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A set of programs for the numerical simulation of the diffusion decomposition processes was 

developed by using simulation methods, kinetic and particle method. The complex has been validated on 

the model system Ni-Al by the growth of -phase separations. The results on the evolution of the distribution 

function and other characteristics of the ensemble, which in the zero volume fraction approximation are 

asymptotically in good agreement with the theory and the experiment, have been obtained. The peculiarity 

of the created program complex is the possibility of its adaptation to the description of the decomposition 

of multicomponent multiphase systems. 
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Introduction 

 

Diffusion decomposition of supersaturated solid solutions, which consists in the nucleation and 

subsequent growth of new phase precipitates, is the process, which leads to formation of heterogeneous 

structures with definite volume distribution of macro defects in a solid. This phenomenon is widely used in 

the technology of aging alloys for the production of high-strength steels, composite materials, heat-resistant 

alloys based on nickel, aluminum, etc. 

  At the same time, decomposition can present a serious danger in deterioration of material 

properties due to undesirable growth of various defects (precipitations, pores, etc.) during operation, 

actually limiting the resource life of the material.  This, in fact, determines the enormous role that diffusion 

decomposition processes play in the formation and evolution of various structural-sensitive properties of 

solids. Without taking into account the distribution, interaction and kinetics of macrodefects it is impossible 

to give a correct physical picture of the behaviour of real materials under external influences and, 

consequently, it is impossible to program scientifically the creation of materials with improved parameters 

and to optimise their performance characteristics. 

A consistent theory of diffusion decay at a late stage due to diffusion interaction of macrodefects is 

constructed in [1,2]. Even approximatedly formulated systems of equations are very complicated and can 

be fully analytically solved only asymptotically in time, not to mention more rigorous and more complex 

descriptions. This is especially true for multicomponent disperse systems, which admit an analytical 

description only in a small number of limiting cases. 

In this connection, many physically interesting and practically important questions remain outside 

the limits of analytical research in the theory of diffusion decomposition - the study of kinetics of transition 

of a disperse system to an asymptotic state, construction of state and nonequilibrium diagrams of decay of 

multicomponent systems, investigation of cyclic thermomechanical treatment of disperse structures, etc. 

Some of these problems can be successfully solved by numerical simulation methods. Despite their 

great promise, only a small number of works on diffusion decomposition have been performed with their 

help so far [3, 7].  

The purpose of this work is to develop a set of programs for computers that allows one to 

numerically simulate the processes of diffusion decomposition of supersaturated solid solutions. The 

second section formulates the basic equations of the diffusion decomposition theory necessary for modeling 

and specifies two possible ways of their numerical solution. The third section describes the calculation 

algorithms and the capabilities of the software package. Finally, the fourth section presents the results of 

simulation of the decomposition process in the Ni-Al system and the software validation. 

The peculiarity of the created complex is the possibility to adapt it to the description of the 

decomposition of multicomponent multiphase systems, which is the next stage of the research cycle. 

 

2. Basic equations 

 



Let us consider an ensemble of spherical emanations with radii Ri
, dispersed in a matrix M  

The equilibrium concentration cRi

at the surface of the radius Ri
extrusions depends substantially on 

Ri
 [1] 

 

R
cc

i
Ri





,                                                                                     (1) 

which leads to the flux J Ri

from small emission into the matrix and from the matrix to large 

emission 
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, c

is the concentration of the saturated solution.   - interfacial surface 

energy, V - volume of the solute atom, D - its diffusion coefficient in the matrix. 

To describe the behavior of a polydisperse ensemble, it is necessary to solve the complex diffusion 

problem  
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When solving it one usually passes to description of diffusive growth of one selection with average 

concentration cc r 
 away from the selection, determined by the law of conservation of dissolved 

matter. The procedure of averaging is considered in detail in [8]. The change of sizes is taken into account 

by solving the continuity equation in the space of sizes of extractions. Following [1,2], we write in zero 

approximation the system of equations 
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Here ),( tRf is the function of emission size distribution at time t , normalized to the number of 

emission per unit volume 
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- total number of atoms of dissolved matter in the system (in the matrix and in the excretions); 

cc 
 -  supersaturation; 





Rk
-- critical radius of excretions. 

Supplementing (4) with the initial conditions 
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we obtain a closed system of equations. Describing in the accepted approximations the late stage of 

diffusion decomposition. 

The growth of macrodefects at this stage, when supersaturation is already very small, is essentially 

determined by the balance of point defects, the number of which in the solid solution becomes insufficient 

to provide simultaneous independent growth of all elements of the ensemble. A "diffusion interaction" 

arises between the macrodefects, when each macrodefect "feels" the self-consistent diffusion field of point 

defects determined by the whole ensemble. The developing competition for a power source leads to the fact 

that the growth of macrodefects occurs due to diffusive mass transfer of matter from smaller-sized 

macrodefects to larger ones. 

Such an unusual behavior of an ensemble, as shown in the theory [1,2], causes the existence of a 

stable asymptotic state characterized by a universal macrodefects size distribution function and a cubic 

growth kinetics of average sizes  tR 
3

. These conclusions turn out to be true also when generalizing 

the decay theory to much more complex multicomponent disperse systems [9,10]. Numerous experiments 

[11-14] confirm the correctness of the theoretica l notions. 

Note that the system of equations (3) corresponds to an approximation of the zero volume fraction 

of the discharges ( 0
0
Q , lR  , where l -the average distance between the discharges). The form of 

equations (4a) and (4b) changes at 0
0
Q . In the first approximation, the changes 

dt

dR
at 0

0
Q are 

obtained in [8]. The algorithm for solving the modified equation (4d), taking into account the particle 

fusion mechanism, is given in (15), and numerical calculations are given in [16]. Using equations (4), it is 

possible to construct computational procedures for modeling polydisperse ensemble in the accepted 

approximations. 

Different approaches to the construction of computational models are possible. One of them is based 

on the solution of the kinetic equation in partial derivatives (4b). The advantage of the method is the 

possibility to work with the integral characteristics of the ensemble and a high counting speed. However, in 

this model, it is not yet possible to give a consistent procedure for the following approximations due to the 

enormous mathematical difficulties arising in solving the more complex kinetic equation. 

Another method is the particle method based on the solution of the diffusion problem (3) with 

appropriate boundary conditions. The particle method, allowing a more detailed description of an 

ensemble, in principle allows one to eliminate many difficulties related to approximations accepted in the 

theory, but, unfortunately, technical capabilities of modern computers are insufficient for an exact 

description of behavior of an ensemble even of several particles, which forces one to introduce again 

various approximations. 

Despite these limitations, both methods can be useful for solving problems of the diffusion decay 

theory. 

The software package developed by us uses both the kinetic method and the particle method, which 

significantly expands the modeling possibilities. 

 

3. Algorithms of calculations. 

 

3.1 Кинетический метод. 

 

В силу достаточной гладкости функции распределения ),( tRf во всей области определения 

уравнение непрерывности (4б) может быть решено с помощью конечно-разностных схем. Нами 

использован метод Лакса-Вендроффа [17], обеспечивающий хорошую сходимость и устойчивость 

при правильном выборе сетки. 

Пусть функция распределения в t1
момент времени определена в области RR k

0 . 

Покроем данную область сеткой с n узлами и рассмотрим значения функции распределения в узлах 

этой сетки. 



Due to sufficient smoothness of the distribution function ),( tRf in the entire domain of 

determination, the continuity equation (4b) can be solved using finite-difference schemes. We have used 

the Lax-Wendroff method [17], which ensures good convergence and stability if the grid is chosen 

correctly. 

Let the distribution function at a point in time be defined in the domain RR k
0 . Let us cover 

this region with a grid with nodes and consider the values of the distribution function in the nodes of this 

grid. 

Let the distribution function at time t1
 be defined in the region k. Let us cover the given region with 

a grid with nodes and consider the values of the distribution function in the nodes of this grid.  
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Fig. 1. The scheme of the Lax-Wendroff method 

 

The Lax-Wendroff method is a two-step method. To calculate the values f
j
  ( nj0  ), the 

values of the distribution function at the three grid points of the previous time layer are used f
j 1

, 

f
j
and f

j 1
.  First, we calculate the values of the distribution function at two intermediate points 
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12 RRp jj 
  at the point in time 2/tt j

 , then using the 

calculated values at the intermediate points we directly calculate f
j
 . 

We use the following difference schemes to replace equation (4b): 

(a) on the intermediate layer 
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b) on the layer  tt 
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for all nj0 . 

It is proved in [17] that this method has accuracy of order h 2 and is stable when a time step 

satisfying the condition  

 Vh
t

max

1
2

 . 

 

The Lax-Wendroff method makes it possible to calculate the values of the distribution function, 

based on equation (7), on the next time layer for all grid points in the domain of determination f , except 

for the boundary one. If on the left boundary at 0r , 0
0
f , the change h  )(Rk

V )(Rk
f should 

be specified separately. Let us use equation (4a) and take into account that at small ones h  )(Rk
V it 

practically does not change. In this case the values )(
1

ttf
n

 will be calculated by formula  

t
h

VV RfRf
ff

nnnn

nn






)()(

11
                                                   (8) 

In addition to calculating the distribution function value at the rightmost point of the grid, you 

should also take into account that the right boundary of the distribution function definition changes with 

every time step. Therefore the program continuously monitors the change in the distance of the rightmost 

point of the distribution function definition from the rightmost point of the grid for each time interval t . 

If, after the next time step, this distance exceeds the value of the grid step h , then the number of grid 

nodes, i.e., the area of the function definition and thus , used in equations (6) - (8), changes. The choice of 

the time step depends (inversely) on the maximum rate of change in the radius of separation. The growth 

rate reaches its maximum values at small radii. Therefore, the following procedure is implemented to speed 

up the counting. 

1. The area where the distribution function is defined is divided into two subareas. Partitioning 

criteria can be different, for example, a given number of grid points in the first subregion or a given 

percentage of substance in it. Suppose in this case that the boundary point between subareas is a point m  

(i.e., the first region is defined at R j
, mj .....1 , , , and the second region is defined at R j

, 

nmj .... ). 

2. Calculate V max
and t2

 for the second region and correspondingly new values of  f
j
  

1,...  nmj . 



3. The multiplicity coefficient 

t
t

M
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 is calculated V max

and t1
 for the first region as well, 

and an iterative process of calculating f
j
 , mj ,...1 by equations (6)-(8) is performed M once. 

The use of such an algorithm allows speeding up the modeling process by a factor of 8 to 20. 

 

 

3.2. Particle method. 

 

3.2. Particle method. 

 

Choose a large enough volume element W in the matrix M and divide it by a cubic lattice into 

N i
cells of size RL . In the center of each cell we place a graduation with radius ),( trRR ii


   

(r i


-radius-vector of the center of i -one selection in the chosen coordinate system, Using Monte 

Carlo method, the selections are thrown into the cells from the given initial distribution f
0

, so that 

normalization (4g) is performed. To eliminate the ordering effect, the coordinates of the centers are 

randomized, but so that the selection does not go beyond the cell  and the distance between the selections in 

neighboring cells l  significantly exceeds their radii (( Rl  ). This choice makes it possible to further 

adapt the program to the solution of the diffusion problem in the non-zero volume fraction approximation 

(the approximation of the selections R ~ l ). 

Since the kinetic method operates with equations (4) obtained in the self-consistent diffusion field 

approximation, the same approximation (4a, 4c) is used for the particle method to compare the simulation 

results of both methods. 

By discretization of equations (4a), (4c) we have to calculate the ensemble state  R
n
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where )(Ri
V in the accepted approximations is given by equation (4a) or refined by a more 

rigorous solution of the diffusion problem (3). 

Using the first-order Euler method for approximation of integrals, which consists in replacing the 

integrand function on the segment by the value of this function at the moment, determining the 

supersaturation from the equation of balance of matter (4c), we can fully determine the state of the 

ensemble at the (n+1) step. For the numerical stability of this difference scheme, the time step at each time 

layer must satisfy the condition 2(Rn)2/D. The accuracy of such a scheme is of the order of . 

Applying an implicit Euler method the essence of which consists in the replacement of the integrand 

function by the half-sum of its values at (n} and (n+1) steps we can increase the accuracy of calculation 

Rin+1 up to (t )2 . 

Moreover, the stability of this scheme is absolute and does not depend on the choice of step. Some 

difficulties in this method are related to the fact that Rin+1 at (n+1} steps should be determined from an 

implicit equation, which leads to an increase in counting time. 

An even higher accuracy (of the order of ( t)4) can be achieved using the Runge-Kut method, in 

which the function value is approximated by a four-point polynomial of the fourth power. The scheme also 

has high numerical stability. Its disadvantages are the same as those of the implicit scheme. 

The program provides for the use of all three computational schemes. For sufficiently large 

selections, we select the maximum time step close to the stability boundary and use the first-order Euler 

scheme. For small separations, the accuracy of the separations and stability are improved by switching to 



an implicit scheme. Finally, calculations for the smallest separations are performed by the Runge-Kutta 

method. 

At any time step, the evolution of histograms, central moments (mean size, dispersion, asymmetry, 

kurtosis), as well as total number of particles, oversaturation, and volume fraction of extractions can be 

visualized if necessary, which are compared with the corresponding theoretical asymptotic values using 

matstatistics methods. 

 

4. Results 

 

The initial data corresponding to the AlNi  system in which the -  phase - Ni 3 Al  evolution 

grows during annealing were chosen for modeling. This system is convenient as an object of modeling, 

first, because the   -phase emission in Ni can be represented as one-component emission, which allows 

us to compare the results of modeling with the theory [1,2], and second, this system has been studied in 

detail experimentally [18,19]. 

A normal distribution and a rectangular step are chosen as the initial distribution function for testing 

the program. 

The initial data used for the simulation are as follows: 

 
c 12,0747·10-2 

c0
12,039·10-2 

D 1,81·10-12 см2/c 

 12,0747·10-2 эрг/см2. 

The initial emission number is 105 in the simulated volume, which corresponds to the emission 

density in the experiments [18] with which the comparison was made. 

Figure 2-6 shows the simulation results of both kinetic and particle methods, which are in good 

agreement with each other. Over time, as can be seen in Fig. 2, the original distribution function 

transforms, approaching more and more asymptotically in time to the universal distribution function 

( )(uP ( u R/Rk) predicted by theory [1,2]. Not only qualitative but also quantitative agreement with the 

theory is found in the asymptotic behavior of the other ensemble characteristics ( R 3 ~ t ,  ~ t -1/3, N ~ 

t -1) (Figs. 3-6).  

 

 



 

Fig. 3. The transformation of the distribution function in comparison with the 

universal distribution function (R/Rk), predicted by the theory. 

 

Fig. 4. Kinetics Ravg)
3= f(t). 

 

 

 

Fig. 5. Evolution of saturation  ~ t -1/3. 



 

Fig. 6. Залежність N -1( t ). 

 

These results are in good agreement with experimental data [18,19]. 

 

5. Conclusions 

 

1. We have developed a set of programs for the numerical simulation of the processes of diffusion 

decomposition of disperse systems, including two methods of simulation: the kinetic method and the 

particle method. 

2. Numerical experiments on the growth of the precipitates in a model system AlNi  have been 

carried out . 

3. The results on the evolution of the distribution function and other characteristics of the ensemble 

are obtained which asymptotically agree with the theory and the experiment in the zero volume fraction 

approximation. 

4. Diffusion decay modeling by the kinetic and particle method yields well consistent results. 
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