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Abstract

The Newtonian gravity constant G plays a central role in gravitational theory. Researchers have since at least
the 1980’s tried to see if the Newton gravitational constant can be expressed or replaced with more fundamental
units, such as the Planck units. However already in 1987 it was pointed out that this led to a circular problem,
namely that one must know G to find the Planck units, and that it is therefore is of little or no use to express G
through the Planck units. This is a view repeated in the literature in recent years, and is the view held by the
physics community. However a few years ago we will claim the circular problem was solved. In addition when
one express the mass from the Compton wavelength formula then this leads to that the three universal constants
G, h and c can be replaced with only lp and c to predict observable gravitational phenomena. This paper will
review the history as well recent progress in the composite view of the gravitational constant.

Keywords: Newton gravitational constant, Planck units, composite constant, gravity, mass, quantum grav-
ity, cosmology.

1 Short history on the Newton gravitational constant and the

Planck units

Newton’s gravitational constant play an important role in almost any gravity calculation. However Newton
actually never introduced nor used a gravitational constant [1] in his gravitational force formula. His formula as
stated by words in Principia [2] was F = M̄m̄

R2 . This is equivalent to today’s gravitational force formula without
the gravitational constant. Well almost so, as we on purpose are using the notation M̄ and m̄ for the two masses,
rather than M and m, this because Newton had a quite di↵erent view on mass than today. Even without a
gravity constant Newton was able to do many predictions such as to find the relative mass between planets and
the Sun, see also Cohen [3]. He also found the relative density of the Earth relative to the Sun to a value very
close to what is known today. What he tried to do, but not could do was to find the density of the earth relative
to a known substance, such as water, lead or gold.

Cavendish [4] in 1798 is by modern physics often considered the first to measure the gravitational constant.
However, Cavendish in his paper did not describe a gravitational constant nor used one. What he did was to
measure the density of the Earth relative to the density of a known substance, what Newton not had been able
to perform but tried to do. To do this Cavendish used a torsion balance, today also known as a Cavendish
apparatus. Such an apparatus had been designed The main point in using such an apparatus is that one can
measure the gravity e↵ects from a human size object, that is the balls in the Cavendish apparatus where one
easily can control what kind of substance they are made of, for example lead. Then next by comparing this with
the gravitational e↵ect of the Earth one can find the density of the Earth relative to the density of a known
substance. That such an apparatus also can be used to extract the gravitational constant is true.

The so called Newton gravitational constant was first introduce in 1873 by [5] by the two French physicists
Cornu and Baille. In their paper they gave the formula

F = f
Mm

R2
(1)

where f is the gravitational constant. Big G as the notation of the gravity constant was likely first introduced
by Boys [6] in 1894. It took many years before the notation G became standard in the international physics
community, for example Max Planck [7] used f for the gravitational constant as late as 1928, and Einstein used
notation k in 1916. Naturally if one uses f , k or G as symbol for the gravitational constant is pure cosmetics.
What is important to bear in mind is that the gravitational constant is relatively new (at least compared to
Newton’s Principia) and that it also came into existence at about the same time the kilogram became the
international standard mass.
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A few years after the invention of the Newtonian gravitational constant, Max Planck [8, 9] in 1899 introduced
the Planck units. He assume there where three important universal constants, G, c and h, and then used

dimensional analysis to derive a unique length lp =
q

Gh̄

c3
, time tp =

q
Gh̄

c5
, mass mp =

q
h̄c

G
and temperature

Tp =
q

h̄c5

Gk
2
b

. Today known as the Planck units. Einstein [10] already in 1916 suggest that the next step forward

in gravity would be quantum gravity. Eddington [11] was in 1918 suggesting that quantum gravity must be
linked to the Planck scale, or in his own words

But it is evident that this length (the Planck length) must be the key to some essential structure.
It may not be an unattainable hope that someday a clearer knowledge of the process of gravitation may
be reached.?

However, Eddington’s idea was criticized by Bridgeman [12] in 1931. Bridgeman (that later got the Nobel
prize in physics) thought of the Planck units where more likely mathematical artifacts coming out of dimensional
analysis rather than something fundamental related to gravity. Today most researchers working with quantum
gravity theory seems to think the Planck units will play an important role in a final unified theory, see for example
[13–15]. Others are more critical, Meschini [16] points out that the “the significance of Planck’s natural units in
a future physical theory of spacetime is only a plausible, yet by no means certain”. The lack of certainty in the
significance of the Planck units comes from that the Planck scale at that time still only could had found very
indirectly by dimensional analysis. For example Unzicker [17] still seems to hold on to the view of Bridgeman,
that the Planck units are little more than mathematical artifacts from dimensional analysis that are of no use
and can basically be seen as undetectable mathematical artifacts. The Planck units are almost a bit like the
ether, if there are no ways to detect the Planck units then why not simply abandon the idea that they will play
a central role in physics.

These opposing views on the Planck units we will see also plays an historically important role when it comes
to the gravity constant itself. Okun [18] in 1991 pointed out that “The status of G and its derivatives, mp, lp , tp,
is at present di↵erent from that of c and h̄, because the quantum theory of gravity is still under construction.”.
So a better understanding of G can perhaps also makes us get closer to understanding the Planck scale and
even closer to a unified quantum gravity theory. So it is important to keep questioning the real meaning of G,
something we will look at this paper, mainly by reviewing the existing literature of how G potentially can be
linked to the Planck scale.

2 History of the composite view of G and the circular problem

The gravity constant has SI units of m3 · kg�1 · s�2. It would be strange if anything physical had units: meters
cubed, divided by kilogram and seconds squared. We can all imagine something that has length, for example
a cat, or something that has mass in terms of kilogram, for example a cat, and time we all have a feeling of is
related to change, it can be measured with clocks. So, the output units of the Newtons gravitational constant is
perhaps the first hint that it could be a universal composite constant that actually can be represented by some
more fundamental constants that we can link more directly to something physically [19]. Still as we will see
that G is a composite constant has been discussed for more than 60 years without a resolution, until perhaps
very recently. We will here go through much of the important history and progress around how the gravitational
constant can be expressed in form of Planck units.

Thüring [20] in 1961 concludes that G has been introduced somewhat ad-hock and that it cannot be associated
with a unique property of nature, see also Gillies [21]. Zee [22] in 1982 in a paper titled “Calculation of Newton’s
Gravitational Constant in Infrared-Stable Yang-Mills Theories” wrote

”Is Newton’s gravitational constant G a, fundamental parameter or is it calculable in terms of
other fundamental parameters? In this paper I would like to argue the latter view and to present a
calculation of G, unfortunately not in the real world, but in a toy world, just to demonstrate that G
is indeed calculable.”

Cahill [23, 24] in 1984 is likely the first to suggest that instead of calculating the Planck mass from G h̄ and
c, that perhaps G can be calculated from the Planck mass and suggest that G is given by

G =
h̄c

m2
p

(2)

This is nothing more than solving the Planck mass formula, mp =
q

h̄c

G
, with respect to G. Chaill comments

“The actual distribution of energy throughout space-time causes the tetrads to assume vacuum
expected values of the order of the Planck mass, mp. Thus the gravitational constant, G = h̄c

m2
p

, may

be viewed not as a fundamental constant, but as a mass scale that is dynamically determined by the
large-scale structure of the Universe.“

Cohen [25] suggest the same formula in 1987, that he correctly points out also can be found from dimensional
analysis or in his own words
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“Dimensional analysis let us write G = hc/m
2
pl, where mpl is the Planck mass 21.77 ⇥ 10�9

kg,
but this is of no help of determining G since there are no independent determination of mpl.” (page
74. Note that we will use notation mp for the Planck mass, while several papers also use notation
mpl)

This insight is of great importance and is what we will call the circular problem of the composite view of
the Newton gravitational constant. Namely the view that to express G from Planck units is of little or no use
if one need G to find the Planck units in the first place. Independently a series [18, 26–29] of researchers also
later on suggest the same formula for G, likely without knowing about the paper of Cahill or Cohen, but non of
these solve the circular problem. McCuloch [30] in 2016 again points out the circular problem with expressing
the gravity constant from the Planck mass with the same formula as introduced by Cahill and Cohen, or in his
own words

In the above gravitational derivation, the correct value for the gravitational constant G can only
be obtained when it is assumed that the gravitational interaction occurs between whole multiples of the
Planck mass, but this last part of the derivation involves some circular reasoning, since the Planck
mass is defined using the value for G.

Again this demonstrate that the circular problem of expressing G in form of Planck units has been there for
a very long time, and this is in our view directly linked to that one in quantum gravity have had little or no
progress in detecting the Planck scale, and therefore limited progress as we soon will discuss.

Clark [31] in 2003 suggest the gravitational constant is given by

G =
agh̄c

u2
(3)

as
ag

U2 = 1
m2

p

this is in many ways just an indirect way of writing the Cahill and Cohen formula, as we have

G =
agh̄c

u2 = h̄c

mp
. Independently Zwiebach [32] and Nastasenko [33] both in 2004 describes the following formula

to express G from the Planck units

G =
l
3
p

t2pmp

(4)

Zwiebach describe this as a “Planckian system of units” but gives no indications that the Planck units can
be found independent of G. Bruneton [34] in 2013 suggest the same formula, and the view that instead of G, h̄
and c being the fundamental universal constants they are just composites and that the Planck units are much
more fundamental, see also [35, 36]. This formula for G can for example be derived from dimensional analysis
of G. The dimensions of G are [G] = L

3
M

�1
T

�2, ande simply replace L with lp and M with mp and T with

tp and we get the formula G =
l
3
p

t2
p
mp

. However, if one need to find G first to find the Planck units then one

can naturally question the usefulness of this. The same formula has later been suggested/used by for example
Mercier [37] and Humpherys [38].

In natural units when first setting c = h = 1, we must have G = 1/m2
p as pointed out by Kiritsis [39] in 1997

as well as by Cerdeno and Munoz [40] in 1998 and later mentioned by for example [34, 41–46]. We find others
like Peebles [47] that already in 1989 pointed out that mp = G

�1/2 when h̄ = c = 1, so one could claim he then
also pointed out G = 1/m2

p, as it is natural very trivial to turn the equation around. Still by writing G = 1/m2
p

rather than mp = G
�1/2, gives a strong indication or even hint that perhaps we should think that the gravity

constant is a function of the Planck units, and not only the Planck units can be a function of G as first suggested
by Max Planck, and this is what this paper is all about. Further in the natural units system when h̄ = c = 1
we will then have G = l

2
p as pointed out by Schwarzschild [48] 2000 and also [44, 46, 49]. And since tp =

lp

c
we

must naturally also have G = t
2
p when h̄ = c = 1. When only c = 1 then we must have h̄ = mplp and we get

G =
lp

mp
as pointed out by Casadio [50] in 2009, and also discussed/used by [34, 51–56].

We also have

G =
t
2
pc

5

h̄
=

c
5

v2p
(5)

where vp is the Planck frequency, this was likely first mentioned by Nastasenko [57] in 2013. Haug in 2016
[19, 58, 59] suggest that G is a universal composite gravitational constant of the form

G =
l
2
pc

3

h̄
(6)

This he get from dimensional analysis assuming the more fundamental constants are lp, h̄ and c and that
the gravitational constant simply is a composite constant. His argument is that the complex output units of G
indicates it is a composite constant and further that the gravity constant came before the Planck length do not
mean the gravity constant is more fundamental than the Planck length. It is natural that we first understand
the world more from the surface, before we understand the deeper aspects of it. Further he shows how many of
the Planck units can be simplified when one assume G is such a composite. Still non of the above-mentioned
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papers has solved the circular problem, so they are at best hypotheses that perhaps G can be expressed in form
of Planck units, but that there are unsolved problems to do so.

As we have seen a series of ways to express the G in form of Planck units have been expressed in the literature.
Some have done this because they think G is a composite constant and that the Planck units are more real and
fundamental, others have mention G as a function of Planck units just for the use in some calculations they have
been done to get to some other results not directly related to the view that G is a composite constant or not.

Table 1 shows a series of ways to write G from Planck units that we have found in the literature, and
additional many more ways. All these ways are valid mathematically, but again it is assumed one need to know
G to find the Planck units. A series of the formulas are marked with that they first are presented in this paper,
we do not do this to indicate we have done any new important inventions, but simply to demonstrate that there
is many ways to express G from Planck units. Basically any Planck unit related formula can be simply solved
with respect to G. This is trivial mathematically, the big question is if it can lead to some significant new insight
or not.

From Gravity constant formula Likely first described:
a
)

Planck mass mp =

q
h̄c

G
G =

h̄c

m2
p

Cahill [23] 1984 and Cohen [25] 1987

Planck time tp =

q
Gh̄

c5
G =

t
2
p
c
5

h̄
Nastasenko [57]

Planck length lp =

q
Gh̄

c3
G =

l
2
p
c
3

h̄
Haug [19] 2016

Planck energy Ep =

q
h̄c5

G
G =

h̄c
5

E2
p

Haug [60] 2020

Planck temperature Tp =

r
h̄c5

Gk
2
b

G =
h̄c

5

T2
p
kb

this paper

Planck mass ag =
m

2

m2
p

G =
agh̄c

u2 =
h̄c

m2
p

Clark [31] 2003

Planck frequency fp =

q
c5

Gh̄
G =

c
5

f2
p
h̄

Nastasenko 2013

Planck acceleration ap =

q
c7

Gh̄
G =

c
7

a2
p
h̄

this paper

Planck density ⇢p =
c
5

h̄G2 G =

q
c5

⇢ph̄
this paper

Planck momentum pp =

q
h̄c3

G
G =

h̄c
3

p2
p

this paper

Planck force Fp =
Ep

lp
G =

c
4

Fp
this paper

Planck length, time and mass G =
l
3
p

mpt
2
p

Zwiebach [32] and Nastasenko [33] 2004

Planck length and Planck time G =
lpc

2

mp
Haug [61] 2017 and Eldred [62] 2019

Planck mass and Planck time G =
tpc

3

mp
Eldred [62] 2019

Planck length, time and Planck energy G =
l
3
p
c
2

Ept
2
p

this paper

Planck time and Planck length G =
tplpc

4

h̄
this paper

Planck frequency Planck mass G =
c
3

fpmp
this paper

Planck acceleration and mass G =
c
4

apmp
this paper

Planck charge and Planck length G =
l
2
p
c
2107

q2
p

this paper

Planck charge and Planck mass G =
107

m2
p
q2
p

this paper

Planck charge and Planck time G =
t
2
p
c
4107

q2
p

this paper

Table 1: The table show various ways we can express the gravity constant from Planck units.

a
It is impossible for anyone today to know the full littrature of physics so there could be others coming first with these formulas, we

have done a very serious attempt to search and find who published these results first.

Table 2 show how to write G from Planck units when h = c = 1 and when c = 1 and h̄ = mplp. So these
formulas are simplified cases of the formulas in table 1.
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From Gravity formula Likely first described

when h̄ = c = 1 G = 1/m
2
p Kiritsis 1997 [39] and Cerdeno and Munoz 1998 [40]

when h̄ = c = 1 G = l
2
p Schwarzschild 2000 [48]

when h̄ = c = 1 G = t
2
p this paper

when h̄ = c = 1 G = 1/a
2
p this paper

when h̄ = c = 1 G = 1/E
2
p this paper

when h̄ = c = 1 G = 1/p
2
p this paper

when c = 1 G = lp/mp Casadio 2009 [50]

when c = 1 G = tp/mp this paper

when c = 1 G = lp/Ep this paper

when c = 1 G = tp/Ep this paper

when c = 1 G = lp/ap this paper

when c = 1 G = tp/ap this paper

Table 2: The table show various ways we can express the gravity constant from Planck units.

3 The break through in the circular problem

We have just looked at a long series of ways to express G in form of Planck units. However as long as one need
to know G to find the Planck units this just lead to a circular problem as have been pointed out by a series of
researchers, so at first glance this do not seem to help us understand G better. Still we will claim that in recent
years there has been a breakthrough in the circular problem. Haug [63] in 2017 shows a reliable way of find
the Planck length independent of G, but still dependent on knowledge of h̄ and c. This by using a Cavendish
apparatus as described in the appendix of that paper. That one need to use a Cavendish apparatus has nothing
to do with that one need to know G. Haug derives the formula

lp =

r
h̄2⇡2Lr2✓

MT 2c3
(7)

where r is the distance between centers of the large and small balls (when the balance is deflected), further L is
the distance between the small balls in the apparatus. M is the kilogram mass of the large ball in the apparatus
that can be found for example with a standard letter weight as compared to the one-kilogram prototype mass.
✓ is the angle of deflection measured and T is the measured period of oscillation of the torsion balance. In other
words, this way of finding the Planck length is only dependent on h̄ and c and not on prior knowledge of G.
The formula above can be simplified further so we get rid of the Planck constant also, and then only depend on
knowledge of c, this we will soon get back to.

In 2020 Haug [64, 65] shows it is possible to find the Planck length and the Planck time without knowledge
of both G and h̄, but that to find the Planck mass (in kilogram) one need to know h̄ and c. Further in 2021
Haug [64] shows an approach combined with a long list of gravity phenomena that can be used to find the
Planck length independent of G and h̄. In another paper [66] his main focus is on how to find the Planck time
independent of G and h̄. If one know how to find the Planck length independent of G and h̄ one naturally know
how to find the Planck time independent on G and h̄ as the Planck time is simply the Planck length divided by
the speed of light.

That the Planck units can be found without any knowledge of G means the gravity constant indeed can be
expressed in form of the Planck units. This alone is a break through in our view. Still what dose it mean, this
we will look more closely at in the next sections.

4 Putting the pieces together

We now know that the Planck units can be found without any knowledge of G. Table 3 shows a series of
predictions from Newton and Einstein gravity simply re-written when we replace G with G = h̄c

m2
p

. For example

the gravitational acceleration that can be predicted by g = GM

R2 can now be re-written as

g =
GM

R2
=

h̄c

m2
p

M

R2
(8)

This in our view gives little if any new intuition or important results, one could even argue the formula now is
even less intuitive than before. We can claim that this show that gravity is related to the Planck mass and that
it therefore give some new intuition, but it is not obvious why this should be the case. Still G is replaced with an
expression containing the Planck mass, and the Plank mass can be found independent of G, so this is a big step
ahead from the view since the time of Max Planck and until recently where researchers though the Planck units
cannot be found without knowing G first. We could argue that this approach replaces three universal constants
G, h̄ and c with three new ones, namely mp, h̄ and c. Still so so far it seems that even after we have solved
the circular problem in this composite view of G, this simply means we can replace G with another constant,
namely mp. This could be interesting on its own, as it indeed could indicate G is more of a human construct
rather than something representing directly physical aspects of the depth of reality. The many formulas in table
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3 when re-written G = h̄c

m2
p

do not seem to make things more intuitive, or we could argue it looks perhaps even

less intuitive. It still looks like we still need three constants, but we have replaced G with mp.
We could choose any of the other ways to express G form Planck units as shown in table 1 or 2, for example

we could choose Haug’s formula G =
l
2
p
c
3

h̄
, this would at least at first eye sight just lead to that G, h̄ and c could

be replaced with lp, h̄ and c. In other words after we know that the Planck units can be found without G we
can replace the three universal constants G, h̄ and c with a chosen Planck unit plus c and h̄. So then one can
question if this is just a change of unit systems? This alone is interesting, but not obviously a big break through,
we could even claim trivial.

Gravity with G = h̄c

m2
p

:

Mass M and m (kg)
Gravity force F = G

Mm

R2 = h̄c

m2
p

Mm

R2 (kg ·m · s�2)

Gravity acceleration g = GM

R2 = h̄cM

m2
p
R2

Orbital velocity vo =
q

GM

R
= 1

mp

q
h̄cM

R

Orbital time T = 2⇡Rq
GM

R

=
2⇡Rmpq

h̄cM

R

Periodicity penduluma (clock) T = 2⇡
q

L

g
= 2⇡R

q
L

GM
= 2⇡Rmp

q
L

h̄cM

Frequency Newton spring f = 1
2⇡

q
k

m
= 1

2⇡Rmp

q
h̄cM

x

Velocity ball Newton cradleb vout =
q

2GM

R2 H = 1
Rmp

p
2h̄cMH

Predictions from GR:

Advance of perihelion � = 6⇡GM

a(1�e2)c2
= 6⇡h̄cM

a(1�e2)c2m2
p

Gravitational redshift z =

r
1� 2GM

R1c2
r

1� 2GM

R2c2

� 1 =

r
1� 2h̄M

R1cm2
pr

1� 2h̄M

R2cm2
p

� 1

Time dilation TR = Tf

r
1�

q
2GM

R

2

/c2 =

Deflection � = 4GM

c2R
= 4h̄M

cRm2
p

Microlensing ✓E =
q

4GM

c2
(dS�dL)
dSdL

=
q

4h̄M
cm2

p

(dS�dL)
dSdL

Table 3: The table shows the standard gravitational prediction formulas re-written when we assume G = h̄c

m2
p

. We can

see that the end results likely are perhaps even less intuitive than the existing and that we basically just have swapped
one constant for a new one (G for mp).

a
The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for full circle, see [67].

b
Where H is the height of the ball drop.

Another important step is needed before we can discover the great utility of the composite view of the
gravitational constant. The mass in kilogram of any mass can be described as

m =
h̄

�̄

1
c

(9)

where �̄ is the reduced Compton wavelength. This expression for mass we simply get by solving the Compton
[68] wavelength formula �̄ = h̄

mc
with respect to mass. One could claim that only elementary particles have

Compton wavelength and not composite masses or at least not such large objects as planets or suns. Only
elementary particles likely have a “physical” Compton wavelength that can be measured by Compton scattering,
but larger masses consist of elementary particles and the aggregated Compton wavelength in the composite mass
is is given by [1, 65]

�̄ =
1

1
�̄1

+ 1
�̄2

+ 1
�̄3

+ · · · 1
�̄n

(10)

This aggregation is fully consistent with standard mass aggregation m = m1 + m2 + m3 + · · · + mn, and can
even be derived form it. It is also important to understand that one can find the Compton wavelength of any
mass without knowing h̄ and G. Lets start with an electron, the Compton wavelength can be found by shooting
a photon at an electron, and by measuring the photon wavelength before and after the impact with the electron,
and also the angle between the incoming and outgoing photon, we have

�e =
�2 � �1

1� cos ✓
(11)

The reduced Compton wavelength of the electron is simply this divided by 2⇡ as is well known. Next we can
find the reduced Compton wavelength of the proton by utilizing that the cyclotron frequency ratio is proportional
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to the Compton wavelength ratio. This because the charge on the electron and proton is the same, and the
cyclotron frequency is given by

f =
qB

2⇡m
(12)

So we must have

fe

fP
=

qB

2⇡me

qB

2⇡mP

=
�̄P

�̄e

⇡ 1
1836.15

(13)

So if we know the electron Compton wavelength we know the Proton Compton wavelength as it is just to take
the electron Compton wavelength and divide it by 1836.15. Next we can find the Compton wavelength of any
larger mass by “simply” counting the number of atoms in the object of interest and then divide the Compton
wavelength of the proton by this count. To count atoms in a clump of matter is not easy, but fully possible. One
way is to construct a precise silicon (28Si) sphere. As one know the crystal structure here very well and since it
is very uniform one can accurately calculate the number of atoms in such a sphere. This way of counting atoms
have even been one of the recent suggested methods to re-define the kilogram, see [69–71]. There also exist other
methods to count atoms [72, 73], so this is fully possibly in practice, even if it take some e↵ort.

Based on that we can write the formula of a mass as M = h̄

�̄

1
c
we can replace the mass in equation 7 with

this mass and this gives us

lp =

r
h̄2⇡2Lr2✓

MT 2c3
(14)

lp =

s
h̄2⇡2Lr2✓

h̄

�̄

1
c
T 2c3

(15)

lp =

r
2⇡2Lr2✓�̄

T 2c2
(16)

That is the two Planck constants cancel each other out to find the Planck length. In other words we do not need
to know h̄ or G to find the Planck length, all the other parameters in the formula we can easily find without
knowledge of G or h̄ using a Cavendish apparatus. The reason we use a Cavendish apparatus is because we can
deal with sizes of matter where we can count the number of atoms, but similar methods for even much larger
masses can be used [1].

Haug [1, 65] have recently shown a practical feasible way to find the Compton wavelength independent on G

and h̄ even for planets, stars and galaxies. The main point here is that any mass in terms of kilogram can be

expressed by the formula 9. Next let us multiply the composite G =
l
2
p
c
3

h̄
with the composite mass M = h̄

�̄

1
c
and

we get

GM =
lpc

3

h̄
⇥ h̄

�̄

1
c
= c

2 l
2
p

�̄
(17)

What is important to pay attention to here is that the two Planck constant actually cancel each other out, we
are left with two constants c and lp, and both these can be found without knowledge of G and h̄. Table 4 shows
a series of predicted gravitational phenomena that actually can be observed. As we see, in all the observable
phenomena, we have GM and not GMm. The small mass m in the Newton gravitational force formula is only
used in derivations of observable gravitational phenomena and then one of the two masses always cancels out.

In real two mass gravity phenomena we have gravity parameter µ = G(M1 +M2) = GM1 +GM1 = c
2 l

2
p

�̄1
+ c

2 l
2
p

�̄2
so also in real two body gravitational phenomena the Planck constant cancel out.

It is evident from table 4 that a long series of observable gravity phenomena can be predicted by knowing
only two constants, namely lp and c and naturally a variable which is linked to the mass size, namely the reduced
Compton wavelength of the gravitational object. As seen from the table some observable gravity phenomena
only need one constant, namely the Planck length. And again it has in recent years been demonstrated how to
find the Planck length independent o↵ G so this is a fully practical way to do gravity predictions, it is not just
a hypotheis.

As all predictions of observable gravity phenomena contains GM and this leads to GM = c
3 lp

c

lp

�̄
. Haug has

in a series of papers suggested that c
3 can be used as a gravity constant and that real gravity mass should be

re-defined as m̄ =
lp

c

lp

�̄
something we soon will get back to. This view gives us table 5, which gives all the exact

same predictions as the standard gravity formulas, but without any G and also without no need for h̄. Well one
exception is for the gravity force itself, but the gravity force can not be measured directly, we can only observe
consequences from it. Our new way of representing the gravity force formula gives exactly the same predictions
for observable phenomena, and it is only linked to the Planck length and the speed of light. The speed of light
is in this context the same as speed of gravity (“gravitons”?). For example Abbot et. al. [74] has in 2017
has constrained ”the di↵erence between the speed of gravity and the speed of light to be between �3⇥ 10�15 and
+7⇥ 10�16 times the speed of light. ”.
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Mass M = h̄

�̄M

1
c
(kg)

Non observable (contains GMm)

Gravitational constant G,

✓
G =

l
2
p
c
3

h̄

◆

Gravity force F = G
Mm

R2 (kg ·m · s�2)
Observable predictions: (contains only GM)

Gravity acceleration g = GM

R2 = c
2

R2

l
2
p

�̄M

Orbital velocity vo =
q

GM

R
= clp

q
1

R�̄M

Orbital time T = 2⇡Rq
GM

R

=
2⇡
p

�̄MR3

clp

Periodicity penduluma (clock) T = 2⇡
q

L

g
= 2⇡R

q
L

GM
= 2⇡R

clp

p
L�̄M

Frequency Newton spring f = 1
2⇡

q
k

m
= 1

2⇡R

q
GM

x
=

clp

2⇡R

q
1

�̄Mx

Velocity ball Newton cradleb vout =
q

2GM

R2 H =
clp

R

q
2H
�̄M

Observable predictions (from GR): (contain only GM)

Advance of perihelion � = 6⇡GM

a(1�e2)c2
= 6⇡

a(1�e2)

l
2
p

�̄M

Gravitational redshift z =

r
1� 2GM

R1c2
r

1� 2GM

R2c2

� 1 =

s

1�
2l2

p

R1�̄Ms

1�
2l2

p

R2�̄M

� 1

Time dilation TR = Tf

r
1�

q
2GM

R

2

/c2 = Tf

r
1� 2l2

p

R�̄M

Deflection � = 4GM

c2R
= 4

R

l
2
p

�̄M

Microlensing ✓E =
q

4GM

c2
(dS�dL)
dSdL

= 2lp
q

dS�dL

�̄M (dSdL)

Table 4: The table shows that any observable gravity phenomena contain GM and not GMm and further than when
assuming G is a composite, then we end up that we can predict all observable gravity phenomena only from lp and c.

a
The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for full circle, see [67].

b
Where H is the height of the ball drop.

5 Is the inertial mass really identical to the gravitational mass?

As shown for all the observational gravitational phenomena reported in table 4 and 5 we have GM and not

GMm. And again GM =
l
2
p
c
3

h̄

h̄

�̄

1
c
= c

3
tp

lp

�̄
, where Haug has claimed in a series of papers [65, 75] that c

3 then

can be seen as a gravitational constant and tp
lp

�̄
as a more complete mass definition. This mass definition he

has coined collision-time, which again can be seen as the gravitational mass. And yes this mass definition has
dimensions of simply time. This mass one already indirectly have embedded in standard gravity theory since
one are multiplying the kilogram mass with the gravitational constant. But here the traditional view is that
this is a gravity constant multiplied by a mass, and that they are two seprate things. One have never figured
out exactly why this has to be done from a deeper perspective. Well, what is a gravitational mass and what
is an inertial mass. A gravitational mass is linked to the mass caused by and acted on a body by the force of
gravity, so it has always been assumed that both the masses in Newton’s formula represent gravitational masses.
However, we will challenge that view here. This because if the small mass m has insignificant impact on M then
it cancels out in all derivations of direct observable gravitational phenomena, so we could even write

ya = G
My

R2
(18)

and we would still get the correct predictions about measurable gravitational phenomena from this equation, that
is y on both sides of the equation could be replaced with basically anything, we could even define y as money.
Money has naturally nothing to do with gravity, but since y is on both sides of the equation we can divide by y

on both sides and we get a = GM/R
2, and we can measure both a and the gravitational acceleration. Our point

is that even when putting in a completely wrong mass definition for m on both sides of ma = G
Mm

R2 these two m

masses will cancel out in the derivation of anything observable. This is the case for derivation of any observable
gravity phenomena, except for real two body problems where one have GM1 +GM2, not GMm. The reminding
kilogram mass M is always multiplied by the gravity constant. We will claim this is done (unknowingly) to
correct an incomplete mass definition (the kilogram mass) into a more complete mass definition, so the real

gravitational mass is G

c3
M =

lp

c

lp

�̄
= M̄ , this is discussed in detail by Haug [65, 75]. Newton naturally did

not have this in mind when he developed his gravity theory, and as we have pointed out he also never used a
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Mass M = h̄

�̄M

1
c
(kg)

Non observable

Gravitational constant c
3

Gravity force F = c
3 M̄m̄

R2 (kg ·m · s�2)
Observable predictions:

Gravity acceleration g = c
3
M̄

R2 = c
2

R2

l
2
p

�̄M

Orbital velocity vo =
q

c3M̄

R
= clp

q
1

R�̄M

Orbital time T = 2⇡Rq
c3M̄

R

=
2⇡
p

�̄MR3

clp

Periodicity penduluma (clock) T = 2⇡
q

L

g
= 2⇡R

q
L

c3M̄
= 2⇡R

clp

p
L�̄M

Frequency Newton spring f = 1
2⇡

q
k

M̄
= 1

2⇡R

q
c3M̄

x
=

clp

2⇡R

q
1

�̄Mx

Velocity ball Newton cradleb vout =
q

2 c3M̄

R2 H =
clp

R

q
2H
�̄M

Observable predictions (from GR):

Advance of perihelion � = 6⇡c
3
M̄

a(1�e2)c2
= 6⇡

a(1�e2)

l
2
p

�̄M

Gravitational redshift z =

r
1� 2c3M̄

R1c2r
1� 2c3M̄

R2c2

� 1 =

s

1�
2l2

p

R1�̄Ms

1�
2l2

p

R2�̄M

� 1

Time dilation TR = Tf

r
1�

q
2c3M̄

R

2

/c2 = Tf

r
1� 2l2

p

R�̄M

Deflection � = 4c3M̄
c2R

= 4
R

l
2
p

�̄M

Microlensing ✓E =
q

4c3M̄
c2

(dS�dL)
dSdL

= 2lp
q

dS�dL

�̄M (dSdL)

Table 5: The table shows that we can write the gravitational constant as c
3 when using in our view a more complete

mass definition, m̄ =
lp

c

lp

�̄
. That is mass is related to time, or what Haug has called collision-time. Di↵erent mass

sizes then only di↵ers in di↵erent Compton wavelength. Writing the gravitational force formula this way we get the
same predictions as standard Newton gravity except we only relay on two constants lp and c to describe mass and any
observable gravity phenomena. Also in general relativity predictions we can replace the mass with this mass definition
if we replaces G with c

3. The reason we can do this is that c
3
M̄ = GM , this is clear when we understand that G is a

composite constant and in addition understand that the kilogram mass can be written by simply solving the Compton
wavelength formula with respect to m.

a
The formula is a very good approximation when the angle of the pendulum is small, as it is in most pendulum clocks. It is not

accurate for large angles, but is again exact for an angle of 360; that is to say, for full circle, see [67].

b
Where H is the height of the ball drop.

gravity constant. The gravity constant is a missing value constant simply found by calibration to observable
gravitational phenomena when one have decided upon using the kilogram definition o↵ mass. This is also at
least part of the reason why the gravity constant came into existence about at the same time as the kilogram
mass became popular in Europe.

The mass linked to non-gravitational acceleration is often thought of as the inertial mass and since it has
been shown experimentally that the following relation seems to hold

mia = G
Mm

R2
(19)

we assume that the inertial mass mi must be equal to the gravitational mass m since it seems to be an equivalence
between standard acceleration (for example in a elevator) and in a gravitational acceleration field, and we do not
doubt this, we simply claim the mass m is not used directly for any predictions of any observable gravitational
phenomena. That is one are not measuring ma nor GMm

R2 , one are observing a and g = a = G
M

R2 , in other words
after the two small masses has canceled each other out in derivations for predictions of observable phenomena.
In our view there is only one type of mass and we have just defined it as M̄ = G

c3
M and inputted this mass

definition in all parts in the Newton formula would lead to

G

c3
ma = c

3
G

c3
M

G

c3
m

R2
(20)

and we would also now end up with a = GM

R2 , since G

c3
m is on both sides and cancel out. And since M̄ = G

c3
M

(and m̄ = G

c3
m we can write this as

m̄a = c
3 M̄m̄

R2
(21)
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Our point is that in the standard Newton gravity formula in its modern form invented in 1873, one are likely
unknowingly using two di↵erent masses, one is the standard kilogram mass multiplied by G, that is GM which
combined can be seen as the gravitational mass (collision-time mass) multiplied by c

3, that is GM = c
3
M̄ and

the other non-gravitational mass m is a incomplete kilogram mass that says nothing about gravity. When we
just want to know for example the relation between mass and energy then the standard kilogram mass will have
enough information to do so. So, we can still use m, that is the kilogram mass definition without adjustments in
relations such as E = mc

2 or in E = mc
2
�, but the same mass definition cannot be used for calculating gravity

e↵ects from that mass without multiplying it with G, or better by understanding that GM actually represent
the real gravitational mass (divided by c

3). There is only one mass, but to describe gravity needs additional
information that is lacking in the kilogram mass definition. The kilogram mass is incomplete, but good enough
for calculations related to just energy and mass, but it is incomplete when also taking into account gravity. We
can then either fix this mass ad-hock by using G or we can understand that G is a composite constant, and when
combined with M it gives a deeper insight in mass also related to gravity.

So the real gravitational mass even of the small mass is m̄ = G

c3
m = tp

lp

�̄
=

l
2
p

�̄c
, while the kilogram mass is

given by m = h̄

�̄

1
c
. Since the Planck length and the speed of light and the Planck constants are constants, and

the only thing changing is the mass size in both the gravitational mass (collision-time mass) and in the kilogram
mass they are proportional. So the weak equivalence principle holds also under this view. This view do not
changes the output from predictions of observable phenomena, but it shows us how the Planck scale is already
directly linked to gravity. Detection of gravity is in our view detection of the Planck scale. This view is new
and controversial, but we think it should be taken seriously enough to be carefully investigated also by other
researchers before rejected prematurely.

6 The Gravity Constant Calculated from Cosmological Entities

Another line of thought in relation to the composite view of G has been that the Newtonian gravitational constant
perhaps can be calculated from cosmological entities or constants. Already in 1951 Bleksley [76] suggest that
the gravitational constant can be expressed as

G =
Ruc

2

Mu

(22)

where Ru is the radius of the observable universe and Mu is the mass of the observable universe. As the mass of
the universe from the Friedmann equation requires to know G, Bleksley could not use this mass to find G, but
instead comes up with his own way to calculate the universe mass, a way we think look a bit like numerology or
at least very speculative. For example he suggest that the number of protons in the universe must be R

2
u/(4⇢

2)
where ⇢ is the diameter of the proton. It is far from clear how he get to this formula, so we are questioning
the validity of this approach. Mercier [37] in 2020 basically gives the same formula for G, he uses a universe
mass rooted in a paper by Carvalho [77]. Carvalho starts with a relation between mass density and the Hubble
constant that he claims is given by Weinberg [78]

G⇢0 = H
2
0 (23)

and from this get

Mu ⇡ c
3

GH
(24)

Carvalho in addition derive a universe mass to be the same as given by this formula, but independently from
G by some assumptions of ⇡ mesons, however his derivation here seems quite speculative. Carvalho further
claims “This is identical to expression derived in the context of Friedmann’s cosmological model.”. This claim
is not fully correct or at least not precise enough. Both the formula he present: the one he claim is from the
Friedman model and the other universe mass he derive from ⇡ mesons are both actually twice that one get from
the Friedmann model. The universe mass one get from the Friedmann model is

Mc =
1
2

c
3

H0G
(25)

as one also find indirectly in the book of Weinberg as well as in a series of other independent sources (see for
example [79, 80]). Several authors (for example Cook in 2011 [81] and Mercier [37]) have suggested that G can
be expressed as

G =
c
3

HMu

=
THc

2

Mu

(26)

First of all this formula is naturally equal to G = RHc
2

Mu
, as the Hubble radius is given by RH = c

H0
, and

TH = RH

c
= 1

H0
. Actually this formula is not fully consistent with the Friedmann model, as that would require

G = c
3

2HMu
and since the Hubble time is given by TH = 1

H0
this is naturally the same as G = THc

2

2Mu
, but equation
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26 is consistent when using the Haug [82] universe mass which is predicted to be twice that of the Friedmann
critical mass of the universe.

Non of these authors have shown how to find the universe mass without already knowing G, except from what
we would call very speculative approaches where we think there lack a solid foundation, even if this naturally
can be discussed further. Still there is as we will see a way to find this critical mass of the universe without
knowing G. First if we solve the Friedmann critical mass equation (Eq. 25) with respect to H0 then this gives
the formula

H0 =
1
2

c
3

McG
(27)

And since any mass in kilogram can be written as m = h̄

�̄

1
c
, and also because G can be written as G =

l
2
p
c
3

h̄
, this

means we have

H0 =
1
2

c
3

h̄

�̄c

1
c

l2
p
c3

h̄

=
�̄c

2l2p
(28)

Where �̄c is the reduced Compton wavelength of the critical mass in the Friedmann universe (the critical
universe). This also means we must have

G =
�̄cc

4

2H0h̄
(29)

The Hubble constant can be found with no knowledge of G as also the Compton wavelength of the universe mass
can be found without this knowledge of G as we [83].recently demonstrated. Further as H0 = c�̄c

2l2
p

this means

equation 29 can be simplified further to

G =
�̄cc

4

2H0h̄
=

l
2
pc

3

h̄
(30)

which is the same composite formula for G that one get by solving Max Planck’s Planck length formula for G.
For G times the critical mass of the universe (the gravitational parameter of the universe), we must have

µc = GMc =
l
2
pc

4

h̄

h̄

�̄c

1
c
= c

2 l
2
p

�̄c

(31)

where �̄c is the reduced Compton wavelength of the mass in the critical universe. To predict gravitational
phenomena related to the mass of the critical universe all we need is the Planck length and the speed of light,
that is two constants, and the reduced Compton wavelength of the critical mass of the universe. All these can
be found with no knowledge o↵ G or even h̄. Actually the Hubble constant is given by

H0 =
1

lp

c

lp

�̄u

=
1

tp
lp

�̄U

(32)

where �u is the reduced Compton wavelength of the Mass in the Haug universe. Pay attention to that tp
lp

�̄c

is
identical to what we call the collision-time mass. So the Hubble constant in this view is nothing more than one
divided by the collision-time mass of the observable (critical) universe.

If one know the collision-time mass of the universe, then there is no need to multiply it with G to do
gravitational predictions. This is why cosmological red-shift can be predicted by simply

Z =
Hd

c
=

d

cM̄c

(33)

where M̄c = tp
lp

�̄
is the collision-time of the observable universe. If we use the critical mass of the universe in

terms of kilogram, then we need to multiply it with G divided by c
3 to convert it into the real gravitational

mass, so we have

Z =
d

c
G

c3Mc

=
d

cM̄c

=
H0d

c
(34)

This means we also can predict cosmological phenomena from the Planck length and the speed of light. This
strongly indicates there is a link between the largest and the smallest scales of the universe, this is not a very
big surprise as the largest scales are built from the smallest. The rules of the smallest (quantum) somehow gives
us the rules for even the cosmic scales. Our view is that the Planck scale actually is indirectly detected in any
(or at least most) gravitational observation, including also cosmological red-shift.

Table 6 shows some ways to express the gravity constant in form of cosmological entities. All these are at the

deepest level nothing else than G =
l
2
p
c
3

h̄
. Pay also attention to how closely the formulas linked to the Hubble

scale is linked to the formulas presented linked to the Schwarzschild radius and Haug radius, the reason for this
is that the Hubble radius is identical to the Schwarzschild radius for the observable universe, why it also have
been papers considered if the Hubble sphere actually is a gigantic black hole, see for example [84, 85].
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From Gravity formula Comments

From universe mass, Hubble radius G =
Ruc

2

Mu
Bleksley 1951 [76]

Hubble constant, Friedmann critical mass G =
c
3

2H0Mc

Hubble radius, Friedmann critical mass G =
RHc

2

2Mc

Hubble constant, Friedmann critical mass G =
THc

3

2Mc

Hubble time, Friedmann critical mass G =
c
3

2H0Mc

Hubble radius, Hubble time and Friedmann critical mass G =
R

3
H

2McT
2
H

Hubble constant, Haug universe mass G =
c
3

H0Mu

Hubble radius Hubble time and Haug universe mass G =
RHc

2

Mu

Hubble radius, Haug universe mass G =
THc

3

Mu

Hubble time, Hubble time and Haug universe mass G =
THc

3

MuT
2
H

Hubble constant, Friedmann critical mass G =
c
3

2H0Mc

Hubble Time and Haug universe mass G =
THc

3

Mu

Schwarzschild radius, mass, G =
Rsc

2

2M Rs =
2GM

c2

Schwarzschild time, mass, G =
Tsc

3

2M Ts =
Rs

c

Haug escape velocity radius, mass, G =
Rhc

2

M
Rh =

GM

c2

Haug radius time, mass, G =
Thc

3

M
Th =

Rh

c

Table 6: The table show various ways we can express the gravity constant from cosmological units, as well as from
units related to black holes.

7 Conclusion

The idea that the gravitational constant can be a composite constant that again is related to more fundamental
Planck units goes at least back to 1984. However already in 1987 it was pointed out that expressing the
gravitational constant through Planck units lead to a circular problem, that one had to know the gravity
constant to find the Planck units. This view has been repeated by researchers as late as 2016. However, in
recent years a series of papers have shown how one clearly can find the Planck units without knowledge o↵ G,
and even without knowledge of G and h̄, so the circular problem around G and the Planck units has been is
solved. An in-depth study shows that this leads to a reduction in universal constants from G, h̄ and c to only
c and lp, in addition one need other constants like the fine structure constants when describing electromagnetic
phenomena, but the traditional three universal constants Max Planck used can be reduced from three to two. To
predict all observable gravity phenomena, one only need knowledge of lp and c and both can be found without
knowledge of G and h̄. The implications of this should be worth study further as this seems to open doors of
insight between macroscopic gravity phenomena and the Planck scale.
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