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Abstract 

Stuart-Landau (SL) equation describes the universal behavior of nonlinear oscillators 

near a Hopf bifurcation. Focusing on the ultraviolet sector of field theory, the goal of this 

brief report is to explore the relationship between the SL equation and the spin-statistics 

theorem of Quantum Field Theory (QFT).  
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As it is known, QFT treats field excitations as point-like particles identified 

by their quantum properties. For instance, leptons are fermions 

characterized by mass ( m ), electric charge ( e ), spin ( 1 2)s = , weak 
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hypercharge ( WY ) and lepton number ( )L . Renormalization Group asserts 

that particle masses and charges run with the measurement scale ( ). A 

standard example of how electron parameters run in Quantum 

Electrodynamics can be presented as [1]   

 2 2 1
0[ , ,ln( )]m m m  −=   (1a) 

 2 2 1
0[ , ,ln( )]m    −=   (1b) 

Here, 0m , 0  are the bare mass and bare fine-structure constant, 

respectively, whereas 2 4 D = −  is the deviation from four spacetime 

dimensions derived from analytic continuation. Consistency requirements 

mandate that the other parameters listed above stay independent of  . It is 

currently unclear, however, if spin and lepton numbers retain their original 

meaning and scale invariance at energies far above the Standard Model (SM) 

range set by the vacuum expectation value of the Higgs boson ( 246v = GeV). 

Based on the conjecture that spacetime dimensionality flows with   above 

the SM scale [2 - 4], the purpose of this brief analysis is to examine a scenario 
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where the spin-statistics theorem is a consequence of spin bifurcations 

triggered by dimensional instabilities of ultraviolet (UV) field theory.  

Let’s begin by recalling that the contrasting behavior of fermions and bosons 

is ultimately tied to their disparity in canonical dimensions (CD), which reflect 

the way fields transform under the Lorentz group. In D  spacetime 

dimensions, the CD of scalars and vector bosons reads, 

 
2

2

D
  

−
 =  (2a) 

while the fermionic CD is 

 
1

2

D
  

−
 =  (2b) 

We next proceed by introducing several working assumptions:  

A1) The deep UV sector of field theory ( v  ) is characterized by large 

dimensional fluctuations 0 1   of frequency 0 ( )O v = . Fluctuations are 

assumed to be unobservable if measurements are taken at time intervals, 
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 0(1 ) (1 )t O O =    (3) 

It follows from (3) that dimensional fluctuations are observable only on 

sufficiently high energy scales, far above v . In this regime, a reasonable 

expectation is that decoherence turns quantum fields into classical fields [4].  

A2) The deep UV sector of field theory v   enables spin to run with  .  

A3) Spin represents a complex valued parameter whose dynamics is well 

approximated by the SL equation [see e. g. 5] 

 
2

0
( )

dz i z uz z
dt

 = + −  (4) 

 ( ) ( ) ( )z t x t i t= + ;  ( ) ( )t x t  (5) 

in which 0log )(t =    stands for the evolution parameter, 0  for a reference 

scale and u  for a real valued coefficient.  

At least in principle and under assumptions A1)-A3), the UV regime of field 

theory allow bosons and fermions to share a continuous range of spin values. 
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In particular, (2a) and (2b) turn out to be identical if either one of these 

conditions is met, namely, 

 1
2

2 1D D  + − = − −  =  (6a) 

or 

 12 1
2

D D  − − = + −  =−  (6b)  

The bifurcation diagram of the real component of (5) is illustrated in Fig. 1, 

for the case 1u=  and 4D= .  

 

Fig. 1: Bifurcations of the SL model in the ( , )x dx dt  plane 
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It is readily seen that the diagram is partitioned into three spin phases, 

namely: 

1) A stable scalar phase develops at 4 4 0.5 3.5D = + = − =  corresponding 

to the fixed-point 0x = . In this phase, bosons and fermions overlap in 

a spin-zero state. 

2) A continuous spin phase develops in four dimensional spacetime 4D=

( 0 = ) around the fixed-point 0x = . This phase automatically 

segregates boson from fermions, as (2a) and (2b) cannot be 

simultaneously satisfied if 0 = . 

3)  A discrete spin phase develops at 4 0.5 4.5D= + = , which, by (6a), again 

overlaps bosons and fermions in a state comprising a pair of attractors 

symmetrically located relative to the repeller 0x = .         

A plausible interpretation of these findings goes as follows: 

1) The scalar phase may be associated with the primordial creation of the 

Higgs field somewhere in the deep UV sector of field theory. 
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2) The continuous spin phase at 0 =  motivates the spin-statistics 

theorem which distinguishes bosons from fermions in 4D=  

dimensions. By the same token, a continuous spin range may naturally 

reflect the onset of Dark Matter as topological condensate of 

continuous dimensions (Cantor Dust) [6 - 7]. 

3) According to assumption (A1), both scalar and discrete spin phases are 

unobservable in 4D=  dimensions.  

A visually suggestive bifurcation diagram of the SL model can be obtained 

for a system that generalizes (4) to two dimensions (Fig.2). To this end, we 

set again 1u= , 4D=  and introduce the additional coordinate y  orthogonal 

to x . This system is described by the differential equations [8 - 9] 

 3dx x x
dt

= −  (7a) 

 
dy

y
dt

= −  (7b) 
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Fig 2: Bifurcations of the SL model in the ( , )x y  plane 
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It is again apparent that the spin bifurcation starts to develop in four-

dimensional spacetime ( 0 =  and 4D= ). Iterating the previous arguments, 

the continuous spin phase shown in Fig. 2b justifies the spin-statistics 

theorem of QFT and the formation of Dark Matter as topological condensate 

of continuous dimensions. 
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