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Abstract

I develop a variable-speed-of-light model as an alternative to the astronomical standard model. It combines quan-
tum and relativistic physics.
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1 Introduction

I start with a simple enough question: Say, you have a measurement of a dimension (distance, time, mass and such).
What do you do with it? This sounds like a stupid question. You use it in your mathematical model, of course. But
since there are no stupid questions, i will rephrase it: Are you allowed to use the measurement in your mathematical
model?

That question is not as trivial as it seems. Every mathematical model requires some mathematical properties of the
objects it uses. The measurement, however, is an object of reality. It has no mathematical properties by itself. Those
properties must be ascribed. Ascribing the wrong properties will lead to any number of problems, later. Generally, the
use of a measurement goes through three stages:

1. Transformation. In the first stage mathematical properties have to be ascribed to the measurement. In this
stage additional modifications might be performed to leave out complexity in the second stage.

2. Use in model. In the second stage the—possible modified—measurement can be used with the mathematical
properties ascribed to the measurement. The result of this stage is a prediction value.
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3. Inverse transformation. Since we have allowed modifications of the measurement in the first stage, we must
assume, that the prediction value of the second stage must be transformed into a value, which can be compared
to an observation.

Usually, all three stages are done implicit by the direct use of a measurement value. The necessary mathematical
properties are usually asumed, but not proven. One exception is the use of the LORENTZ transformation ([1]). It
performs all three stages.

Our perception is a space-time-continuum, where a distance x can be associated to a time t with the light-speed
cv by

x = cv · t (1)

which is the time a photon needs to reach the distance. The author calls this equation “space-time equivalence” in
accordance with the mass-energy equivalence of EINSTEIN’s famous formula([2])

E = m · c2
v (2)

However, our perception of space and time might not agree with reality. We may have a distorted view on nature. The
author asumes, that reality does not fit into human preconceptions. That is the reason, the author calls the contents
of this article “Reality-Sucks Theory”.

2 Measurements

Let’s start with the transformation. Here we have to distiguish between dimensions measured with units and without.
In the latter case, the transformation is simple. The measurement is a number and can be used as such. However,
the only dimension measured without an unit is the angle. It is measured relativ to the unit circle. All other dimen-
sions are measured with a unit. We need to provide mathematical properties of the unit to use the measurement in a
mathematical model.

In physics, the mathematical model is usually based on a vector space ([3]). The tuple (V ,⊕,⊙) with V a non-
empty set, the set S a field and the two binary operations vector addition (or simply addition) ⊕ : V ×V →V and scalar
multiplication ⊙ : S ×V → V is called a vector space over S, if V is an abelian group under addition and the scalar
multiplication defines a ring homomorphism from the field S into the endomorphism ring of this group. The tuple
(S,+, ·) with S a non-empty set and the two binary operations addition + : S ×S → S and multiplication · : S ×S → S is
a field, if S is an abelian group under addition with zero as the additive identity, the non-zero elements are an abelian
group under multiplication with one as the multiplicative identity and the multiplication distributes over addition.
We call the elements of V vectors and the elements of S scalars. Usually, we use the measurement as a scalar. The
crucial definition is the multiplication of the field · : S ×S → S, which must map into S.

For a general dimension K (length, time, mass), which is measured in a unit κ (meter, second, kilogram) a mea-
surement xκ is an element of the set K = {xκ|xκ = rκ ·κ}, with the real number (or element of some other field) rκ ∈ R
the measurement value. We write ‘1m’. For the dimension angle we can asume 1 as a unit.

2.1 Direct Use

To use a measurement as a scalar, the properties of a field must be provided. As mentioned above, a formal definition
of the addition is possible. However, if we try to multiply two measurements x1 = r1 ·κ and x2 = r2 ·κ, we get

x1 · x2 =r1 ·κ · r2 ·κ
=r1 · r2 ·κ2 (3)

The multiplication does not map into K , but K 2 = {
xκ|xκ = rκ ·κ2

}
. A necessary operation does not exist. As a

consequence we no longer can asume the distribution of multiplication over addition, i. e.,

x1 +x2 =r1 ·κ+ r2 ·κ (4)

̸=(r1 + r2) ·κ (5)

We can not use a measurement with a unit as a scalar, regardless of the vector space. We know that 1m · 1m =
1m2 ̸= 1m. However, it can be used as a one-dimensional vector over R. It is an abelian group under addition and the
scalar multiplication defines a ring homomorphism from the field R into the endomorphism ring of this group. The
unit κ could be used as a basis of the dimension.
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2.2 Classic Transformation

The classic way to deal with this problem is, to ignore it. We use units formally, as if they would be numbers. We have
proven in the previous section, that generally, they are not. However, in a certain range of measurement values, they
might approximate the behaviour of numbers well enough.

In the schema of section 1 we need a transformation and it’s inverse. The formal division of the measurement with
the unit results in the measurement value, xκ/κ= rκ. The measurement value is a number, element of a field and can
be used as a scalar. The inverse operation is the formal multiplication with the unit of the intended dimension.

We already know two other approaches, to address the problem of using a measurement as a scalar: the relativity
and the quantum theory.

2.3 Relativistic Transformation

For every dimension, for which we have a maximum measurement, we can define a relativistic transformation. The
methods to cope with a maximum are already developed by the special relativity theory. If we already have a maximum
measurement (like the observable space of the universe), we must use a relativistic transformation. The mathematical
model must be able to describe the maximum value. The transformation presented here is a generalisation of the
rapidity used in special relativity theory ([5]). We notate the maximum of the dimension K as cκ in accodance to the
notation of light speed cv .

Given a measurement xκ and the maximum of the dimension cκ we can transform the measurement to it’s rela-
tivistic representation by first calculating the relative value rκ = xκ/cκ ∈ [−1,1]. To use this value as a scalar, we need
a field. The range [−1,1] does not provide a field, the complete set of real numbers [−∞,∞] ∈ R does. We need an in-
vertible mapping of the range into R. Any will suffice mathematically, as long as it is invertible. The inverse hyperbolic
tangent artanh(rκ) does ([6]). We can use the fuctions artanh and tanh to map the range into the real numbers and
back, again. We can calculate the relativistic value θκ as

θκ =artanh(xκ/cκ) (6)

=artanh(rκ) (7)

use this value in the calculations and transfer it back with

rκ = tanh(θκ) (8)

xκ =rκ · cκ

= tanh(θκ) · cκ (9)

to obtain the real-space value, again. The maximum value of the desired dimension must be used in the inverse trans-
formation. For small x ≪ 1 both, the artanh(x) ≈ x and t anh(x) ≈ x approximate to the value and the transformation
degenerates to the classic case of section 2.2.

Instead of the equation (4) we get for a sum of two measurements x1 and x2

x1 +x2 = tan

(
artanh

(
x1

cκ

)
+artanh

(
x2

cκ

))
· cκ

= tan(artanh(r1)+artanh(r2)) · cκ

= tan

(
artanh

(
r1 + r2

1+ r1r2

))
· cκ

= r1 + r2

1+ r1r2
· cκ

= x1 +x2

1+ x1x2

c2
κ

(10)

The result is identical to the velocity addition of the special relativity theory ([7]), but developed to satisfy mathe-
matical properties. Or better, the first half of it. If we have redefined the addition, we must redefine the multiplication
distributing over the addition to provide a field. That is the operation, the special relativity theory is missing.

The multiplication must be defined for different dimensions. The measurement x1 is of dimension K1 and the
measurement x2 is of dimension K2. The maximum measurement of dimension K1 is c1 and the maximum measure-
ment of dimension K2 is c2. Then the multiplication of x1 and x2 with the addition above is defined as

x1 · x2 = tan

(
artanh

(
x1

c1

)
·artanh

(
x2

c2

))
· c1c2 (11)
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or with r1 = x1/c1 and r2 = x2/c2

x1 · x2 = tan(artanh(r1) ·artanh(r2)) · c1c2 (12)

The field with the definitions of the addition and multiplication above does no longer support the space-time and
mass-energy equivalences. The value of the relativistic light speed θv (cv ) = artanh(1) = ∞ will always result in ∞,
when used as a factor in θx (r ) = θv (cv ) ·θt (t ) and θE (E) = θM (m) ·θv (cv )2, which yields the maximum distance cx and
the maximum energy cE and could be though as any location and any energy. All relativistic effects are no longer
existence in this field. We will see the replacements in section 3.

This is an all-or-none schema. If a maximum value for one dimension exists, a maximum value must exist for
all dimensions. We already know the light speed as a limit. The other values must be determined. The relativistic
transformation is a linearisation. It converts the non-linear measurement unit to a linear entity.

We are living in a universe, where the observation of all dimensions is limited. The maxima of the dimensions can
be called “horizon” of the dimension.

2.4 Extending the Transformation

Before we determine the maximum values of the other dimensions, we must discuss the other approach to the prob-
lem of using a measurement as a scalar, the quantum theory and how we can use it in the schema of section 1. As we
will see, both approaches are coupled.

A quantum is the minimum amount of a dimension, of which only integer multiples exist. If we have a quantum,
we can easily define a mapping from the measurement into a field. We can count the amount of quantae to reach
the measurement and get an integer number. The set of integers Z is not a field. The counts can be interpreted as
elements of the rational numbers Q, which is a field under the usual addition and multiplication. A quantum can be
interpreted as a natural unit.

This has severe impacts on the model equations. The domain and codomain of all operations must be the rational
numbers. Neither the circle number π nor the EULER constant e have an exact representation as a rational number.
They and all operations using them must be approximated. An exact calculation is not possible in this field.

This is a all-or-none schema like the relativistic transformation of section 2.3. All dimensions must be repre-
sentable as rational numbers. The quantified dimensions must be representable as integers, all other as rational
numbers. We already know the PLANCK constant ([8]) as a quantum and suppose the PLANCK time ([9]) as a minimum
or quantum, which is in debate.

If the model results in a rational number not an integer for a quantified dimension, the result must be discarded
as invalid. It can never be observed. There is no way to predict, if the result of an equation in Q is an integer. It must
be tested for each set of numbers. If the model uses trigonometric or natural exponential operations, the model is not
exact and it can no longer be distiguished between a result as integer or no result, because not an integer. An exact
prediction is no longer possible.

As another obstacle to use this transformation, a measurement always has an error. The error measured in the
count of quantum yield to a very large number. The measurement itself measured in counts of the quantum is a
very huge number. The sheer number of numbers to test the model, if it results in an integer, makes it impossible to
calculate the model completely. That is the reason, why the quantum mechanics uses another approach.

I have classified this transformation as an extension. It depends on some measurement, which can be divided by
the quantum. The division might be performed classical as in section 2.2 or relativistic as in section 2.3. In the latter
case you get a relativistic quantum model.

2.5 Quantum Mechanics

The quantum mechanics ([11]) uses the measurement as a vector. As mentioned in section 2.1 the measurement can
be used as a vector. The theory is formulated in various specially developed mathematical formalisms. In one of it, it
is a wave function.

Interpreting that with the schema of section 1, the representation of the measurement is a transformation. If in the
transformation only standing waves ([13]) are considered, the vector can be interpreted as a representation of integer
numbers. For a standing wave the interval spawned is divided into an integer multiple of a part of the wave length.

The result of the model can be interpreted as a density function of integer solutions of the model. Asuming an
even probability of all solutions, this is identical to the probability of an observation.

This is just a diffent interpretation. It has the advantage, that there is no wave-particle dualism ([14]). The observ-
able is represented differently in mathematics, but stays the same in reality. The wave is not a particle wave, but a
mathematical construction to represent integers. Like the transformation of section 2.4 it can be combined with the
relativistic transformation of section 2.3 to yield a relativistic quantum mechanic theory.
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3 Determining the Parameters

In section 2.3 we required a maximum value. A maximum value of the dimension K is notated as cκ. In section 2.4
we required at least a minimum value, possible a quantum. The minimum value (or quantum) for the dimension K is
notated as hκ.

Some of the values are easy to identify. The light speed cv ([15]) is the maximum a velocity may have. The age of
the universe ct ([16]) is the limit, a time may have. For the minimum of the time ht we can assume the PLANCK time
([9])

cv =299792458
m

s
(13)

ct ≈13.787 ·109 y ≈ 4.350 ·1017s (14)

ht =
√

h ·G
c5

v
(15)

≈1.351 ·10−43s (16)

In (15) h = 6.62607 ·10−34kg ·m2/s is the PLANCK constant and G = 6.67430 ·10−11m3/(kg · s2) is the gravitational
constant ([10]). I used the definition suggested by PLANCK. Modern physics is replacing the PLANCK constant h by the
reduced PLANCK constant ħ= h/(2π).

With the space-time equivalence we determine the limits of length cx and hx to

cx =cv · ct ≈ 1.304 ·1026m (17)

hx =cv ·ht

=
√

h ·G
c3

v
(18)

≈4.051 ·10−35m (19)

That explains, why the space-time equivalent does not exist with the relativity transformation (see section 2.3). If
x = cv · t , then rx = x/cx is equal to rt = t/ct , not equivalent. The same must apply to the mass-energy equivalence
(see the law of relative identity (42)).

From the definition of the frequency f = 1/T with T period time ([17]) we can obtain the maximum frequency c f

and the minimum frequency h f . The smallest possible period time is ht and the largest is ct

c f =1/ht ≈ 7.399 ·1042s−1 (20)

h f =1/ct ≈ 2.298 ·10−18s−1 (21)

This also means, the possible frequencies are limited on the upper end, if the time is quantified. The next lower
observeable frequency to c f will be c f /2, because the frequencies in between do not have a corresponding period
time. If they exist, they will be perceived as noise and not as periodic.

The slowest speed hv could be determined with the smallest distance hx and the largest time ct to

hv = hx

ct

=
√

h ·G
c3

v · c2
t

(22)

≈4.051 ·10−35 m

s
(23)

We will determine the maximum mass cm and the minimum mass hm with the uncertainty principle. It was origi-
nally formulated as h ≈∆x∆p with ∆x the precision of the location and ∆p the precision of the momentum measure-
ment ([18]). The momentum is defined as p = m · v with m the mass and v the velocity ([19]). We get the relation

h ≈∆x ·∆m ·∆v (24)

which we will use as an equation instead of an approximation.
There can be no larger error for the distance than cx and there can be no larger error for the velocity than cv .

Setting theese errors into (24) we obtain the required minimum mass ∆m = hm
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hm = h

cx · cv
(25)

= h

c2
v · ct

(26)

≈1.694 ·10−68kg

With the mass-energy equivalence we obtain the smallest energy hE

hE =hm · c2
v (27)

= h

ct
(28)

≈1.523 ·10−51 kg ·m2

s2 (29)

Equation (28) is identical to the energy of a photon having the largest period time ct ([20]). This is the reason i use
the old or original formulations of the PLANCK time and the uncertainty principle. We get reasonable equations.

There can be no smaller error for the distance than hx and there can be no smaller error for the velocity than hv .
Setting theese errors into (24) we obtain the required maximum mass ∆m = cm

cm = h

hx ·hv
(30)

=h · ct

h2
x

(31)

= h · ct

h ·G/c3
v

(32)

=c3
v · ct

G
(33)

≈1.756 ·1053kg

That yields to the maximum energy cE

cE =cm · c2
v (34)

=c5
v · ct

G
(35)

≈1.579 ·1070 kg ·m2

s2 (36)

If we divide hv by cv we get the relation

hv

cv
= hx

cv · ct
(37)

=hx

cx
(38)

If we divide hm by cm we get the relation

hm

cm
= h

cx · cv
· hx ·hv

h
(39)

=hx

cx
· hv

cv
(40)

=h2
x

c2
x

(41)

This leads to the law of relative identity
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ht

ct
= hx

cx
= hv

cv
=

√
hm

cm
=

√
hE

cE
(42)

Space, time and velocity are relative identical to their limits, mass and energy are relative identical by the square
root. The calculation of a relative value can be interpreted as a weighting making the dimensions comparable.

If you asume the minimum time ht a quantum, the minimum distance hx must be a quantum, too. If you asume
the minimum mass hm a quantum, the minimum energy must be a quantum, too. If you asume a discrete time, you
will get strange effects, if you interpolate to use operations on a continous set. You may misinterpret the differences
as results of forces. If you have the leisure, you can compare the results of this effect to that of the weak ([21]) and of
the strong ([22]) interaction. The scale is small enough, that a quantifycation of space, time, mass and energy matter.

The limits of the other dimensions can be obtained similar with definitions above.
With limits to all dimensions, the equation of classic physics must be rewritten, to be used in the relativistic field of

section 2.3. In equation (refeqn:relmul) the relativistic value of the PLANCK constant θh or the gravitational constant
θG might be required.

Both constants can be converted by their value. The PLANCK constant has the value h = 6.62607 ·10−34kg ·m2/s.
To transform it into the relative value rh , we transform the units.

rh =6.62607 ·10−34 (kg · c−1
m ) · (m2 · c−2

x )

s · c−1
t

=h · ct

cm · c2
x

= h

cm · c2
x

ct

= h

cm · c2
x

c2
t
· ct

= h

cm · c2
v · ct

= h

cE · ct
(43)

with equations (15), (35) and the law of relative identity (42) we get

rh = h

cE · ct

= h
c5

v ·ct
G · ct

= h ·G
c5

v · c2
t

=h2
t

c2
t

= hm

cm
= hE

cE
(44)

The relative value of the PLANCK constant becomes a relative minimum mass or energy.
Doing the same for the gravitational constant G yields in a relative value rG = 1 and becomes the relativistic value

∞. That is correct. As can be seen in equation (33), the effects of gravitational constant are removed by the transfor-
mation. NEWTON’ s law of the gravitational force F

F =G · m1 ·m2

r 2 (45)

with m1,m2 the masses of the object and r the distance is transformed to

θF = θm(m1) ·θm(m2)

θx (r )2 (46)

in the relativistic field of section 2.3. The gravitational constant is part of the field, a property of the space and is
transformed to 1.
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4 Classic Redshift

Until now, we have interpreted the light speed as a constant in time. It is generally thought thought of as a physical
constant ([15]). There is no known effect, which suggests otherwise. It might be unknown, because nonbody has
analysed an effect accordingly, yet. Variable speed of light theories are nothing new ([23]).

In astronomy we observe a redshift of objects of most distance ([24]). It is explained by the expansion of the
universe with HUBBLE’s law. A parameter used to describe the relation between the redshift z and the distance r is the
scale factor a(t ) ([26]) with t the time as

a(t ) = 1

z +1
(47)

The redshift z of an electro-magnetic wave with the observed weave length λo and the emmitted weave length λe

is defined as ([24])

z = λo

λe
−1 (48)

The weave length lambda of an electro-magnetic weave with frequency f is defined as ([27])

λ= cv

f
(49)

Using a variable light speed cv (t ), the emitted wave length λe = cv (t )/ f and the observed wave length λo = cv / f in
equation (48) yields to

z = cv

cv (t )
−1 (50)

and reformulated
cv (t )

cv
= 1

z +1
(51)

The right hand side of both, equation (47) and equation (51), is identical. We can not differ between a result of the
expansion of the universe or the variation of the light speed. In equation (51) the quotient cv (t )/cv must decrease with
larger t .

Using φ(t )−1 of equation (66) as the quotient

cv (t )

cv
= 1

φ(t )
=

√
1− rt

1+ rt
(52)

we get from equation (51) √
1+ rt

1− rt
= z +1 (53)

or reformulated

rt = (z +1)2 −1

(z +1)2 +1
(54)

Figure 1 shows the result of that estimation compared to the estimation of the distance of some galaxies estimated
with the standard model of astronomy. The estimation is a little bit farther, but correlates quiet well. In addition the
results for using φ(t )−2 and φ(t )−3 are shown. In the first we obtain less distance. The latter is identical to the results
of the relativistic calculation in section 5.3.

5 Relativistic Redshift

If we asume a variable speed of light, we must asume a variable maximum for all dimensions in the relativistic trans-
formation of section 2.3. All measurements of all dimensions must have a shift in time, if considered relative to their
maximum.

Given a measurement xκ(t ) of dimension K at the time t , the observed measurement xκ, the maximum at time t
of the dimension cκ(t ) and the maximum at observation time cκ we want the relative value stay invariant in time

xκ(t )

cκ(t )
= xκ

cκ
(55)

This definition preserves the law of relative identity (42).
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Figure 1: Relative distance r as a function of the redshift z. Displayed are the estimations of the distances of some
galaxies with the standard model (see appendix A), the distance using φ(t )−1 and φ(t )−2 in the classic model of sec-
tion 4, the results of the relativistic model of section 5.3 and the results using a variable RYDBERG parameter R∞.

5.1 Progression of Parameter

We want to scale the measurement in time, but do not want to distort them. There should be a factor, a dimension
scales, but the relation of the minimum and maximum should persist in time. We neither want to gain nor loose
quantae. The parameters of all other dimensions depend on the light speed. We expect for the progression of the light
speed (and all other velocities) some progression φ(t ) defined later in section 5.2

V (t ) = cv (t )

cv
=φ(t ) (56)

Here the time axis is reversed, as usual in astronomy. Time values greater than zero are of the past.
For the time we can use equation (15) and get the progression

T (t ) = ht (t )

ht
= 1√

φ(t )5
(57)

This leads to the progression of frequencies

F (t ) = 1

T (t )
=

√
φ(t )5 (58)

We preserve the space-time equivalence by using

X (t ) =V (t ) ·T (t ) = 1√
φ(t )3

(59)

as the progress for distances.
The masses we progress with equation (25). We want to preserve the PLANCK constant in time and use

M(t ) = 1

X (t ) ·V (t )
=√

φ(t ) (60)

To preserve the mass-energy equivalence, we use for the progress of energies

E(t ) = M(t ) ·V (t )2 =
√
φ(t )5 (61)

Throuhout the definitions we expected both, the PLANCK constant and the gravitation constant to be true con-
stants in time. As a test of consistency this should be proven. Both parameter consist of a number multiplied to a unit.
The progress of the unit determies the progress of the parameter.
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The unit of the PLANCK constant is [h] = kg ·m2/s. The progress φh() of the PLANCK constant is

φh(t ) = M(t ) ·X (t )2

T (t )
=

√
φ(t ) ·φ(t )3√

φ(t )5
= 1 (62)

The PLANCK constant is a true constant in time.
The unit of the gravitation constant is [G] = m3/(kg · s2). The progress φG (t ) of the gravitation constant is

φg (t ) = X (t )3

M(t ) ·T (t )2 =
√
φ(t )−9√

phi (t ) ·φ(t )−5
= 1 (63)

The gravitation constant is a true constant in time. So far, the definitions are consistent.
The progress of the limits for all other dimensions can be obtained similar, using theese relations.

5.2 Determining φ(t )

What is left, is defining the progress of velocities φ(t ) (see equation (56)). The model developed in this section is on
target. It is identical to the inverse of a relativistic longitudinal DOPPLER effect ([28]). If You do not like it, provide
another. Actually, it is pure speculation but provides reasonable results.

We expect from our experience, that each second the time horizon ct will increase by exactly one second. Looking
backward, we get for the relative time rt = t/ct the time dependend time horizon

ct (t ) = T (t ) · ct = (1− rt ) · ct (64)

If you compare equation (64) with equation (57) you may observe, that reality has a distorted opinion, on what is
right and proper for a time progression in time.

As a model for the space, we asume looking at a globe. We parametrize with an angle α and asume, that rt is the

sine of that angle. With cos(α) =
√

1− sin(α)2 we get for the time dependend space horizon

cx (t ) = X (t ) · cx = cos(α) · cx =
√

1− r 2
t · cx (65)

If we asume cx (t ) and cx as vectors, then cx (t ) rotates in time until it becomes vertical to cx and thus, invisible.
The progress of time (aka φ(t ), equation (56)) is observed by the division of the progress of space and time

V (t ) =φ(t )

=X (t )

T (t )

=
√

1− r 2
t

1− rt

=
√

(1+ rt )(1− rt )

(1− rt )2

=
√

1+ rt

1− rt
(66)

This model seems to yield reasonable results. To adjust it to observations, it might be necessary to switch to an
ellipsoid instead of a globe. Unlike the progression needed by equation (51), this progression increases with time.
With the law of relative identity (42) the parameter rt can be replaced with rv (as used as an inverse relation for the
relativistic longitudinal DOPPLER effect, [28]) or rx .

5.3 Calculation

Now we have all ingredients to calculate the fully relativistic redshift. We can use equation (59) directly in equation (48)
and get

z =λo

λe
−1 (67)

=
√
φ(t )3 −1 (68)

reformulated
3
√

(z +1)2 =φ(t ) (69)
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With the φ(t ) of equation (66) we get

3
√

(z +1)2 =
√

1+ rt

1− rt
(70)

3
√

(z +1)4 =1+ rt

1− rt
(71)

and finally

rt =
3
√

(z +1)4 −1
3
√

(z +1)4 +1
(72)

Figure 1, page 9, shows the result compared to estimations with the standard model and the classic calculation.
Compared to the standard model, it tends to a denser and more homogenous distribution of objects.

However, the calculation asumes, that the sended spectrum is identical as of today. The electromagnetic spectrum
of an atom is anti-linear to the RYDBERG constant R∞, λ−1 ∼ R∞ ([29]), which is a parameter in time and not constant
at all. It has a unit of an inverse distance and progesses inverse to X (t ) of equation (59). Since the wavelength is
anti-linear, the wavelength progresses as of X (t ). We have a combined redshift z

z = z1 + z2 (73)

with z1 the redshift caused by the shifted spectrum and z2 the redshift caused by the distance between sending and
receiving. Both are identical. We get for the redshift

z =z1 + z2

=
√
φ(t )3 −1+

√
φ(t )3 −1

=2 ·
√
φ(t )3 −2 (74)

This changes equation (69) to

3

√(
z +2

2

)2

=φ(t ) (75)

and equation (72) to

rt =
3
√( z+2

2

)4 −1

3
√( z+2

2

)4 +1
(76)

As is shown in figure 1, the distances are reduced further compared to thoose of the standard model.

6 Mass Loss and Time Gain

The progress of section 5.1 applies to all dimensions, not just the distance. Say, we have weighted a mass at time t ago
and obtained the result xm(t ) = rm(t ) · cm . Now we weight the mass anew and obtain the result xm = rm · cm . We get
from equation (60)

rm = rm(t )√
φ(t )

=rm(t ) · 4

√
1− rt

1+ rt
(77)

or reformulated with δ= rm(t )/rm

rm(t )

rm
= 4

√
1+ rt

1− rt

rt =δ
4 −1

δ4 +1
(78)

The equation (77) yields to a loss of mass in time. It is about 1−√
φ(1y) ≈ −3.62 · 10−11 relative per year. The

Reality-Sucks theory is the only theory predicting such a mass loss. However, the measurement is difficult to observe.
Any other mass to compare with progresses identical. The mass loss must be observed indirectly with the comparition
with other dimensions, like the density of a substance. The density progresses with φ(t )8, which leads to a change of
about −6 ·10−10 relative per year.
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If you are looking for “dark matter” or “dark energy” the equations (60) and (61) will give you some. In addition the
more homogenous and dense distribution of objects (section 5.3) may have an effect.

As any other dimension time has a progression in time. If you observe a period time of a cepheid star ([31]) you
must apply equation (57) to the observed period time. This may help with the problems of using cepheids as standard
candles ([32]). With equations (55) and (57) we get for a sended period t1 sended a time t ago

t1 =
√
φ(t )5 ·T1 (79)

The observed period has gained time.

7 Conclusion

Sometimes it is astonishing, where science leads you. All i wanted, was solving the riddle about the mathematical
properties of measurements (section 2). What i got is a model of the universe combining relativistic and quantum
theories. This will surely get me into trouble with the science. Nobody will believe that. It was an accident, really.

The model presented in this article is mathematical correct (or should be) and uses consistent asumptions. Unlike
the models used today, which asume properties of measurements they do not have (see sections 2.1 and 2.2). There is
some possability, that the weak an strong interaction (see section 3), “dark matter” and “dark energy” (see section 6)
vanish. I do not have enough knowledge of the matter, to prove this.

When looking at the universe, we look at a globe of discrete space, distorted in time. It is a small wonder, that we
have difficulties to describe such a universe. It is outside of all our experiences. I for one am unable to imagine such a
universe and propose publicy the hypothesis, that reality sucks. The proof you just have read. You do not want to live
in such a universe.

It’s fun, though. Do with that, what you like.
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A Table of Galaxies

Since i neither have the knowledge nor the experience to evaluate astronomical data bases, i have copied the distances
and redshifts of some galaxies from Wikipedia.

Name Redshift Distance [109Ly] source
3 C 295 0.464 4.6 [33]
3 C 9 2.0194 10 [34]
PKS 2000-330 3.773 11.7 [35]
RD1 5.34 12.5 [36]
PSO J172.3556+18.7734 6.82 13.107 [37]
LAE J095950.99+021219.1 6.944 13.126 [37]
IOK-1 6.964 13.129 [37]
G2-1408 6.972 13.13 [37]
BDF-521 7.008 13.135 [37]
A1703 zD6 7.045 13.14 [37]
ULAS J1120+0641 7.085 13.146 [37]
BDF-3299 7.109 13.149 [37]
GN-108036 7.213 13.164 [37]
SXDF-NB1006-2 7.215 13.164 [37]
GS2_1406 7.452 13.195 [37]
A1689-zD1 7.5 13.201 [37]
z8 GND 5296 7.51 13.202 [37]
J0313-1806 7.64 13.218 [37]
z7 GSD 3811 7.66 13.22 [37]
EGS-zs8-1 7.73 13.228 [37]
BoRG-58 8 13.258 [37]
GRB 090423 8.2 13.3 [37]
MACS0416 Y1 8.31 13.311 [37]
A2744 YD4 8.38 13.318 [37]
UDFy-38135539 8.6 13.317 [37]
UDFy-33436598 8.6 13.317 [37]
EGSY8p7 8.68 13.346 [37]
MACS1149-JD1 9.11 13.382 [37]
GRB 090429B 9.4 13.383 [37]
MACS1149-JD1 9.6 13.398 [37]
A2744-JD 9.8 13.412 [37]
SPT0615-JD 9.9 13.419 [37]
MACS0647-JD 10.7 13.467 [37]
GN-z11 11.09 13.508 [37]
UDFj-39546284 11.9 13.6526 [37]
GLASS-z13 13.1 13.593 [37]
HD1 13.27 13.599 [37]
CEERS-93316 16.7 13.687 [37]
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