r = 1, ω = 0.2. (t) r = 1.5, ω = 1, c = 7. (u) r = 1.5, ω = 1, c = 2.

Figure 7: (m)-(o) Lissajous curves of Eq. (63). (p)-(s) Lissajous curves of Eq. (64). (t)-(u) Lissajous curves
of Eq. (67). The Lissajous curve is plotted in purple (resp., orange) when the direction of the curve is
clockwise (resp., counterclockwise). Note that a part of the Lissajous curves in Fig. 7(m)-(o) are squashed
into a line segment. The Lissajous curve in Fig. 7(p) is very similar to the experimentally measured pinched
hysteresis loop shown in [9].
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(a) W1(φ, v), r = 1, ω = 1. (b) W2(φ, v), r = 1, ω = 1. (c) W3(φ, v), r = 1, ω = 1.

(c) W4(φ, v), r = 1, ω = 1. (d) W5(φ, v), r = 1, ω = 1. (e) W6(φ, v), r = 1, ω = 1.

(f) W7(φ, v), r = 1, ω = 1. (g) W8(φ, v), r = 1, ω = 1. (h) W9(φ, v), r = 3, ω = 1.

(i) W9(φ, v), r = 1, ω = 2. (j) W10(φ, v), r = 1, ω = 1. (k) W11(φ, v), r = 1, ω = 1.

Figure 8: Lissajous curves of Eq. (70). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Note that a part of the Lissajous curves in Fig
8(d)-(g) are squashed into a line segment.
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(a) G1(φ, v), r = 2, ω = 1. (b) G2(φ, v), r = 2, ω = 1. (c) G3(φ, v), r = 3, ω = 1.

(d) G4(φ, v), r = 2, ω = 1. (e) G5(φ, v), r = 2, ω = 1. (f) G6(φ, v), r = 3, ω = 1.

(g) G7(φ, v), r = 2, ω = 1. (h) G8(φ, v), r = 2, ω = 1. (i) G9(φ, v), r = 3, ω = 1.

Figure 9: Lissajous curves of Eq. (74). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Observe the difference in the two turning points
of the Lissajous curves. The Lissajous curve in Fig. 9(c) is similar to the pinched hysteresis loop shown in
[14]. Furthermore, the Lissajous curve in Fig. 9(i) is similar to the pinched hysteresis loop (shoelace plot)
shown in [2].

42



(a) r = 3, ω = 1, d = 0. (b) r = 3, ω = 1, d = 0.5. (c) r = 3, ω = 1, d = 0.75.

(d) r = 3, ω = 1, d = 1. (e) r = 3, ω = 1, d = 1.5. (f) r = 3, ω = 1, d = 2.

Figure 10: Lissajous curves of Eq. (76). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). As the parameter d increases, the newly created
triangle becomes larger. Furthermore, a part of the Lissajous curves are squashed into a line segment. Those
Lissajous curves are very similar to the experimentally measured pinched hysteresis loops shown in [10].
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(a) W1(φ, v), r = 1, ω = 1. (b) W1(φ, v), r = 3, ω = 1. (c) W2(φ, v), r = 1.2, ω = 1.

(d) W3(φ, v), r = 1, ω = 1. (e) W3(φ, v), r = 3, ω = 1. (f) W4(φ, v), r = 1.2, ω = 1.

Figure 11: Lissajous curves of Eq. (79). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Note that the Lissajous curve in the third quad-
rant is squashed into a line segment. The Lissajous curve in Fig. 11(a) is resembled to the pinched hysteresis
loops shown in [8]. Furthermore, the Lissajous curve in Fig. 11(e) is very similar to the experimentally
measured pinched hysteresis loops shown in [10].
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(a) r = 0.1, ω = 0.3. (b) r = 0.1, ω = 0.3.

Figure 12: Lissajous curves of Eq. (83). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Note that the Lissajous curve in Fig. 12(b)
is plotted on a semi-log graph. Those Lissajous curves are very similar to the experimentally measured
Lissajous curves shown in [11].

(a) r = 1, ω = 4. (b) r = 1, ω = 4. (c) r = 1, ω = 4.

Figure 13: Lissajous curves of Eq. (85). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Note that the Lissajous curves in Fig. 13(b),(c)
are plotted on a semi-log graph. Observe that the Lissajous curves in Fig. 13(a), (c) are very similar to the
experimentally measured Lissajous curve (plotted on a linear-scale graph and a semi-log graph) shown in
[12].
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(a) Wa(φ, v), r = 1, ω = 2. (b) Wb(φ, v), r = 1, ω = 2.

(c) Wc(φ, v), r = 1, ω = 1. (d) Wd(φ, v), r = 1, ω = 1.

(e) We(φ, v), r = 1, ω = 2. (f) Wf (φ, v), r = 1, ω = 2.

(g) Wg(φ, v), r = 1, ω = 2. (h) Wh(φ, v), r = 1, ω = 2.

Figure 14: Lissajous curves of Eq. (89), which has two rectangles. The Lissajous curve is plotted in purple
(resp., orange) when the direction of the curve is clockwise (resp., counterclockwise). Observe that the
various combinations are possible, depending on whether the direction of Lissajous curve is clockwise or
counterclockwise and which quadrants the Lissajous curve is situated.
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(i) Wi(φ, v), r = 1, ω = 2. (j) Wj(φ, v), r = 1, ω = 2.

(k) Wk(φ, v), r = 1, ω = 2. (l) Wl(φ, v), r = 1, ω = 2.

(m) Wm(φ, v), r = 1, ω = 1. (n) Wn(φ, v), r = 1, ω = 1.

(o) Wo(φ, v), r = 1, ω = 2. (p) Wp(φ, v), r = 1, ω = 2.

Figure 15: Lissajous curves of Eq. (89), which have two rectangles. The Lissajous curve is plotted in purple
(resp., orange) when the direction of the curve is clockwise (resp., counterclockwise). Observe that the
various combinations are possible, depending on whether the direction of Lissajous curve is clockwise or
counterclockwise and which quadrants the Lissajous curve is situated.
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(q) Wq(φ, v), r = 1, ω = 1. (u) Wu(φ, v), r = 1, ω = 2.

(r) Wr(φ, v), r = 1, ω = 1. (v) Wv(φ, v), r = 1, ω = 2.

(s) Ws(φ, v), r = 1, ω = 1. (w) Ww(φ, v), r = 1, ω = 2.

(t) Wt(φ, v), r = 1, ω = 1. (x) Wx(φ, v), r = 1, ω = 2.

Figure 16: Lissajous curves of Eq. (89), which have one rectangle (another rectangle is squashed into a
line segment). The Lissajous curve is plotted in purple (resp., orange) when the direction of the curve
is clockwise (resp., counterclockwise). Observe that the direction of Lissajous curve is either clockwise or
counterclockwise.

48



(a) Wq(φ, v), r = 1, ω = 1. (b) Wq(φ, v), r1, ω = 1.

Figure 17: Example of the Lissajous curve with one rectangle, which is shown in Fig. 16 (q) (left). By adding
a resistor (10Ω) in parallel to the 2-terminal device (89), we can check the rotation of the line segment part,
since the Lissajous curve turns into one closed curve without a squashed line segment (right).
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(a) Wy(φ, v), r = 1, ω = 2. (b) Wy(φ, v), r = 1, ω = 2.

(c) Wz(φ, v), r = 8.5, ω = 1. (d) Wz(φ, v), r = 8.5, ω = 1.

Figure 18: Lissajous curves of Eq. (89). The Lissajous curve is plotted in purple (resp., orange) when the
direction of the curve is clockwise (resp., counterclockwise). Note that the Lissajous curves in Fig. 18(b),
(d) are plotted on a semi-log graph. They are similar to the experimentally measured ones shown in [13].
However, the path direction of the Lissajous curve in Fig. 18(d) is different from that of [13]

(1) Wα(φ, v), r = 2, ω = 1. (2) Wα(φ, v), r = 2, ω = 1.

Figure 19: Lissajous curves for Eq. (96), which are plotted on a linear-scale graph (left) and a semi-log
graph (right). This Lissajous curve on the semi-log scale graph is similar to the experimentally measured
ones shown in [13].
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(a) Waveform of the voltage source vs(t).

(b) Waveform of x(t) for x(0) = 2.7. (c) Waveform of i(t) for x(0) = 2.7.

(d) Waveform of x(t) for x(0) = −3.1. (e) Waveform of i(t) for x(0) = −3.1.

Figure 20: Waveforms of the voltage source vs(t), the state x(t), and the current i(t) for Eq. (99). The
injected single pulse (plotted in red in Fig. 20(a)) is defined by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise vs(t) = 0.
Observe that the current i(t) is equal to 1 or −1 during the period when the injected single pulse is applied
to the 2-terminal device (98), that is, if x(0) = 2.7, then i(t) = 1 (Fig. 20(b), (c)), and if x(0) = −3.1, then
i(t) = −1 (Fig. 20(d), (e)), where 5 ≤ t ≤ 5.3. Furthermore, the state x(t) is approximately equal to the
value x(5.3) even after the pulse signal is turned off. Observe also that the injected single pulse does not
affect the behavior of x(t). Note that the portion of the waveform colored in red corresponds to the response
of the injected single pulse.
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(a) Waveform of the voltage source vs(t).

(b) Waveform of the state x(t).

(c) Waveform of the current i(t).

Figure 21: Waveforms of the voltage source vs(t), the state x(t), and the current i(t). (a) The first pulse
(plotted in red) is given by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, which is used to observe the state x(t) (see Fig. 20).
The second pulse (plotted in orange) is given by vs(t) = 3 for 8 ≤ t ≤ 9, which is used to change the state
of x(t). (b) The state x(t) tends to 1 until t = 9, and then x(t) tends to −1 by injecting the second single
pulse. It exhibits the different behavior for the first and second pulses. (c) The current i(t) also exhibits the
different behavior for the first and second pulses. Note that the red (resp., orange) portion of the waveform
corresponds to the response of the first (resp., second) injected single pulse.
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(a) W (x, v) = sgn(xv), r = 2, ω = 1. (b) W (x, v) = tanh(10xv), r = 2, ω = 1.

Figure 22: Lissajous curves of Eq. (98), where the transient curve is colored in red (right). (a) The Lissajous
curve is not pinched at the origin. (b) The Lissajous curve shows the pinched hysteresis loop (colored in
blue).
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(a) Waveform of the voltage source vs(t).

(b) Waveform of x(t) for x(0) = 6.2. (c) Waveform of i(t) for x(0) = 6.2.

(d) Waveform of x(t) for x(0) = −2.1. (e) Waveform of i(t) for x(0) = −2.1.

Figure 23: Waveforms of the voltage source vs(t), the state x(t), and the current i(t) for Eq. (109). The
injected single pulse (plotted in red in Fig. 23(a)) is defined by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise
vs(t) = 0. Observe that the current i(t) takes approximately odd integer values during the period when the
injected single pulse is applied to the 2-terminal device (98), that is, if x(0) = 6.2, then i(t) ≈ 7 (Fig. 23(b),
(c)) and if x(0) = −2.1, then i(t) ≈ −3 (Fig. 23(d), (e)), where 5 ≤ t ≤ 5.3. Furthermore, the state x(t)
is approximately equal to the value x(5.3) even after the pulse signal is turned off. Observe also that the
injected single pulse does not affect the behavior of x(t). Note that the portion of the waveform colored in
red corresponds to the response of the injected single pulse.
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(a) W (x, v) = sgn(v)x, r = 2, ω = 1. (b) W (x, v) = tanh(10v)x, r = 2, ω = 1.

Figure 24: Lissajous curves of Eq. (98), where the transient curve is colored in red (right). (a) The Lissajous
curve is not pinched at the origin. (b) The Lissajous curve shows the pinched hysteresis loop (colored in
blue).
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(a) Waveform of the voltage source vs(t).

(b) Waveform of x(t) for x(0) = −0.5. (c) Waveform of i(t) for x(0) = −0.5.

(d) Waveform of x(t) for x(0) = 2.7. (e) Waveform of i(t) for x(0) = 2.7.

Figure 25: Waveforms of the voltage source vs(t), the state x(t), and the current i(t) for Eq. 116). The
injected single pulse (plotted in red in Fig. 25(a)) is defined by vs(t) = 0.1 for 5 ≤ t ≤ 5.3, otherwise
vs(t) = 0. Observe that if | x(0) |≤ 1, then i(t) = x(0) during the period when the injected single pulse
is applied, that is, if x(0) = −0.5, then i(t) = −0.5 for 5 ≤ t ≤ 5.3 (Fig. 25(b), (c)). Observe also that if
x(0) > 1, then i(t) is approximately equal to 1 during the period when the injected single pulse is applied,
that is, if x(0) = 2.7, then i(t) = 1 for 5 ≤ t ≤ 5.3 (Fig. 25(d), (e)). Furthermore, the state x(t) is
approximately equal to the value x(5.3) even after the pulse signal is turned off. Observe also that the
injected single pulse does not affect the behavior of x(t). Note that the portion of the waveform colored in
red corresponds to the response of the injected single pulse.
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(a) W (x, v) = sgn(v)x, r = 2, ω = 1. (b) W (x, v) = tanh(10v)x, r = 2, ω = 1.

Figure 26: Lissajous curves of Eq. (98), where the transient curve is colored in red (right). (a) The Lissajous
curve is not pinched at the origin. (b) The Lissajous curve shows the pinched hysteresis loop (colored in
blue).

(a) Chaotic trajectory on the (y, z)-plane. (b) Lissajous curve of i(t) and v(t).

Figure 27: Chaotic trajectory on the (y, z)-plane and Lissajous curve of i(t) and v(t) of the two-element
Duffing oscillator model. The initial condition is given by y(0) = z(0) = 0, and the parameters are given by
γ = 0.2 , r = 0.3, and ω = 1.
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(a) Trajectory of (i(t), i′(t)). (b) Trajectory of (i(t), i(t− τ)).

Figure 28: Reconstructed attractors of the two-element Duffing oscillator model. (a) The trajectory of
(i(t), i′(t)) is plotted. (b) The trajectory of (i(t), i(t− τ)) is plotted (τ = 0.7). The initial condition is given
by y(0) = z(0) = 0, and the parameters are given by γ = 0.2, r = 0.3, and ω = 1.

(a) Trajectory of (y(t), y′(t)). (b) Trajectory of (y(t), y(t− τ))

Figure 29: Reconstructed attractors of the two-element Duffing oscillator model. (a) The trajectory of
(y(t), y′(t)) is plotted. (b) The trajectory of (y(t), y(t − τ)) is plotted (τ = 1.2). The initial condition is
given by y(0) = z(0) = 0, and the parameters are given by γ = 0.2, r = 0.3, and ω = 1.
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(a) Chaotic trajectory on the
(
Mod[y, 2π], z

)
-plane. (b) Lissajous curve of i(t) and v(t).

Figure 30: Chaotic trajectory on the
(
Mod[y, 2π], z

)
-plane and Lissajous curve of i(t) and v(t) of the forced

two-element Josephson junction circuit model. The initial condition is given by y(0) = z(0) = 0, and the
parameters are given by β = 0.3, A = 0.8, ω = 0.5, and D = 0.28.

(a) Trajectory of
(
Mod[i(t), 2π], i′(t)

)
. (b) Trajectory of

(
Mod[i(t), 2π], i(t− τ)

)
.

Figure 31: Reconstructed attractors of the forced two-element Josephson junction circuit model. (a) The
trajectory of

(
Mod[i(t), 2π], i′(t)

)
is plotted. (b) The trajectory of

(
Mod[i(t), 2π], i(t−τ)

)
is plotted (τ = 1)

The initial condition is given by y(0) = z(0) = 0, and the parameters are given by β = 0.3, A = 0.8, ω = 0.5,
and D = 0.28.
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(a) Trajectory of
(
Mod[z(t), 2π], z′(t)

)
. (b) Trajectory of

(
Mod[z(t), 2π], z(t− τ)

)
.

Figure 32: Reconstructed attractors of the forced two-element Josephson junction circuit model. (a) The
trajectory of

(
Mod[z(t), 2π], z′(t)

)
is plotted. (b) The trajectory of

(
Mod[z(t), 2π], z(t − τ)

)
is plotted

(τ = 1) The initial condition is given by y(0) = z(0) = 0, and the parameters are given by β = 0.3, A = 0.8,
ω = 0.5, and D = 0.28.

(a) Trajectory on the (y, z)-plane. (b) Lissajous curve of i(t) and v(t).

Figure 33: Trajectory (left) on the (y, z)-plane and Lissajous curve of i(t) and v(t) (right) of the forced
two-element Mathieu equation model. The initial condition is given by y(0) = 0.1 and z(0) = 0 and the
parameters are given by a = 8 and b = 5.
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(a) Trajectory of (i(t), i′(t)). (b) Trajectory of (i(t), i(t− τ)).

Figure 34: Reconstructed trajectory of the forced two-element Mathieu equation model. (a) The trajectory
of (i(t), i′(t)) is plotted. (b) The trajectory of (i(t), i(t − τ)) is plotted (τ = 0.2) The initial condition is
given by y(0) = 0.1 and z(0) = 0 and the parameters are given by a = 8 and b = 5.

(a) Trajectory of (y(t), y′(t)). (b) Trajectory of (y(t), y(t− τ))

Figure 35: Reconstructed trajectories of the forced two-element Mathieu equation model. (a) The trajectory
of (y(t), y′(t)) is plotted. (b) The trajectory of (y(t), y(t− τ)) is plotted (τ = 0.5). The initial condition is
given by y(0) = 0.1 and z(0) = 0 and the parameters are given by a = 8 and b = 5.
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