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Abstract

We review strictly the Schrödinger uncertainty relation. And we newly expand the formula
of depending on the quantum transition. Based on the formula, the optimal upper limit of the
Schrödinger uncertainty relation when we would measure simultaneously σx and σy in a two-level
system (e.g., electron spin, photon polarizations, and so on) is reviewed. We show the optimal lower
bound of the Schrödinger uncertainty relation is exactly zero if the two observables are commutative
and a quantum state under study is a simultaneous eigenstate for the two observables. It turns out
that the Schrödinger uncertainty relation is a very fundamental formula from the origin of the
optimal upper limit (Bloch sphere) and the meaningful optimal lower limit (exactly zero).
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) gives accurate and at-times-remarkably accurate numerical predictions and much
experimental data has fit to quantum predictions for long time.

As for foundations of quantum mechanics, Leggett-type non-local variables theory [8] is experimentally investi-
gated [9—11]. The experiments report that quantum mechanics does not accept Leggett-type non-local variables
interpretation.

As for applications of quantum mechanics [5—7], the implementation of a quantum algorithm to solve Deutsch’s
problem [12] on a nuclear magnetic resonance quantum computer is reported firstly [13]. An implementation of
the Deutsch-Jozsa algorithm on an ion-trap quantum computer is also reported [14]. There are several attempts
to use single-photon two-qubit states for quantum computing. Oliveira et al. implement Deutsch’s algorithm with
polarization and transverse spatial modes of the electromagnetic field as qubits [15]. Single-photon Bell states are
prepared and measured [16]. Also the decoherence-free implementation of Deutsch’s algorithm is reported by using
such single-photon and by using two logical qubits [17]. More recently, a one-way based experimental implementation
of Deutsch’s algorithm is reported [18].

In quantum mechanics, the uncertainty principle is any of the variety of mathematical inequalities asserting a
fundamental limit to the precision with which certain pairs of physical properties of a particle known as complementary
variables, such as its position x and momentum p, can be known simultaneously. For instance, in 1927, Werner
Heisenberg stated that the more precisely the position of some particle is determined, the less precisely its momentum
can be known, and vice versa [19]. The formal inequality relating the standard deviation of position σx and the
standard deviation of momentum σp was derived by Earle Hesse Kennard [20] later that year and by Hermann
Weyl [21] in 1928.

Maccone and Pati discuss stronger uncertainty relations for all incompatible observables [22]. Quantum dynamics
of simultaneously measured non-commuting observables is discussed [23]. Dynamics of a qubit while simultaneously
monitoring its relaxation and dephasing are also discussed [24]

Recently, a universally valid reformulation of the Heisenberg uncertainty principle on noise and disturbance in
measurement is discussed by Ozawa [25]. And an experimental demonstration of a universally valid error-disturbance
uncertainty relation in spin measurements is discussed [26]. A violation of Heisenberg’s error-disturbance uncertainty
relation in neutron-spin measurements is also discussed [27].

The optimal upper limitation of the Schrödinger uncertainty relation in a two-level system (e.g., electron spin,
photon polarizations, and so on) is proposed by Nagata and Nakamura [28]. The optimality is certified by the Bloch
sphere when we would measure simultaneously σx and σy.

What is the motivation behind this work to be discussed in this paper? Concretely speaking, we want to know the
most fundamental uncertainty relation. It turns out that the Schrödinger uncertainty relation is a very fundamental
formula from the origin of the optimal upper limit (Bloch sphere) and the meaningful optimal lower limit (exactly
zero).

In this paper, we review strictly the Schrödinger uncertainty relation. And we newly expand the formula of depend-
ing on the quantum transition. Based on the formula, the optimal upper limit of the Schrödinger uncertainty relation
when we would measure simultaneously σx and σy in a two-level system (e.g., electron spin, photon polarizations, and
so on) is reviewed. We show the optimal lower bound of the Schrödinger uncertainty relation is exactly zero if the two
observables are commutative and a quantum state under study is a simultaneous eigenstate for the two observables.
It turns out that the Schrödinger uncertainty relation is a very fundamental formula from the origin of the optimal
upper limit (Bloch sphere) and the meaningful optimal lower limit (exactly zero).

II. SCHRÖDINGER UNCERTAINTY RELATION WHICH DEPENDS ON THE QUANTUM

TRANSITION

In this section, we derive the rigorous Schrödinger uncertainty relation. And we newly expand it of depending on
the quantum transition. Here, we introduce the notation t which relates the quantum transition probability. The
quantum transition probability between a quantum state |Ψ(t)� and a quantum state |Ψ(t′)� is given by |�Ψ(t)|Ψ(t′)�|2.

Parts of this derivation shown here incorporate and build off of those shown in Robertson [29], Schrödinger [30],
and standard textbooks such as Griffiths [31]. As for the derivation of the Schrödinger uncertainty relation, the main
point is the Cauchy-Schwarz inequality [32] as we show below.

For any Hermitian operator Â, based upon the definition of variance, we have

σ2A(t) = �(Â− �Â�(t))Ψ(t)|(Â− �Â�(t))Ψ(t)�, (1)
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where �Â�(t) = �Ψ(t)|Â|Ψ(t)�. We let |f(t)� = |(Â− �Â�(t))Ψ(t)� and thus

σ2A(t) = �f(t)|f(t)�. (2)

Similarly, for any other Hermitian operator B̂ in the state |Ψ(t′)�

σ2B(t′) = �(B̂ − �B̂�(t′))Ψ(t′)|(B̂ − �B̂�(t′))Ψ(t′)� = �g(t′)|g(t′)�, (3)

for |g(t′)� = |(B̂ − �B̂�(t′))Ψ(t′)� and �B̂�(t′) = �Ψ(t′)|B̂|Ψ(t′)�. Thus, the product of the two variances can be
expressed as

σ2A(t)σ2B(t′) = �f(t)|f(t)��g(t′)|g(t′)�. (4)

In order to relate the two vectors |f(t)� and |g(t′)� with each other, we use the Cauchy-Schwarz inequality [32] which
is defined as

�f(t)|f(t)��g(t′)|g(t′)� ≥ |�f(t)|g(t′)�|2, (5)

and thus Eq. (4) can be written as

σ2A(t)σ2B(t′) ≥ |�f(t)|g(t′)�|2. (6)

Since �f(t)|g(t′)� is generally a complex number, we use the fact that the modulus squared of any complex number z
is defined as |z|2 = zz∗, where z∗ is the complex conjugate of z. The modulus squared can also be expressed as

|z|2 = (Re(z))2 + (Im(z))2 =

�
z + z∗

2

�2
+

�
z − z∗

2i

�2
. (7)

We let z = �f(t)|g(t′)� and z∗ = �g(t′)|f(t)� and substitute these into the equation above in giving

|�f(t)|g(t′)�|2 =

�
�f(t)|g(t′)�+ �g(t′)|f(t)�

2

�2
+

�
�f(t)|g(t′)� − �g(t′)|f(t)�

2i

�2
. (8)

The inner product �f(t)|g(t′)� is written out explicitly as

�f(t)|g(t′)� = �(Â− �Â�(t))Ψ(t)|(B̂ − �B̂�(t′))Ψ(t′)�, (9)

and using the fact that Â and B̂ are Hermitian operators, we find

�f(t)|g(t′)�= �Ψ(t)|(Â− �Â�(t))(B̂ − �B̂�(t′))Ψ(t′)�

= �Ψ(t)|(ÂB̂ − Â�B̂�(t′)− B̂�Â�(t) + �Â�(t)�B̂�(t′))Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Ψ(t)|Â�B̂�(t′)Ψ(t′)� − �Ψ(t)|B̂�Â�(t)Ψ(t′)�+ �Ψ(t)|�Â�(t)�B̂�(t′)Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�+ �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�. (10)

Similarly, it can be shown that �g(t′)|f(t)� = �Ψ(t)|B̂ÂΨ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�. For a pair of operators Â

and B̂, we may define their commutator as [Â, B̂] = ÂB̂ − B̂Â. Thus we have

�f(t)|g(t′)� − �g(t′)|f(t)� = �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

−�Ψ(t)|B̂ÂΨ(t′)�+ �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|[Â, B̂]|Ψ(t′)� (11)

and

�f(t)|g(t′)�+ �g(t′)|f(t)� = �Ψ(t)|ÂB̂Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

+�Ψ(t)|B̂ÂΨ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

= �Ψ(t)|{Â, B̂}|Ψ(t′)� − 2�Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�, (12)

where we have introduced the anticommutator {Â, B̂} = ÂB̂ + B̂Â. We now substitute the above two equations into
Eq. (8) in giving

|�f(t)|g(t′)�|2 =

�
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (13)
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Substituting the above into Eq. (6), we get the Schrödinger uncertainty relation which depends on the quantum
transition,

σA(t)σB(t′) ≥

��
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (14)

III. REVIEW OF THE OPTIMAL UPPER LIMIT OF THE SCHRÖDINGER UNCERTAINTY

RELATION

In this section, we review [28] an example that the Schrödinger uncertainty relation is optimal in the case where
t = t′. The optimality is certified by the Bloch sphere. In fact, a violation of the Schrödinger uncertainty relation is
equivalent to a violation of the Bloch sphere in a specific case. We re-derive the Schrödinger uncertainty relation by
using the Bloch sphere in the specific case. Let V (X) be the variance of X, i.e., �X2� − �X�2.
Statement 1

�
V (σx)V (σy) ≥

��
1

2i
�[σx, σy]�

�2
+ �σx�2�σy�2. (15)

Proof. By using 1− �σx�
2 − �σy�

2 ≥ �σz�
2, we have

V (σx)V (σy) = (1− �σx�
2)(1− �σy�

2) = 1− �σx�
2 − �σy�

2 + �σx�
2�σy�

2 ≥ �σz�
2 + �σx�

2�σy�
2

=

�
1

2i
�[σx, σy]�

�2
+ �σx�

2�σy�
2. (16)

Thus,

�
V (σx)V (σy) ≥

��
1

2i
�[σx, σy]�

�2
+ �σx�2�σy�2. (17)

QED
We define B as follows:

B :=

�
1

2i
�[σx, σy]�

�2
+ �σx�

2�σy�
2. (18)

We define S as follows:

S :=

Schrodinger term
� �� ��

1

2
�{σx, σy}� − �σx��σy�

�2
+

�
1

2i
�[σx, σy]�

�2
. (19)

We show the relation between B and S in the following statement:
Statement 2

B = S. (20)

Proof. We have the following relation:

�{σx, σy}� = 0. (21)

QED
Thus the Schrödinger uncertainty relation is optimal in the specific case. The optimality is certified by the Bloch

sphere. A violation of the Schrödinger uncertainty relation is equivalent to a violation of the Bloch sphere in the
specific physical situation. It turns out that the Schrödinger uncertainty relation is a very fundamental formula from
the origin of the optimal upper limit (Bloch sphere).
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IV. SIMULTANEOUS MEASUREMENTS ON COMMUTING OBSERVABLES

We suppose that Â, B̂ are two Hermitian operators on an N -dimensional unitary space. Let us consider a simul-
taneous pure eigenstate |Ψi�, (i = 1, 2, ..., N), that is, �Ψi|Ψj� = δij , for the two Hermitian operators Â, B̂ such that

�Ψi|Â|Ψi� = ai, �Ψi|B̂|Ψi� = bi.
We have the Schrödinger uncertainty relation which depends on the quantum transition

σA(t)σB(t′) ≥

��
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)�Ψ(t)|Ψ(t′)�

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (22)

The Schrödinger uncertainty relation becomes as follows in the case where �Ψ(t)|Ψ(t′)� = δtt′ :

σA(t)σB(t′) ≥

��
1

2
�Ψ(t)|{Â, B̂}|Ψ(t′)� − �Â�(t)�B̂�(t′)δtt′

�2
+

�
1

2i
�Ψ(t)|[Â, B̂]|Ψ(t′)�

�2
. (23)

Statement 3

When [Â, B̂] = 0, the Schrödinger uncertainty relation becomes

σAσB ≥ �ÂB̂� − �Â��B̂�, (24)

and the optimal lower bound is zero.
Proof. We consider the Schrödinger uncertainty relation in the case where [Â, B̂] = 0

σAσB ≥

��
1

2
�{Â, B̂}� − �Â��B̂�

�2
. (25)

Thus, we have

σAσB ≥ �ÂB̂� − �Â��B̂�. (26)

On the other hand, we have

�Ψi|ÂB̂|Ψi� = aibi,

�Ψi|Â|Ψi��Ψi|B̂|Ψi� = aibi, (27)

where [Â, B̂] = 0 and ai, bi are respectively the real numbers of the diagonal elements of the two Hermitian operators

Â, B̂.
QED
We show that the optimal lower bound of the Schrödinger uncertainty relation is exactly zero if the two observables

are commutative. It turns out that the Schrödinger uncertainty relation says a precise measurement on commuting
observables is possible. Let us consider one observable case as follows: If A = B and Statement 3, then

σ2A ≥ �Â
2� − �Â�2 = 0, (28)

where we use a pure eigenstate |Ψi� of Â. Thus, it turns out that the Schrödinger uncertainty relation says a precise
measurement on one observable is possible. It turns out that the Schrödinger uncertainty relation is a very fundamental
formula from the meaningful optimal lower limit (exactly zero).

V. CONCLUSIONS

In conclusions, we have reviewed strictly the Schrödinger uncertainty relation. We have newly expanded the
formula of depending on the quantum transition. Based on the formula, the optimal upper limit of the Schrödinger
uncertainty relation when we would measure simultaneously σx and σy in a two-level system (e.g., electron spin,
photon polarizations, and so on) has been reviewed. We have shown the optimal lower bound of the Schrödinger
uncertainty relation is exactly zero if the two observables are commutative and a quantum state under study is a
simultaneous eigenstate for the two observables. It has turned out that the Schrödinger uncertainty relation is a very
fundamental formula from the origin of the optimal upper limit (Bloch sphere) and the meaningful optimal lower
limit (exactly zero).
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