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Abstract

Based upon our assertion, there is an inconsistency in von Neumann’s theory. Barros discusses
the inconsistencies do not come from von Neumann’s theory, but from extra assumptions about the
reality of observables. von Neumann’s theory is equivalent to Newton’s theory when we consider
only commuting observables. Using this fact, we discuss there is an inconsistency, probably due to
the nature of Matrix theory based on non-commutativeness, within von Neumann’s theory. That
is, we may omit extra assumptions about the reality of observables. The main result is that von
Neumann’s theory is not consistent when measuring only one observable.
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I. INTRODUCTION

von Neumann’s theory (cf. [1—5]) is a physical theory.
Recently, Nagata and Nakamura claim [6, 7] to derive an
inconsistency in von Neumann’s theory. Barros discusses
[8] that the inconsistencies do not come from von Neu-
mann’s theory, but from extra assumptions about the re-
ality of observables. We discuss the inconsistency comes
from von Neumann’s theory, without extra assumptions
about the reality of observables. We show here the incon-
sistency in an arbitrary dimensional unitary space when
measuring commuting observables/an observable, which
is based on Newton’s theory.

We notice that von Neumann’s mathematical model for
quantum mechanics is quite logically successful. And the
axiomatic system for the mathematical model is a very
consistent one. Thus, we cannot say that von Neumann’s
mathematical model has an inconsistency. What is the
inconsistency to be discussed in this paper? We can-
not expand the von Neumann’s beautiful mathematical
model more in handling real experimental data. Mathe-
matically, von Neumann’s model is logically very consis-
tent, which fact is true. However, von Neumann’s theory
is questionable in the sense that the mathematical model
does not always expand to real experimental data. And
there is the inconsistency if we apply the von Neumann’s
model to expanding even a simple physical situation. In
short, von Neumann’s mathematical model might not be
useful in that case.

The inconsistency to be discussed in this paper is very
impressive. von Neumann’s mathematical model has the
qualification to be very true axiomatic system for quan-
tum mechanics. Therefore, we cannot modify the axioms
based on the nature of Matrix theory. Nevertheless, we
encounter an inconsistency, probably due to the nature
of Matrix theory based on non-commutativeness, within
von Neumann’s theory.

Here, we discuss there is an inconsistency within von

Neumann’s theory even for commuting observables. We
do not introduce extra assumptions about the reality of
observables because we consider only commuting observ-
ables. We suppose the two measured observables are
commutative. We introduce a supposition that the oper-
ation Addition is equivalent to the operation Multiplica-
tion and we have an example of an inconsistency, proba-
bly due to the nature of Matrix theory based on non-
commutativeness. Finally, we discuss von Neumann’s
theory is not consistent when measuring only one ob-
servable.

II. VON NEUMANN’S THEORY FOR TWO

COMMUTING OBSERVABLES

Though doing later, we dare to introduce firstly a sup-
position that the sum rule is equivalent to the product
rule [9, 10] for the purpose of showing our interesting
objective obtained here [11]. The supposition that the
sum rule is equivalent to the product rule means a sup-
position that the operation Addition is equivalent to the
operation Multiplication (see [12]).
Let A1, A2 be two Hermitian operators, where they are

also supposed to be commutative. They could be defined
respectively as follows:

A1 ≡

�
1 0
0 1

�
, A2 ≡

�
−1 0
0 1

�
. (1)

Let us consider a simultaneous eigenstate of A1, A2, that
is, |Ψ�, such that

�Ψ|A1|Ψ� = +1, �Ψ|A2|Ψ� = −1. (2)

Thus, the measured results of trials are either +1 or −1.
First, we define the functional rule as follows:

f(g(O)) = g(f(O)), (3)
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where O is an Hermitian operator and f, g are appropri-
ate functions. Second, the sum rule is defined as follows:

f(A1 +A2) = f(A1) + f(A2). (4)

Finally, the product rule is defined as follows:

f(A1 ·A2) = f(A1) · f(A2). (5)

This fact above is based on the property of these two Her-
mitian operators themselves. This leads to the proposi-
tions that they are valid even for the real numbers of the
diagonal elements of the two Hermitian operators.
We may have [3, 13, 14] the following relation between

the three rules which are valid for the commuting observ-
ables:

The functional rule

⇔ The sum rule

⇔ The product rule (6)

The Kochen-Specker theorem says the situation that
some quantum observables do not commute [15]. Our
argumentations can be based on the two commuting ob-
servables. We may introduce a hidden variable theory
in handling real experimental data [16]. We can intro-
duce the supposition that the sum rule is equivalent to
the product rule when all the measured observables com-
mute simultaneously. Notice we consider only the two
commuting observables here.

III. VON NEUMANN’S THEORY IS NOT

CONSISTENT

We might be in an inconsistency when the first re-
sult is +1 by the measured observable A1, the second
result is −1 by the measured observable A2, and then
[A1, A2] = 0. In general, the physical situation is ei-
ther [A1, A2] �= 0 or [A1, A2] = 0. However we may
be in the inconsistency when we suppose [A1, A2] = 0,
probably due to the nature of Matrix theory based on
non-commutativeness.
We consider a value V which is the sum of two data in

an experiment. The measured results of trials are either
+1 or −1. We suppose the number of −1 is equal to the
number of +1. If the number of trials is two, then we
have

V = (+1) + (−1) = 0. (7)

We derive a general necessary condition of the product
V × V of the value V . In this general case, we have

V × V = 0. (8)

This is a general necessary condition for either [A1, A2] �=
0 or [A1, A2] = 0.
We can depict experimental data r1, r2 as follows: r1 =

+1 and r2 = −1. Let us write V as follows:

V = r1 + r2. (9)

In the following, we evaluate a value (V ×V ) and derive
a specific necessary condition under the supposition that
the two measured observables are commuting. That is,
[A1, A2] = 0.
We introduce a supposition that the sum rule is equiv-

alent to the product rule [9, 10]. The supposition that
the sum rule is equivalent to the product rule means a
supposition that the operation Addition is equivalent to
the operation Multiplication (see [12]). Then, we have

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= (r1)
2 + (r1 + r2) + (r2 + r1) + (r2)

2

= (r1)
2 + (r1 + r1) + (r2 + r2) + (r2)

2

= (r1)
2 + (r1 × r1) + (r2 × r2) + (r2)

2

= 2((r1)
2 + (r2)

2)

= 2((+1)2 + (−1)2) = 4. (10)

Thus,

V × V = 4. (11)

This is possible for the specific case [A1, A2] = 0.
We cannot assign simultaneously the truth value “1”

for the two suppositions (8) and (11) when [A1, A2] = 0.
We derive the inconsistency when [A1, A2] = 0.
In summary, we have been in the inconsistency when

the first result is +1, the second result is −1, and then
[A1, A2] = 0.

IV. GENERAL CASE

Let us move ourselves into the more general case. Es-
pecially, we discuss von Neumann’s theory is not consis-
tent when measuring only one observable.

A. The first result is not equal to the second result

We might be in an inconsistency when the first result is
x by the measured observable A1, the second result is not
x by the measured observable A2, and then [A1, A2] = 0.
In general, the physical situation is either [A1, A2] �= 0
or [A1, A2] = 0. However we may be in the inconsistency
when we suppose [A1, A2] = 0, probably due to the na-
ture of Matrix theory based on non-commutativeness.
We consider a value V which is the sum of two data in

an experiment. The measured results of trials are either
x or y(�= x). We suppose the number of x is equal to the
number of y. If the number of trials is two, then we have

V = x+ y. (12)

We derive a general necessary condition of the product
V × V of the value V . In this general case, we have

V × V = (x+ y)2. (13)
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This is a general necessary condition for either [A1, A2] �=
0 or [A1, A2] = 0.
We can depict experimental data r1, r2 as follows: r1 =

x and r2 = y. Let us write V as follows:

V = r1 + r2. (14)

In the following, we evaluate a value (V ×V ) and derive
a specific necessary condition under the supposition that
the two measured observables are commuting. That is,
[A1, A2] = 0.
We introduce a supposition that the sum rule is equiv-

alent to the product rule [9, 10]. The supposition that
the sum rule is equivalent to the product rule means a
supposition that the operation Addition is equivalent to
the operation Multiplication (see [12]). Then, we have

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= (r1)
2 + (r1 + r2) + (r2 + r1) + (r2)

2

= (r1)
2 + (r1 + r1) + (r2 + r2) + (r2)

2

= (r1)
2 + (r1 × r1) + (r2 × r2) + (r2)

2

= 2((r1)
2 + (r2)

2)

= 2(x2 + y2). (15)

Thus,

V × V = 2(x2 + y2). (16)

This is possible for the specific case [A1, A2] = 0.
We cannot assign simultaneously the truth value “1”

for the two suppositions (13) and (16) when [A1, A2] = 0.
We derive the inconsistency when [A1, A2] = 0.
In summary, we have been in the inconsistency when

the first result is x, the second result is not x, and then
[A1, A2] = 0.

B. The first result is equal to the second result

We discuss von Neumann’s theory is not consistent
when measuring only one observable. We might be in
an inconsistency when the first result is x(�= 0) by the
measured observable A1, the second result is also x by
the measured observable A2, and then [A1, A2] = 0. In
general, the physical situation is either [A1, A2] �= 0 or
[A1, A2] = 0. However we may be in the inconsistency
when we suppose [A1, A2] = 0, probably due to the na-
ture of Matrix theory based on non-commutativeness. It
may be that we measure only one observable A, (A =
A1 = A2 and x �= 0).
We have

V = x+ x = 2x. (17)

We derive a general necessary condition of the product
V × V of the value V . In this general case, we have

V × V = 4x2. (18)

This is a general necessary condition for either [A1, A2] �=
0 or [A1, A2] = 0.
We can depict experimental data r1, r2 as follows: r1 =

x and r2 = x. Let us write V as follows:

V = r1 + r2. (19)

In the following, we evaluate a value (V ×V ) and derive
a specific necessary condition under the supposition that
the two measured observables are commuting.
We introduce a supposition that the operation Addi-

tion is equivalent to the operation Multiplication. Then,
we have

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= (r1 + r1) + (r1 + r2) + (r2 + r1) + (r2 + r2)

= 8x. (20)

Thus,

V × V = 8x. (21)

This is possible for the specific case [A1, A2] = 0.
When x �= 2, we cannot assign simultaneously the

truth value “1” for the two suppositions (18) and (21)
when [A1, A2] = 0. We derive the inconsistency when
[A1, A2] = 0.
Let us consider the case where x = 2. We introduce a

supposition that the operation Addition is equivalent to
the operation Multiplication. Then, we have

V × V

= (r1 + r2)× (r1 + r2)

= (r1 × r1) + (r1 × r2) + (r2 × r1) + (r2 × r2)

= (r1 × r1) + (r1 + r2) + (r2 + r1) + (r2 × r2)

= 2(x2 + x). (22)

Thus,

V × V = 2(x2 + x). (23)

This is possible for the specific case [A1, A2] = 0.
When x = 2, we cannot assign simultaneously the

truth value “1” for the two suppositions (18) and (23)
when [A1, A2] = 0. We derive the inconsistency when
[A1, A2] = 0.
Let us consider the case where x = 0. We see 0 + 0 =

0× 0 = 0. Thus, the supposition that the operation Ad-
dition is equivalent to the operation Multiplication does
not work in order to derive the inconsistency. Hence, we
have always V × V = 0 when x = 0. Thus, we cannot
derive the inconsistency when x = 0.
In summary, we have been in the inconsistency when

the first result is x, the second result is also x, and then
[A1, A2] = 0. Especially, we have discussed von Neu-
mann’s theory is not consistent when measuring only one
observable A, (A = A1 = A2 and x �= 0).
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V. CONCLUSIONS AND DISCUSSIONS

In conclusions, Nagata and Nakamura have claimed
[6, 7] to derive an inconsistency in von Neumann’s the-
ory. Barros has discussed [8] as follows: The inconsisten-
cies do not have come from von Neumann’s theory, but
from extra assumptions about the reality of observables.
Here we have discussed there is an inconsistency, prob-
ably due to the nature of Matrix theory based on non-
commutativeness, within von Neumann’s theory even for
commuting observables. We do not have introduced extra
assumptions about the reality of observables because we
consider only commuting observables. Finally, we have
discussed von Neumann’s theory is not consistent when
measuring only one observable.
If the problem were simply an inconsistency, there are

multiple logical systems that can cope with such a prob-
lem with robustness (see [17]).
Generally Multiplication is completed by Addition.

Therefore, we think that Addition of the starting point
may be superior to any other case.
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