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Abstract

We derive the Schrödinger—Robertson uncertainty relation which depends on the quantum phase
transition. Our general uncertainty relation asserts, in different times t and t′, a fundamental limit
to the precision with which certain pairs of physical properties of a particle known as complementary
variables, such as its position at time t (x̂(t)) and momentum at time t′ (p̂(t′)), can be known. It
turns out that the uncertainty relation is valid for different times t and t′. Additionally, it turns
out that the formula is natural from the understandable upper limit in the Bloch sphere, in qubits
handling, and the meaningful lower limit (exactly zero). We hope the new formula is useful for
analyzing for several systems in condensed matter and certain atomic nuclei in which such phase
transitions can be observed.
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) gives accurate and at-times-remarkably accurate numerical predictions and much
experimental data has fit to quantum predictions for long time. In quantum mechanics, the uncertainty principle is
any of the variety of mathematical inequalities asserting a fundamental limit to the precision with which certain pairs
of physical properties of a particle known as complementary variables, such as its position x̂ and momentum p̂, can
be known simultaneously. For instance, in 1927, Werner Heisenberg stated that the more precisely the position of
some particle is determined, the less precisely its momentum can be known, and vice versa [8]. The formal inequality
relating to the standard deviation of position σx and the standard deviation of momentum σp was derived by Earle
Hesse Kennard [9] later that year and by Hermann Weyl [10] in 1928.

The Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition is as follows:

σAσB ≥

��
1

2
�Ψ|{Â, B̂}|Ψ� − �Ψ|Â|Ψ��Ψ|B̂|Ψ�

�2
+

�
1

2i
�Ψ|[Â, B̂]|Ψ�

�2
, (1)

where |Ψ� is a quantum state, σA and σB are respectively the standard deviations of the Hermitian operators Â and

B̂. For a pair of operators Â and B̂, we may define their commutator as [Â, B̂] = ÂB̂− B̂Â and their anticommutator

as {Â, B̂} = ÂB̂ + B̂Â.

Maccone and Pati discuss stronger uncertainty relations for all incompatible observables [11]. Quantum dynamics
of simultaneously measured non-commuting observables is discussed [12]. Dynamics of a qubit while simultaneously
monitoring its relaxation and dephasing are also discussed [13]

The upper limit of the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition
in a two-level system (e.g., electron spin, photon polarizations, and so on) is proposed in [14]. This is certified by the
Bloch sphere when we would measure σ̂x and σ̂y.

What is the motivation behind this work to be discussed in this paper? Concretely speaking, we want to know
more useful and precise uncertainty relation. For example, can we derive an uncertainty relation for quantum phase
transitions? Is the uncertainty relation valid for different times t and t′? A quantum phase transition is explained as
follows [15]: A phase transition occurs at absolute zero temperature when some parameter such as a magnetic field
or pressure is changed. In contrast to ordinary phase transitions, which are associated with thermal fluctuations,
quantum phase transitions are associated with quantum fluctuations. There are several systems in condensed matter
and certain atomic nuclei in which such phase transitions can be observed. We can take into account the quantum phase
transition for the Schrödinger—Robertson uncertainty relation, deriving a new formula. It says that the uncertainty
relation is valid for different times t and t′. Moreover, we discuss the fact that the new formula is natural from the
understandable upper limit (the Bloch sphere) and the meaningful lower limit (exactly zero) by virtue of the convex
argumentation.

The Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition is as follows:

σA(t)σB(t′) ≥
��

1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Ψ(t)|Â|Ψ(t)��Ψ(t′)|B̂|Ψ(t′)�eiπ(θ(t′)−θ(t))

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (2)

The Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition (1) is a part of
our general formula (2) where t = t′. It turns out that the uncertainty relation is valid for different times t and
t′. Here, we introduce the notation t which relates to the quantum phase transition. The quantum phase transition
term between a quantum state |Ψ(t)� = eiπθ(t)|Ψ� and another quantum state |Ψ(t′)� = eiπθ(t

′)|Ψ� is given by

�Ψ(t)|Ψ(t′)� = eiπ(θ(t′)−θ(t)).

In this paper, we derive the Schrödinger—Robertson uncertainty relation which depends on the quantum phase
transition. Our general uncertainty relation asserts, in different times t and t′, a fundamental limit to the precision
with which certain pairs of physical properties of a particle known as complementary variables, such as its position
at time t (x̂(t)) and momentum at time t′ (p̂(t′)), can be known. It turns out that the uncertainty relation is valid
for different times t and t′. Additionally, it turns out that the formula is natural from the understandable upper limit
in the Bloch sphere, in qubits handling, and the meaningful lower limit (exactly zero). We hope the new formula is
useful for analyzing for several systems in condensed matter and certain atomic nuclei in which such phase transitions
can be observed.
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II. DERIVATION OF THE SCHRÖDINGER—ROBERTSON UNCERTAINTY RELATION WHICH

DEPENDS ON THE QUANTUM PHASE TRANSITION

In this section, we derive the Schrödinger—Robertson uncertainty relation which depends on the quantum phase
transition. Here, we introduce the notation t which relates to the quantum phase transition. The quantum phase
transition term between a quantum state |Ψ(t)� = eiπθ(t)|Ψ� and another quantum state |Ψ(t′)� = eiπθ(t

′)|Ψ� is given

by �Ψ(t)|Ψ(t′)� = eiπ(θ(t′)−θ(t)).
Parts of this derivation shown here incorporate and build off those shown in Robertson [16], Schrödinger [17], and

standard textbooks such as Griffiths [18]. As for the derivation of the Schrödinger—Robertson uncertainty relation
which depends on the quantum phase transition, the main point is the Cauchy-Schwarz inequality [19] as shown below:

For any Hermitian operator Â, based upon the definition of variance, we have

σ2A(t) = �(Â− �Â�(t))Ψ(t)|(Â− �Â�(t))Ψ(t)�, (3)

where �Â�(t) = �Ψ(t)|Â|Ψ(t)�. We let |f(t)� = |(Â− �Â�(t))Ψ(t)� and thus

σ2A(t) = �f(t)|f(t)�. (4)

Similarly, for any other Hermitian operator B̂ in the state |Ψ(t′)�

σ2B(t′) = �(B̂ − �B̂�(t′))Ψ(t′)|(B̂ − �B̂�(t′))Ψ(t′)� = �g(t′)|g(t′)�, (5)

for |g(t′)� = |(B̂ − �B̂�(t′))Ψ(t′)� and �B̂�(t′) = �Ψ(t′)|B̂|Ψ(t′)�. Thus, the product of the two variances can be
expressed as

σ2A(t)σ2B(t′) = �f(t)|f(t)��g(t′)|g(t′)�. (6)

In order to relate the two vectors |f(t)� and |g(t′)� with each other, we use the Cauchy-Schwarz inequality [19] which
is defined as

�f(t)|f(t)��g(t′)|g(t′)� ≥ |�f(t)|g(t′)�|2, (7)

and thus Eq. (6) can be written as

σ2A(t)σ2B(t′) ≥ |�f(t)|g(t′)�|2. (8)

Since �f(t)|g(t′)� is generally a complex number, we use the fact that the modulus squared of any complex number z
is defined as |z|2 = zz∗, where z∗ is the complex conjugate of z. The modulus squared can also be expressed as

|z|2 = (Re(z))2 + (Im(z))2 =

�
z + z∗

2

�2
+

�
z − z∗

2i

�2
. (9)

We let z = �f(t)|g(t′)� and z∗ = �g(t′)|f(t)� and substitute these into the equation above in giving

|�f(t)|g(t′)�|2 =

�
�f(t)|g(t′)�+ �g(t′)|f(t)�

2

�2
+

�
�f(t)|g(t′)� − �g(t′)|f(t)�

2i

�2
. (10)

The inner product �f(t)|g(t′)� is written out explicitly as

�f(t)|g(t′)� = �(Â− �Â�(t))Ψ(t)|(B̂ − �B̂�(t′))Ψ(t′)�, (11)

and using the fact that Â and B̂ are Hermitian operators, we find

�f(t)|g(t′)�= �Ψ(t)|(Â− �Â�(t))(B̂ − �B̂�(t′))Ψ(t′)�

= �Ψ(t)|(ÂB̂ − Â�B̂�(t′)− B̂�Â�(t) + �Â�(t)�B̂�(t′))Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Ψ(t)|Â�B̂�(t′)Ψ(t′)� − �Ψ(t)|B̂�Â�(t)Ψ(t′)�+ �Ψ(t)|�Â�(t)�B̂�(t′)Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�+ �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�. (12)
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Similarly, it can be shown that �g(t′)|f(t)� = �Ψ(t)|B̂ÂΨ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�. For a pair of operators Â

and B̂, we may define their commutator as [Â, B̂] = ÂB̂ − B̂Â. Thus we have

�f(t)|g(t′)� − �g(t′)|f(t)� = �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

−�Ψ(t)|B̂ÂΨ(t′)�+ �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|[Â, B̂]|Ψ(t′)� (13)

and

�f(t)|g(t′)�+ �g(t′)|f(t)� = �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

+�Ψ(t)|B̂ÂΨ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|{Â, B̂}|Ψ(t′)� − 2�Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�, (14)

where we introduce the anticommutator {Â, B̂} = ÂB̂+B̂Â. We now substitute the above two equations into Eq. (10)
in giving

|�f(t)|g(t′)�|2 =

�
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (15)

Substituting the above into Eq. (8), we get the Schrödinger—Robertson uncertainty relation which depends on the
quantum phase transition as follows:

σA(t)σB(t′) ≥

��
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)eiπ(θ(t′)−θ(t))

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
, (16)

where �Ψ(t)|Ψ(t′)� = eiπ(θ(t′)−θ(t)). The Schrödinger—Robertson uncertainty relation which is free from the quantum
phase transition is a part of our general formula where t = t′, i.e.,

σAσB ≥

��
1

2
�Ψ|{Â, B̂}|Ψ� − �Â��B̂�

�2
+

�
1

2i
�Ψ|[Â, B̂]|Ψ�

�2
. (17)

III. UPPER LIMIT OF THE SCHRÖDINGER—ROBERTSON UNCERTAINTY RELATION WHICH

DEPENDS ON THE QUANTUM PHASE TRANSITION

The upper limit of the Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition
can be derived by the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition,
because of the convex argumentation.

In this section, we discuss the fact that the Bloch sphere imposes the upper limit of the Schrödinger—Robertson un-
certainty relation which depends on the quantum phase transition. We derive the Schrödinger—Robertson uncertainty
relation which is free from the quantum phase transition by using the Bloch sphere in the specific case. Let σ2X be

the variance of X̂, i.e., �X̂2� − �X̂�2.
The Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition is described before

(17). We derive a specific example [14] that the Bloch sphere imposes the upper limit of the Schrödinger—Robertson

uncertainty relation which is free from the quantum phase transition. Let Â = σ̂x and B̂ = σ̂y in giving

σσxσσy ≥

��
1

2
�Ψ|{σ̂x, σ̂y}|Ψ� − �σ̂x��σ̂y�

�2
+

�
1

2i
�Ψ|[σ̂x, σ̂y]|Ψ�

�2
. (18)

Thus, as �Ψ|{σ̂x, σ̂y}|Ψ� = 0, we have the following:

σσxσσy ≥

�

�σ̂x�2�σ̂y�2 +

�
1

2i
�Ψ|[σ̂x, σ̂y]|Ψ�

�2
. (19)

The Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition is derived from the
Bloch sphere as shown below:
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Statement 1

1− �σ̂x�
2 − �σ̂y�

2 − �σ̂z�
2 ≥ 0 ⇒ σσxσσy ≥

�

�σ̂x�2�σ̂y�2 +

�
1

2i
�[σ̂x, σ̂y]�

�2
. (20)

Proof: By using 1− �σ̂x�
2 − �σ̂y�

2 ≥ �σ̂z�
2, we have

σ2σxσ
2
σy

= (1− �σ̂x�
2)(1− �σ̂y�

2) = 1− �σ̂x�
2 − �σ̂y�

2 + �σ̂x�
2�σ̂y�

2 ≥ �σ̂z�
2 + �σ̂x�

2�σ̂y�
2

=

�
1

2i
�[σ̂x, σ̂y]�

�2
+ �σ̂x�

2�σ̂y�
2. (21)

Thus,

σσxσσy ≥

�

�σ̂x�2�σ̂y�2 +

�
1

2i
�[σ̂x, σ̂y]�

�2
. (22)

QED
The upper limit of the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition

in a two-level system (e.g., electron spin, photon polarizations, and so on) is derived by [14]. This is certified by
the Bloch sphere when we would measure σ̂x and σ̂y. Therefore, the Bloch sphere imposes the upper limit of the
Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition. It turns out that the
Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition is natural from the
understandable upper limit (the Bloch sphere) by virtue of the convex argumentation.

IV. LOWER LIMIT OF THE SCHRÖDINGER—ROBERTSON UNCERTAINTY RELATION WHICH

DEPENDS ON THE QUANTUM PHASE TRANSITION

The lower limit of the Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition
can be derived by the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition,
because of the convex argumentation.

We suppose that Â, B̂ are two Hermitian operators on an N -dimensional unitary space. Let us consider a simul-
taneous pure eigenstate |Ψi�, (i = 1, 2, ..., N), that is, �Ψi|Ψj� = δij , for the two Hermitian operators Â, B̂ such that

�Ψi|Â|Ψi� = ai, �Ψi|B̂|Ψi� = bi.
The Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition is as shown in

(16). The Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition is as shown
in (17).
Statement 2

When [Â, B̂] = 0, the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition
becomes

σAσB ≥ �ÂB̂� − �Â��B̂�, (23)

and the lower bound is zero.
Proof: We consider the Schrödinger—Robertson uncertainty relation which is free from the quantum phase transition

in the case where [Â, B̂] = 0

σAσB ≥

��
1

2
�{Â, B̂}� − �Â��B̂�

�2
. (24)

Thus, we have

σAσB ≥ �ÂB̂� − �Â��B̂�. (25)

On the other hand, we have

�Ψi|ÂB̂|Ψi� = aibi,

�Ψi|Â|Ψi��Ψi|B̂|Ψi� = aibi, (26)

where [Â, B̂] = 0 and ai, bi are respectively eigenvalues of the two Hermitian operators Â and B̂.
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QED
We show that the lower bound of the Schrödinger—Robertson uncertainty relation which is free from the quan-

tum phase transition is exactly zero. Therefore, the Schrödinger—Robertson uncertainty relation which depends on
the quantum phase transition is also exactly zero by virtue of the convex argumentation. It turns out that the
Schrödinger—Robertson uncertainty relation which depends on the quantum phase transition says a precise measure-
ment on commuting observables, symmetric measurement [20], is possible.

We hope the new formula is useful for analyzing for several systems in condensed matter and certain atomic nuclei
in which such phase transitions can be observed.

V. CONCLUSIONS

In conclusions, we have derived the Schrödinger—Robertson uncertainty relation which depends on the quantum
phase transition. Our general uncertainty relation has asserted, in different times t and t′, a fundamental limit to
the precision with which certain pairs of physical properties of a particle known as complementary variables, such as
its position at time t (x̂(t)) and momentum at time t′ (p̂(t′)), can be known. It has turned out that the uncertainty
relation is valid for different times t and t′. Additionally, it has turned out that the formula is natural from the
understandable upper limit in the Bloch sphere, in qubits handling, and the meaningful lower limit (exactly zero).
We have hoped the new formula is useful for analyzing for several systems in condensed matter and certain atomic
nuclei in which such phase transitions can be observed.
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