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Abstract

We consider how quantum mechanics might be when measuring commuting observables if we
accept the Kronecker delta. Quantum mechanics is reduced to classical theory when we consider
only commuting observables. Using this fact, we discuss an inconsistency within quantum mechanics
when accepting the Kronecker delta without extra assumptions about the reality of observables. One
of the objectives of this paper is for us to remain wondering the extension of quantum mechanical
axiom to concrete commuting observables themselves.
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I. INTRODUCTION

Quantum mechanics (cf. [1—7]) is an important physi-
cal theory in order to explain the microscopic behaviors
of the nature. The Kochen-Specker theorem based on
the Kronecker delta is discussed by Nagata, Patro, and
Nakamura [8]. The Kronecker delta is explained as fol-
lows: The two-variable function δll′ that takes the value
1 when l = l′ and the value 0 otherwise. If the elements
of a square matrix are defined by the delta function, the
matrix produced will be the identity matrix [9].

Nagata et al. derive [10—12] some inconsistency in
quantum mechanics. Barros claims in [13] that the in-
consistencies do not come from quantum mechanics, but
from extra assumptions about the reality of observables.
We suppose the inconsistency comes from quantum me-
chanics, without extra assumptions about the reality of
observables. We show here the inconsistency in a unitary
space when measuring commuting observables.

We discuss some inconsistency comes from quantum
mechanics using commuting observables σ1

z
and σ2

z
if we

introduce the Kronecker delta. We do not introduce
an assumption about the reality of observables because
we consider only commuting observables. And we show
here the inconsistency in an arbitrary dimensional uni-
tary space when measuring commuting observables.

In this paper, we discuss there is some inconsistency
within quantum mechanics when we limit ourselves to
commuting observables and we introduce the Kronecker
delta. One of the objectives of this paper is for us to
remain wondering the extension of quantum mechanical
axiom to concrete commuting observables themselves.

We define an inconsistency as follows, when consider-
ing only two commuting Hermitian matrices:

1. Define two commuting Hermitian matrices A1, A2.

2. Define a two-variable function f(X,Y ), where f is
an appropriate function andX,Y are two variables.

3. Derive a value of f(A1, A2) = a by substituting
A1, A2 into X,Y , respectively, without the prop-
erty of the Kronecker delta.

4. Introduce the Kronecker delta.

5. Derive another value of f(A1, A2) = b( �= a) under
the supposition that we use the Kronecker delta.

6. We cannot assign simultaneously the truth value
“1” for the two suppositions f(A1, A2) = a and
f(A1, A2) = b.

7. Confirm the inconsistency derived only by the two
commuting Hermitian matrices A1, A2.

The paradox cannot be avoidable by Matrix theory be-
cause of the Kronecker delta. In what follows, we apply
such an inconsistency into quantum mechanics based on
the nature of Matrix theory.

II. HOW QUANTUM MECHANICS MIGHT BE

WHEN MEASURING COMMUTING

OBSERVABLES

In this section, we want to discuss our argumentations
in the qubit system. Let σ1

z
, σ2
z

be two z-component Pauli
operators, where they are also supposed to be commuta-
tive. They could be defined respectively as follows:

σ1
z
≡

�
1 0
0 −1

�
and σ2

z
≡

�
1 0
0 −1

�
. (1)

Let | ↑� and | ↓� be eigenstates of σz such that σz | ↑� =
+1| ↑� and σz| ↓� = −1| ↓�. The measured results of
trials are either +1 or −1.

Let us consider a simultaneous eigenstate of σ1
z
, σ2
z
,

that is, | ↑↓�. In Physics, practically quantum mechanics
uses +1 and −1. So we mainly consider +1 and −1. Let
us consider a simultaneous eigenstate of σ1

z
and σ2

z
. We

might be in an inconsistency when the first result is +1
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by the measured observable σ1
z
, the second result is −1

by the measured observable σ2
z
, and then [σ1

z
, σ2
z
] = 0.

We consider a value V which is the sum of two data in
an experiment. The measured results of trials are either
+1 or −1. We suppose the number of trials of obtaining
the result −1 is equal to the number of trials of obtaining
the result +1. We can depict experimental data r1, r2 as
follows: r1 = +1 and r2 = −1. Let us write V as follows:

V =

2�

l=1

rl. (2)

We are very interested in the following value:

V × V =

�
2�

l=1

rl

�2
=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

. (3)

Surprisingly, we cannot define V × V as zero as shown
below.

Without the property of the Kronecker delta, we have

V × V × δll′ =

�
2�

l=1

rl

�2
δll′

= ((+1) + (−1))2δll′ = 0× δll′ = 0. (4)

We derive a necessary condition of the product V ×V ×δll′
of the value V without the property of the Kronecker
delta. In this case, we have the calculation result as

(V × V × δll′) = 0. (5)

This is the necessary condition without the property of
the Kronecker delta.

In the following, we evaluate another value of (V ×
V × δll′) and derive another necessary condition within
the property of the Kronecker delta.

We introduce the Kronecker delta then we have

V × V × δll′

=

�
2�

l=1

rl

�2
× δll′

=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

× δll′

=

2�

l=1

(rl)
2 = 2. (6)

Clearly, we have the calculation result as

(V × V × δll′) = 2. (7)

These argumentations are possible for the case that we
utilize the property of the Kronecker delta. We cannot
assign simultaneously the truth value “1” for the two
suppositions (5) and (7). We derive the inconsistency
when we utilize the property of the Kronecker delta.

In summary, we have been in the inconsistency when
the first result is +1, the second result is −1, and then
[σ1
z
, σ2
z
] = 0, where the quantum state is a simultaneous

eigenstate of σ1
z
, σ2
z
, that is, | ↑↓�.

III. HIGH DIMENSIONAL SPACE

Let us move ourselves to the general case. Especially,
we show here the inconsistency in an arbitrary dimen-
sional unitary space when measuring commuting observ-
ables. Let A1, A2 be two commuting Hermitian opera-
tors. Let us consider a simultaneous eigenstate of A1
and A2. We might be in an inconsistency when the first
result is x by the measured observable A1, the second re-
sult is y( �= x) by the measured observable A2, and then
[A1, A2] = 0.

We consider a value V which is the sum of two data in
an experiment. The measured results of trials are either
x or y. We suppose the number of trials of obtaining the
result x is equal to the number of trials of obtaining the
result y. If the number of trials is two, then we have

V = x+ y. (8)

We derive a necessary condition of the product V ×V ×δll′
of the value V without the property of the Kronecker
delta. In this case, we have the following calculation
result:

(V × V × δll′) = (x+ y)2δll′ . (9)

This is the necessary condition without the property of
the Kronecker delta.

We can depict experimental data r1, r2 as follows: r1 =
x and r2 = y. Let us write V as follows:

V =

2�

l=1

rl. (10)

In the following, we evaluate another value (V × V ×
δll′) and derive another necessary condition within the
property of the Kronecker delta.

We introduce the Kronecker delta then we have

V × V × δll′

=

�
2�

l=1

rl

�2
× δll′

=

�
2�

l=1

rl

�

×

�
2�

l′=1

rl′

�

× δll′

= x2 + y2. (11)

Clearly, we have the calculation result as

(V × V × δll′) = x2 + y2. (12)

This is possible within the property of the Kronecker
delta. We cannot assign simultaneously the truth value
“1” for the two suppositions (9) and (12). We derive
the inconsistency when we utilize the property of the
Kronecker delta. The specific case is that x = +1 and
y = −1.

In summary, we have been in the inconsistency when
the first result is x, the second result is y, and then
[A1, A2] = 0, where the quantum state is a simultane-
ous eigenstate of A1, A2.
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IV. CONCLUSIONS AND DISCUSSIONS

In conclusions, if we accept the Kronecker delta, we
have discussed there is some inconsistency within quan-
tum mechanics, even we limit ourselves to commuting
observables. One of the objectives of this paper has been
for us to remain wondering the extension of quantum me-
chanical axiom to concrete commuting observables them-
selves.

The inconsistency can be derived only by commuting
observables. Thus, non-commutativeness of Matrix the-
ory is needless for the derivation of the inconsistency
based on the Kronecker delta. The most important is
only commutativeness of Matrix theory for our purpose
as shown here.

If the problem were simply an inconsistency, there are
multiple logical systems that can cope with such a prob-
lem with robustness (see [14]).
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