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Nagata and Nakamura claim to derive an inconsistency in von Neumann’s theory [K. Nagata,
Int. J. Theor. Phys. 48, 3532 (2009)] and [K. Nagata and T. Nakamura, Int. J. Theor. Phys.
49, 162 (2010)]. Barros discusses [J. A. de Barros, Int. J. Theor. Phys. 50, 1828 (2011)] the
inconsistencies do not come from von Neumann’s theory, but from extra assumptions about the
reality of observables. The quantum theory is equivalent to classical theory when we consider only
commuting observables. Using this fact, we discuss there is an inconsistency within von Neumann’s
theory. We can omit extra assumptions about the reality of observables when we consider only
commuting observables. Finally, we present main theorem concerning von Neumann’s theory.
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I. INTRODUCTION

von Neumann’s theory (cf. [1—5]) is a physical theory.
Recently, Nagata and Nakamura claim [6, 7] to derive
an inconsistency in von Neumann’s theory. Barros dis-
cusses [8] that the inconsistencies do not come from von
Neumann’s theory, but from extra assumptions about the
reality of observables. We discuss the inconsistency come
from von Neumann’s theory, without extra assumptions
about the reality of observables. We show here the incon-
sistency by using commuting observables in an arbitrary
dimensional unitary space (d ≥ 1).

We notice that von Neumann’s mathematical model is
quite logically successful. And the axiomatic system for
the mathematical model is a very consistent one. Thus,
we cannot say that von Neumann’s mathematical model
has an inconsistency. What is the inconsistency to be
discussed in this paper? We cannot expand the von
Neumann’s beautiful mathematical model more in han-
dling real experimental data. Mathematically, von Neu-
mann’s model is logically very consistent, which fact is
true. However, von Neumann’s theory is questionable
in the sense that the mathematical model does not al-
ways explain real experimental data. And there is the
inconsistency if we apply the von Neumann’s model to
explaining even a simple physical situation. In short,
von Neumann’s mathematical model might not be useful
in that case.

Here, we discuss there is an inconsistency within von
Neumann’s theory. We do not accept extra assumptions
about the reality of observables. We suppose the two
measured observables are commutative. We introduce
a supposition that the sum rule and the product rule
commute with each other and we have an example of an
inconsistency.

II. VON NEUMANN’S THEORY FOR TWO

COMMUTING OBSERVABLES

Let A1, A2 be two Hermitian operators, where they are
also supposed to be commutative. Though doing later,
we dare to introduce firstly a supposition that the sum
rule and the product rule commute with each other for
the purpose of showing our interesting objective obtained
here [9]. A supposition that the sum rule and the product
rule commute with each other means a supposition that
the two operations Addition and Multiplication commute
with each other (see [10]). In other words, the operation
Addition is equivalent to the operation Multiplication.
They are defined respectively as follows:

A1 ≡

�
1 0
0 1

�
, A2 ≡

�
−1 0
0 1

�
. (1)

Let us consider an input state |Ψ� such that

�Ψ|A1|Ψ� = +1, �Ψ|A2|Ψ� = −1. (2)

Thus, the measured results of trials are either +1 or −1.
The functional rule is defined as follows:

f(g(O)) = g(f(O)), (3)

where O is an Hermitian operator. On the one hand, the
sum rule is defined as follows:

f(A1 +A2) = f(A1) + f(A2). (4)

On the other hand, the product rule is defined as follows:

f(A1 ·A2) = f(A1) · f(A2). (5)

This fact above is based on the property of these two
Hermitian operators themselves. This leads to the propo-
sition that it is valid even for the real numbers of the
diagonal elements of the two Hermitian operators.
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We may have [3, 11, 12] the following relation between
the three rules which are valid for the commuting observ-
ables:

The functional rule

⇔ The sum rule

⇔ The product rule (6)

The Kochen-Specker theorem says the situation that
some quantum observables do not commute [13]. Our
argumentations can be based on the two commuting ob-
servables. We may introduce a hidden variable theory in
handling real experimental data [14]. This fact does not
mean a hidden variable theory must be necessary for our
purpose. We can introduce the supposition that the sum
rule and the product rule commute with each other if
and only if all the measured observables commute simul-
taneously. Notice we consider only the two commuting
observables here.

III. VON NEUMANN’S THEORY IS NOT

CONSISTENT

We are in an inconsistency when the first result is +1
by the measured observable A1, the second result is −1
by the measured observable A2 and then [A1, A2] = 0.

We consider a value V which is the sum of two data in
an experiment. The measured results of trials are either
+1 or −1. We suppose the number of −1 is equal to the
number of +1. If the number of trials is 2, then we have

V = (+1) + (−1) = 0. (7)

By using r1 and r2, we can depicture experimental data
as follows: r1 = +1 and r2 = −1.

Let us write V as follows:

V = (

2�

l=1

rl). (8)

The possible values of the measured results rl are either
+1 or −1.

In the following, we evaluate a value (V × V ) and
derive a necessary condition under the supposition that
the two measured observables are commuting. That is,
[A1, A2] = 0.

We introduce a supposition that the sum rule and the
product rule commute with each other [10, 15, 16]. We

have

V × V

= (

2�

l=1

rl)
2

= (
2�

l′=1

rl′)× (
2�

l=1

rl)

=
2�

l′=1

2�

l=1

rl′rl

≤

2�

l′=1

2�

l=1

|rl′rl|

=

2�

l′=1

2�

l=1

(rl)
2

= 2((+1)2 + (−1)2)

= 4. (9)

The inequality (9) can be saturated because the following
case is possible:

�{l|rl = +1}� = �{l′|rl′ = +1}�,

�{l|rl = −1}� = �{l
′|rl′ = −1}�. (10)

Thus,

(V × V )max = 4. (11)

Next, we derive another possible value of the product
V × V of the value V .
We have

V × V = 0. (12)

We have the following supposition:

(V × V )max = 0. (13)

This necessary condition is true.
We cannot assign simultaneously the truth value “1”

for the two suppositions (11) and (13) when [A1, A2] = 0.
We derive the inconsistency when [A1, A2] = 0.
In summary, we have been in the inconsistency when

the first result is +1, the second result is −1, and
[A1, A2] = 0.

IV. GENERAL THEOREM

Let us move ourselves into the more general case. We
are in an inconsistency when the first result is x by the
measured observable A1, the second result is not x by
the measured observable A2 and [A1, A2] = 0.
We consider a value V which is the sum of two data in

an experiment. The measured results of trials are either
x or y( �= x). We suppose the number of y is equal to the
number of x. If the number of trials is 2, then we have

V = x+ y. (14)
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By using r1 and r2, we can depicture experimental data
as follows: r1 = x and r2 = y.

Let us write V as follows:

V = (

2�

l=1

rl). (15)

The possible values of the measured results rl are either
x or y.

In the following, we evaluate a value (V × V ) and
derive a necessary condition under the supposition that
the two measured observables are commuting. That is,
[A1, A2] = 0.

We introduce a supposition that the sum rule and the
product rule commute with each other [10, 15, 16]. We
have

V × V

= (
2�

l=1

rl)
2

= (

2�

l′=1

rl′)× (

2�

l=1

rl)

=

2�

l′=1

2�

l=1

rl′rl

≤
2�

l′=1

2�

l=1

|rl′rl|

=
2�

l′=1

2�

l=1

(rl)
2

= 2((x)2 + (y)2)

= 2(x2 + y2). (16)

The inequality (16) can be saturated because the follow-
ing case is possible:

�{l|rl = x}� = �{l
′|rl′ = x}�,

�{l|rl = y}� = �{l
′|rl′ = y}�. (17)

Thus,

(V × V )max = 2(x2 + y2). (18)

This is a necessary condition under the supposition that
the two measured observables are commuting. That is,
[A1, A2] = 0.

Next, we derive another possible value of the product
V × V of the value V .

We have

V × V = (x+ y)2. (19)

We have the following supposition:

(V × V )max = (x+ y)2. (20)

The necessary condition is true.
We cannot assign simultaneously the truth value “1”

for the two suppositions (18) and (20) when [A1, A2] = 0.
We derive the inconsistency when [A1, A2] = 0.
Theorem
For an arbitrary dimensional unitary space (d ≥

1), von Neumann’s theory is not consistent if
there exist commuting observables A1 and A2 such
that A1 �= A2.

V. CONCLUSIONS AND DISCUSSIONS

In conclusions, Nagata and Nakamura have claimed
[6, 7] to derive an inconsistency in von Neumann’s the-
ory. Barros has discussed [8] as follows: The inconsisten-
cies do not have come from von Neumann’s theory, but
from extra assumptions about the reality of observables.
Here we have discussed there is an inconsistency within
von Neumann’s theory. We do not have accepted extra
assumptions about the reality of observables.
By wanting to prove that there is no axiomatic system

for the quantum theory, we have to prove this one have
to commit to the rules of inference of the formal system
and to the appropriate set of valuations for it.
If the problem were simply an inconsistency, there are

multiple logical systems that can cope with such a prob-
lem with robustness (see [17] (2011)).
We might have just proved that the whole of math-

ematics is inconsistent, and therefore useless (since, as
Aristotle proved a long time ago, first order logics col-
lapse under inconsistencies, and so does all of mathemat-
ics currently known, as it is based on first order logic).
Generally Multiplication is completed by Addition.

Therefore, we think that Addition of the starting point
may be superior to any other case.
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