A Recurrence Formula for the Sum of Divisors

Julian Beauchamp
julianbeauchamp47@gmail.com

November 13, 2022

Abstract

In this paper, we describe a simple recurrence formula for the sum of divisors.

0.1 Introduction

The divisor function, $\sigma_{k}(n)$, for any integer, n, is defined as the sum of the k th powers of the integer divisors of n, i.e. d, and represented as:

$$
\sigma_{k}(n)=\sum_{(d \mid n)} d^{k}
$$

When $k=1$ the divisor function is called the sigma function, sometimes denoted as $\sigma_{1}(n)$ but conventionally and more often denoted simply as $\sigma(n)$. Here we only consider the case $k=1$.

The first few values of $\sigma(n)$, where $\sigma(1)=1$, are (OEIS: A000203): $1,3,4,7,6,12,8,15,13,18,12,28,14,24,24,31,18,39,20,42,32,36,24,60,31,42,40 \ldots$

It is known that if p is prime and x is any positive integer, then:

$$
\begin{equation*}
\sigma\left(p^{x}\right)=\left(p^{x+1}-1\right) /(p-1) . \tag{1}
\end{equation*}
$$

Euler proved the following recurrence:

$$
\begin{aligned}
\sigma(n) & =\sigma(n-1)+\sigma(n-2)-\sigma(n-5)-\sigma(n-7)+\sigma(n-12)+\sigma(n-15)+\cdots \\
& =\sum_{i \in \mathbb{N}}(-1)^{i+1}\left(\sigma\left(n-\frac{1}{2}\left(3 i^{2}-i\right)\right)+\sigma\left(n-\frac{1}{2}\left(3 i^{2}+i\right)\right)\right)
\end{aligned}
$$

where $\sigma(0)=n$ if it occurs and $\sigma(x)=0$ for $x<0$, and $\frac{1}{2}\left(3 i^{2} \mp i\right)$ are consecutive pairs of generalized pentagonal numbers (OEIS: A001318, starting at offset 1). Euler proved this by logarithmic differentiation of the identity in his Pentagonal number theorem.

However, here we suggest a simplified recurrence formula for the divisor function.

0.2 A Simple Recurrence Formula

Here we consider the case for compound n and then for prime n. It is well known that the following recurrence holds for compound n, where $n=s t$ (s, t coprime):

$$
\begin{gather*}
\sigma(n)=\sigma(s) \sigma(t) \tag{2}\\
\Rightarrow \sigma(n)=\sigma\left(\frac{n}{t}\right) \sigma\left(\frac{n}{s}\right) \tag{3}
\end{gather*}
$$

For example, if $n=28$, then $s=4$ and $t=7$. Since $\sigma(4)=7$ and $\sigma(7)=8$, it follows that $\sigma(28)=7.8=56$. NB $s \neq 2, t \neq 14$ since s and t must be coprime.

What is less well-known, though unlikely original, is the case for prime n and powers of primes. We let $n=p$ and generalise the powers such that:

$$
\begin{equation*}
\sigma\left(p^{x}\right)=p \cdot \sigma\left(p^{x-1}\right)+1 \tag{4}
\end{equation*}
$$

For example, it is well-known that when $x=0$ then $\sigma(p)=p+1$. But if, say, $p^{x}=7^{3}=343$, then $p^{x-1}=7^{2}=49$. Since $\sigma(49)=57$, it follows that $\sigma(343)=7.57+1=400$.

