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Abstract Since acceleration is invariant under constant-velocity Galilean transformations, a system moving at con-
stant velocity cannot, in Newtonian physics, exert new forces it doesn’t already exert when it is at rest. But a bar
magnet moving at nonzero constant velocity exerts a force on electric charges that it doesn’t exert when it is at
rest (Faraday’s Law), and a charge moving at nonzero constant velocity exerts a torque on the needle of a magnetic
compass that it doesn’t exert when it is at rest (Biot-Savart Law). Thus basic electromagnetic experiments which
are feasible in undergraduate or secondary-school physics labs illustrate the need to replace the Galilean transforma-
tions. That seems pedagogically much more compelling than the standard practice of merely discussing experiments
which use extremely high-precision equipment such as Michelson interferometers. What should replace the Galilean
transformations? The key qualification obviously is compatibility with the electromagnetic Laws. Those Laws can be
presented as wave equations with source terms, and wherever the source terms are zero, the free waves travel exclu-
sively at the fixed constant speed c. Thus electromagnetic-Law compatible coordinate transformations must preserve
speed-c wave travel, which is the central property of the Lorentz transformations, replacing the time-coordinate
preservation that is central to the Galilean transformations.

1. Basic electromagnetic experiments versus Galilean-transformation force invariance

The Galilean transformation of time and space coordinates due to travel at constant velocity v is given by,

t′ = t and r′ = r− vt. (1.1a)

Therefore the constant-velocity-v Galilean transformation of velocity dr/dt simply subtracts v from dr/dt,

dr′/dt′ = d(r− vt)/dt = dr/dt− v, (1.1b)

and this Galilean transformation leaves acceleration d2r/dt2 invariant,

d2r′/d(t′)2 = d(dr′/dt′)/dt′ = d(dr/dt− v)/dt = d2r/dt2. (1.1c)

Therefore, because forces produce accelerations in Newtonian physics, a constant-velocity-v Galilean trans-
formation is incapable of introducing new forces which were absent before that transformation was made.

This Newtonian/Galilean precept notwithstanding, it was observed hundreds of years ago that the
magnetic-dipole needle of a compass which is lying sufficiently close to a metal wire is deflected away from
its equilibrium position of pointing toward magnetic north upon that wire being connected to a battery. It
is surmised that the battery sets the invisible microscopic free electrons in the metal wire into motion with,
at least on average, a nonzero constant speed that causes them to produce a magnetic field which is absent
when the battery isn’t connected and those free electrons are, at least on average, at rest.

Of course surmises about the state of motion of the completely invisible microscopic free electrons in
a metal wire are hardly immediately persuasive. Such an experiment would be more compelling if the wire
and its invisible microscopic free electrons were replaced by a macroscopic object which has been statically
charged. Issues concerning such an approach include getting enough charge on such an object and/or getting
its speed high enough to produce a strong enough magnetic field to visibly deflect a magnetic compass needle.
More subtle concerns include too-rapid dissipation of the object’s charge into the air around it, which might
be ameliorated by artificial cooling and dehumidification of that air. The object’s charge may also need to
be shielded from air currents associated with its speed, or which occur spontaneously in its surroundings.

In 1831 Michael Faraday showed that thrusting a bar magnet lengthwise through the center of a metal
wire coil produces a transient current in the coil that is detected by a galvanometer connected to the coil.
Thus a bar magnet moving at a nonzero constant velocity in the direction of its magnetic moment apparently
produces a moving azimuthal electric field that is absent when the magnet is at rest, but transiently drives
the free electrons in the wire coil around that coil when the magnet is moving. Here one moving object, the
bar magnet, is indeed macroscopic, so its motion, or the lack thereof, is plain to see. The moving azimuthal
electric field that its motion supposedly produces is inferred, however, from supposed transient azimuthal
motion of invisible microscopic free electrons in the metal wire coil.

It would be more compelling to instead verify that transient electric field by the visible deflection of a
macroscopic entity which has been statically charged. A low-mass charged object which hangs downward
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by a thread directly above the bar magnet’s horizontal-line trajectory should be deflected horizontally per-
pendicular to that trajectory (i.e., azimuthally), first toward one side and then toward the opposite side,
as the magnet passes beneath it at constant velocity. As might be expected, this concept comes with its
list of caveats and pitfalls. The object’s charge must be great enough and its mass low enough to produce
a visible deflection. (Of course the stronger the moving bar magnet’s electric field is, the greater is the
deflection of the charged object; that electric field strength increases with the magnet’s velocity and the
strength of its dipole moment.) Too-rapid dissipation of the object’s charge into the air around it needs
to be ameliorated, possibly by cooling and dehumidifying that air. The low-mass hanging charged object
would be ultra-sensitive to deflection by stray air currents, and so would need to hang inside an airtight
transparent case.

The deflection of the needle of a magnetic compass by nearby moving charges (but not by such charges
at rest) became in due course the essence of the Biot-Savart Law of electromagnetic theory, and James Clerk
Maxwell distilled Faraday’s demonstration that a moving magnetic field (but not a stationary magnetic
field) produces a moving electric field into Faraday’s Law of electromagnetic theory.

These two Laws of electromagnetism obviously flatly contradict the Newtonian/Galilean precept pointed
out below Eq. (1.1c) that a constant-velocity-v Galilean transformation is incapable of introducing new forces
which were absent before that transformation was made.

The existence of this blatant contradiction of a basic Newtonian precept by basic Laws of electromag-
netism that are distilled from experiment somehow utterly failed to penetrate the consciousness of the physics
community until well after the null result of the Michelson-Morley experiment hoisted another, this time
better appreciated, red flag over a basic Newtonian precept, namely the additivity of the constant velocity v
of the Galilean transformation to general velocities which is displayed in Eq. (1.1b).

The algebraic progression from the Galilean coordinate transformation of Eq. (1.1a) to the astonishingly
simple Galilean velocity and acceleration transformations of Eqs. (1.1b) and (1.1c) respectively strongly
depends on the invariance of time, t′ = t, which is postulated in Eq. (1.1a) of the Galilean transformation.

But if we ponder the Laws of electromagnetism, which are largely distilled from experiment, we don’t
encounter any clear motivation to postulate the invariance of time, t′ = t, under constant-velocity trans-
formations of the space and time coordinates. The electromagnetic Laws, however, can be recast into wave
equations with source terms, where the constant c is universally the speed of the free waves that can exist
anywhere in space and time that the source terms are zero. Since c is the only electromagnetic free wave
speed which the electromagnetic Laws permit, coordinate transformations must preserve that free wave speed
to be compatible with the electromagnetic Laws. The contention that the free wave speed must always be c is
very strongly reinforced by the Michelson-Morley null result, which found no variation in the speed of light
signals from sources traveling at varying velocities. We now turn our attention to the details of constructing
the Lorentz transformations, which preserve the speed c of free light waves.

2. The Lorentz constant-velocity coordinate transformation which preserves the speed of light

Except for its salient property of preserving the speed of light, the Lorentz transformation should resemble the
Galilean transformation as closely as feasible. In order to reduce algebraic complexity during the development
of the Lorentz transformation, we initially work in the particular coordinate system whose x-axis points in
the direction of the Lorentz transformation’s constant velocity v,

v = (|v|, 0, 0). (2.1a)

The Galilean transformation is of course given by Eq. (1.1a),

t′ = t and r′ = r− vt.

and since,

r′ = (x′, y′, z′) and r = (x, y, z), (2.1b)

in this particular coordinate system the Galilean transformation is given by,

t′ = t and (x′, y′, z′) = (x, y, z)− (|v|, 0, 0)t, (2.1c)

namely,
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t′ = t, x′ = x− |v|t, y′ = y, z′ = z. (2.1d)

We now pattern the Lorentz transformation in the particular coordinate system where v = (|v|, 0, 0) on the
Eq. (2.1d) Galilean transformation in that particular coordinate system as follows,

t′ = λ(t− σ(x/|v|)), x′ = γ(x− κ|v|t), y′ = y, z′ = z, (2.2a)

which we expect to reduce to the Eq. (2.1d) Galilean transformation as |v| → 0, so,

λ→ 1, σ → 0, γ → 1 and κ→ 1 as |v| → 0. (2.2b)

Furthermore, in order for Eq. (2.2a) to make sense as a velocity-v coordinate transformation, we expect the
origin r′ = 0 of the primed system to correspond to the point r = vt of the unprimed system. Therefore
if we insert x′ = 0, y′ = 0, and z′ = 0 into Eq. (2.2a), we expect the consequences to be x = |v|t, y = 0,
and z = 0. We see from Eq. (2.2a) that this requirement implies that κ = 1, which isn’t inconsistent with
Eq. (2.2b). We therefore now reiterate Eqs. (2.2a) and (2.2b) with κ = 1,

t′ = λ(t− σ(x/|v|)), x′ = γ(x− |v|t), y′ = y, z′ = z, (2.3a)

which we expect to reduce to the Eq. (2.1d) Galilean transformation as |v| → 0, so,

λ→ 1, σ → 0, and γ → 1 as |v| → 0. (2.3b)

Since the Eq. (2.3a) Lorentz transformation transforms space and time coordinates, the requirement that it
preserve the speed of light is, in terms of space and time coordinates, that it preserve the expanding spherical
light surface, i.e., that,

|r′|2 − (ct′)2 = |r|2 − (ct)2 which implies that (x′)2 + (y′)2 + (z′)2 − (ct′)2 = x2 + y2 + z2 − (ct)2. (2.3c)

Inserting Eq. (2.3a) into the second equality in Eq. (2.3c) produces,

γ2(x− |v|t)2 + y2 + z2 − λ2(ct− σ(x/(|v|/c)))2 = x2 + y2 + z2 − (ct)2, (2.3d)

which we regroup to read,

x2(γ2 − (λ2σ2/((|v|/c)2))− 1) + 2x(ct)(λ2(σ/(|v|/c))− γ2(|v|/c)) + (ct)2(γ2(|v|/c)2 + 1− λ2) = 0. (2.3e)

The three entities x2, 2x(ct) and (ct)2 are linearly independent, so their three coefficients in Eq. (2.3e) must
individually vanish, which produces three equations for the three entities σ, γ2 and λ2. The second of these
three equations yields the interim result,

σ = (γ2/λ2)(|v|/c))2. (2.3f)

Inserting Eq. (2.3f) into the first of the three equations implied by Eq. (2.3e) yields another interim result,

γ2 − (γ4/λ2)(|v|/c))2 − 1 = 0, (2.3g)

into which,

λ2 = γ2(|v|/c)2 + 1, (2.3h)

from the third of the three equations implied by Eq. (2.3e) is inserted to produce,

γ2 − ((γ4(|v|/c))2)/(γ2(|v|/c)2 + 1))− 1 = 0, (2.3i)

which simplifies to γ2 − γ2(|v|/c)2 − 1 = 0, yielding the result,

γ2 = (1/(1− (|v|/c)2)). (2.3j)

Insertion of the Eq. (2.3j) result into Eq. (2.3h) yields,

λ2 = (1/(1− (|v|/c)2)) = γ2. (2.3k)

Insertion of Eq. (2.3k) into Eq. (2.3f) yields,

σ = (|v|/c))2. (2.3l)

So taking into account the limits prescribed by Eq. (2.3b), our results are,
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λ = γ =
(
1/
√

1− (|v|/c)2
)

and σ = (|v|/c))2. (2.3m)

Therefore the Eq. (2.3a) Lorentz transformation in the particular coordinate system where v = (|v|, 0, 0) is,

t′ = γ(t− (|v|/c2)x), x′ = γ(x− |v|t), y′ = y, z′ = z; γ
def
=
(
1/
√

1− (|v|/c)2
)
. (2.3n)

We next transcribe the Eq. (2.3n) Lorentz transformation to vector form, which automatically rescinds
its specialization to the particular coordinate system where v = (|v|, 0, 0). To carry out the transcription
of Eq. (2.3n) to vector form, we make repeated use of the three facts that r′ = (x′, y′, z′), r = (x, y, z) and
v = (|v|, 0, 0) in the particular coordinate system where the Lorentz transformation is given by Eq. (2.3n).
To begin the vector-form transcription of Eq. (2.3n), we note that,

(v · r) = |v|x, (2.4a)

so the time transformation part t′ = γ(t − (|v|/c2)x) of the Eq. (2.3n) Lorentz transformation is given in
vector form by,

t′ = γ(t− ((v · r)/c2)). (2.4b)

We next combine the the Eq. (2.4a) result that (v · r) = |v|x with v = (|v|, 0, 0) to obtain,

(x, 0, 0) = ((|v|, 0, 0)(|v|x)/|v|2) = (v(v · r)/|v|2), (2.4c)

where (v(v · r)/|v|2) is, of course, in vector form, and likewise that,

(x′, 0, 0) = ((|v|, 0, 0)(|v|x′)/|v|2) = (v(v · r′)/|v|2). (2.4d)

We further note that,

(0, y, z) = (x, y, z)− (x, 0, 0) = r− (v(v · r)/|v|2), (2.4e)

and likewise that,

(0, y′, z′) = (x′, y′, z′)− (x′, 0, 0) = r′ − (v(v · r′)/|v|2), (2.4f)

Since Eq. (2.3n) implies that (0, y′, z′) = (0, y, z), it is consequently true that,

r′ − (v(v · r′)/|v|2) = r− (v(v · r)/|v|2). (2.4g)

Eq. (2.3n) implies that (x′, 0, 0) = (γ(x−|v|t), 0, 0) = γ(x, 0, 0)− γ(|v|, 0, 0)t = γ(v(v · r)/|v|2)− γvt, where
we have applied Eq. (2.4c) and (|v|, 0, 0) = v. Since in addition, (x′, 0, 0) = (v(v · r′)/|v|2) from Eq. (2.4d),
we have obtained from Eq. (2.3n) that,

(v(v · r′)/|v|2) = γ(v(v · r)/|v|2)− γvt, (2.4h)

Now we add Eq. (2.4g) to Eq. (2.4h) to obtain,

r′ = r + (γ − 1)(v(v · r)/|v|2)− γvt, (2.4i)

the space transformation part of the Lorentz transformation in vector form. Combining the Eq. (2.4b) time
and the Eq. (2.4i) space transformation parts of the Lorentz transformation in vector form yields,

t′ = γ(t− ((v · r)/c2)) and r′ = r + (γ − 1)(v(v · r)/|v|2)− γvt; γ
def
=
(
1/
√

1− (|v|/c)2
)
. (2.4j)

In Eq. (2.4j) the time and space parts of the Lorentz transformation don’t have the same dimensions,
which would hinder the introduction of the widely applicable (e.g., to electromagnetic physics) dimensionless
matrix/tensor form of the Lorentz transformation. To modify Eq. (2.4j) to have dimensional homogeneity,

we switch from using the time t to using the entity x0
def
= (ct), which has spatial dimension. For a more

compact notation, we also switch to the dimensionless scaled velocity vector b
def
= (v/c),

(x0)′ = γ(x0 − (b · r)) and r′ = r + (γ − 1)(b(b · r)/|b|2)− γbx0; b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.4k)

We next briefly return to the Galilean transformation to show that its inverse has a special property, a
property which the inverse of the Lorentz transformation shares. The Galilean transformation is,

t′ = t and r′ = r− vt, (2.5a)
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and its inverse is easily calculated,

t = t′ and r = r′ + vt′. (2.5b)

Therefore the inverse of the Galilean transformation has almost the same form as the Galilean transformation
itself except that v → −v. This property of the Galilean transformation, sometimes called relativistic
reciprocity, is a logic-driven relationship between the two coordinate systems: they are equivalent except for
the velocity −v which an observer at rest in the “moving” system attributes to the “stationary” system.
Since relativistic reciprocity is a logic-driven relationship between the two coordinate systems, it should
also hold for the Lorentz transformation. We next undertake the lengthy process of inverting the Lorentz
transformation displayed in Eq. (2.6a) below to check whether relativistic reciprocity holds,

(x0)′ = γ(x0 − (b · r)) and r′ = r + (γ − 1)(b(b · r)/|b|2)− γbx0; b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.6a)

We start inverting by solving the first equation given in Eq. (2.6a) for x0, and solving the second one for r,

x0 = ((x0)′/γ) + (b · r) and r = r′ − (γ − 1)(b(b · r)/|b|2) + γbx0; b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.6b)

Our next step will be to take the dot product of the second equation given in Eq. (2.6b) with b, followed by
solving the result for (b · r) in terms of (b · r′) and x0. Since the first equation given in Eq. (2.6b) gives x0 in
terms in terms of (x0)′ and (b · r), our subsequent step will be to solve that newly available pair of equations
for x0 in terms of (x0)′ and (b · r′), and also for (b · r) in terms of (x0)′ and (b · r′). Insertion of those
two results into the second equation given in Eq. (2.6b) then yields r in terms of r′ and (x0)′, completing
the inversion. Our next step of taking the dot product of the second equation given in Eq. (2.6b) with b,
followed by solving the result for (b · r) in terms of (b · r′) and x0, produces the second equation given in
Eq. (2.6c), which is displayed below,

x0 = ((x0)′/γ) + (b · r) and (b · r) = ((b · r′)/γ) + |b|2x0; b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.6c)

Solving the pair of equations given in Eq. (2.6c) for x0 in terms of (x0)′ and (b · r′), and also for (b · r) in
terms of (x0)′ and (b · r′) yields,

x0 = γ((x0)′ + (b · r′)) and (b · r) = γ((b · r′) + |b|2(x0)′); b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.6d)

Comparison of the first equation given in Eq. (2.6d) to the first equation given in Eq. (2.6a) shows adherence
to relativistic reciprocity. We next insert both of the equations given in Eq. (2.6d) into the second equation
given in Eq. (2.6b), and then gather terms. The result of doing so is the second equation given in Eq. (2.6e),
which is displayed below. The comparison of the second equation given in Eq. (2.6e) below to the second
equation given in Eq. (2.6a) above shows adherence to relativistic reciprocity. (The first equation given in
Eq. (2.6e) below is simply a repetition of the first equation given in Eq. (2.6d) above.) Eq. (2.6e) given below
is the full inverse of Eq. (2.6a) given above, and it shows complete adherence to relativistic reciprocity,

x0 = γ((x0)′ + (b · r′)) and r = r′ + (γ − 1)(b(b · r′)/|b|2) + γb(x0)′; b
def
= (v/c), γ

def
=
(
1− |b|2

)− 1
2 . (2.6e)

We next verify Lorentz-transformation invariance of the expanding spherical light surface, i.e.,

|r′|2 − ((x0)′)2 = |r|2 − (x0)2, (2.7a)

where r′ and (x0)′ are given in terms of r, x0 and b by the Eq. (2.6a) Lorentz transformation, namely by,

r′ = r + (γ − 1)(b(b · r)/|b|2)− γbx0 and (x0)′ = γ(x0 − (b · r)). (2.7b)

Since nine terms initially enter into the expression |r′|2 − ((x0)′)2, that expression must be pored over at
considerable length to verify that it actually simplifies to |r|2 − (x0)2,

|r′|2 − ((x0)′)2 =

|r + (γ − 1)(b(b · r)/|b|2)− γbx0|2 − (γ(x0 − (b · r)))2 =

|r|2 − (x0)2
[
γ2(1− |b|2)

]
+ 2(x0)(b · r)

[
γ2 − γ(γ − 1)− γ

]
+ ((b · r)/|b|)2

[
(γ − 1)2 + 2(γ − 1)− γ2|b|2

]
=

|r|2 − (x0)2, (2.7c)
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because |b|2 = 1− (1/γ2), so the expanding spherical light surface is Lorentz-transformation invariant.
The Eq. (2.7b) vector form of the Lorentz transformation is far less widely applicable than is a di-

mensionless 4 × 4 symmetric matrix (or second-rank tensor) which resides within it. That dimensionless
Lorentz-transformation matrix allows momentum and energy, for example, as well as space and time coordi-
nates, to be Lorentz-transformed. In this tutorial we wish to set time-independent electromagnetic potentials
and fields, such as those of stationary charges and magnetic dipoles, into motion at constant velocity, for
which the dimensionless Lorentz-transformation matrix is indispensable.

To carry out the extraction of the Lorentz-transformation’s dimensionless matrix elements from the
Lorentz transformation’s Eq. (2.7b) vector form, we write r′ = ((x1)′, (x2)′, (x3)′), r = (x1, x2, x3) and
b = (b1, b2, b3). The Lorentz transformation’s dimensionless matrix elements then are the coefficients of x0,
x1, x2 and x3 in that transformation’s Eq. (2.7b) vector form. For example, the homogeneous linear relation
(x0)′ = γ(x0 − (b · r)) from the Eq. (2.7b) vector form of the Lorentz transformation is parsed as follows in
order to obtain a subset of the Lorentz transformation’s dimensionless matrix elements,

(x0)′ = γ(x0 − (b · r)) = (γ)x0 +
∑3
i=1(−γbi)xi = Λ00(b)x0 +

∑3
i=1 Λ0i(b)xi, (2.8a)

from which we read off the following subset of the sixteen dimensionless matrix elements of the Lorentz-
transformation matrix (or second-rank tensor) Λµν(b), µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3,

Λ00(b) = γ; Λ0i(b) = −γbi, i = 1, 2, 3. (2.8b)

Passing now to the remaining homogeneous linear relation r′ = r + (γ − 1)(b(b · r)/|b|2) − γbx0 of the
Eq. (2.7b) vector form of the Lorentz transformation, the three components of this vector relation are,

(xi)′ = xi + (γ − 1)(bi(b · r)/|b|2)− γbix0, i = 1, 2, 3, (2.8c)

from which we want to extract the dimensionless coefficients of x0, x1, x2 and x3. To do that we parse
Eq. (2.8c) as follows,

(xi)′ =
∑3
j=1

(
δij + (γ − 1)(bibj/|b|2)

)
xj + (−γbi)x0 =

∑3
j=1 Λij(b)xj + Λi0(b)x0, i = 1, 2, 3, (2.8d)

from which we read off the following subset of the sixteen dimensionless matrix elements of the Lorentz-
transformation matrix (or second-rank tensor) Λµν(b), µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3,

Λij(b) =
(
δij + (γ − 1)(bibj/|b|2)

)
, i = 1, 2, 3 and j = 1, 2, 3; Λi0(b) = −γbi, i = 1, 2, 3. (2.8e)

Combining the results of Eq. (2.8b) with those of Eq. (2.8e) provides all sixteen dimensionless matrix elements
of the Lorentz-transformation matrix (or second-rank tensor) Λµν(b), µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3,

Λ00(b) = γ; Λ0i(b) = Λi0(b) = −γbi, i = 1, 2, 3;

Λij(b) =
(
δij + (γ − 1)(bibj/|b|2)

)
, i = 1, 2, 3 and j = 1, 2, 3. (2.9a)

It is apparent by inspection of Eq. (2.9a) that the Lorentz-transformation matrix is symmetric,

Λµν(b) = Λνµ(b), µ = 0, 1, 2, 3 and ν = 0, 1, 2, 3, (2.9b)

and the parity properties of its matrix elements under reversal of the sign of b are,

Λ00(−b) = Λ00(b); Λ0i(−b) = −Λ0i(b), i = 1, 2, 3; Λij(−b) = Λij(b), i = 1, 2, 3 and j = 1, 2, 3. (2.9c)

The the Eq. (2.9c) parity properties of the Lorentz-transformation matrix elements will, further on, help us
to verify relativistic reciprocity, i.e., that the matrix Λ(−b) is the inverse of the matrix Λ(b). But we first
must abstract from preservation of the expanding spherical light surface a property of the Λµν(b) themselves,
in which the coordinates aren’t present. With the coordinates present, that preservation of course is,

((x0)′)2 −
∑3
k=1((xk)′)2 = (x0)2 −

∑3
k=1(xk)2, where (xµ)′ =

∑3
α=0 Λµα(b)xα = Λµα(b)xα. (2.9d)

The final equality of Eq. (2.9d) communicates that repeated Greek indices are to be understood as being
summed over. Eq. (2.9d) therefore can be written as,(

Λ0α(b)Λ0β(b)−
∑3
k=1 Λkα(b)Λkβ(b)

)
xαxβ = (x0)2 −

∑3
k=1(xk)2. (2.9e)

At this point it is tremendously useful to write,
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(x0)2 −
∑3
k=1(xk)2 =

(
ηαβ

)
xαxβ , where η00 = 1, ηkk = −1 for k = 1, 2, 3 and ηαβ = 0 for α 6= β. (2.9f)

Since ηαβ and
(
Λ0α(b)Λ0β(b) −

∑3
k=1 Λkα(b)Λkβ(b)

)
above are symmetric under α ⇀↽ β exchange, the

linear independence of ten of the sixteen coordinate products xαxβ ensures the validity of the equations,(
Λα0(b)Λ0β(b)−

∑3
k=1 Λαk(b)Λkβ(b)

)
= ηαβ . (2.9g)

In Eq. (2.9g) the Λκα(b) of Eq. (2.9e) are replaced by Λακ(b), which is permitted by the symmetry of the
Λµν(b) indices (see Eq. (2.9b)). As required, Eq. (2.9g) abstracts a property of the Λµν(b) themselves from
invariance of the expanding spherical light surface; the coordinates aren’t present. The Λµν(b) given by
Eq. (2.9a) are readily (if a bit tediously) verified to actually satisfy Eq. (2.9g). In light of its form, the left
side of Eq. (2.9g) can be more tidily presented as Λακ(b)ηκλΛλβ(b). The consequent matrix equation,

Λ(b)ηΛ(b) = η, (2.9h)

is in fact the standard way Eq. (2.9g) is presented—together with pointing out that therefore Lorentz trans-
formations are homogeneous linear 4× 4 mappings which preserve η. The dryly abstract “preservation of η”
extends the reach of Lorentz-transformation invariance far beyond the expanding spherical light surface of
the space and time coordinates.

The more detailed Eq. (2.9g) version of the extremely tidy Eq. (2.9h) is better suited to carrying out
calculations, however. We next use Eq. (2.9g), together with the simple parity properties of the transforma-
tion matrix elements Λµν(b) noted in Eq. (2.9c), to show that Λ(−b) is the inverse of Λ(b), i.e., that Λ(b)
adheres to relativistic reciprocity.

We begin by using those parity properties, and also the properties of ηαβ , to show that for specific
subsets of the four possible values which its particular index α can assume, Eq. (2.9g) is equivalent to,(

Λα0(−b)Λ0β(b) +
∑3
k=1 Λαk(−b)Λkβ(b)

)
= δαβ . (2.9i)

We now show specifically that Eq. (2.9g) is equivalent to Eq. (2.9i) when α has the one of the values i, where
i = 1, 2, 3. In those cases, Eq. (2.9g) reads,(

Λi0(b)Λ0β(b)−
∑3
k=1 Λik(b)Λkβ(b)

)
= ηiβ .

It is easily verified that ηiβ = −δiβ . Also, according to the Eq. (2.9c) parity rules, Λi0(b) = −Λi0(−b),
whereas Λik(b) = Λik(−b). Therefore, in the cases that α = i, where i = 1, 2, 3, Eq. (2.9g) is equivalent to,

−
(
Λi0(−b)Λ0β(b) +

∑3
k=1 Λik(−b)Λkβ(b)

)
= −δiβ ,

which is equivalent to, (
Λi0(−b)Λ0β(b) +

∑3
k=1 Λik(−b)Λkβ(b)

)
= δiβ ,

which is precisely Eq. (2.9i) when α = i = 1, 2, 3.
Passing next to the case that α = 0, Eq. (2.9g) reads,(

Λ00(b)Λ0β(b)−
∑3
k=1 Λ0k(b)Λkβ(b)

)
= η0β .

Here we note that η0β = δ0β , Λ00(b) = Λ00(−b) and Λ0k(b) = −Λ0k(−b). Therefore, when α = 0, Eq. (2.9g)
is equivalent to, (

Λ00(−b)Λ0β(b) +
∑3
k=1 Λ0k(−b)Λkβ(b)

)
= δ0β .

which is precisely Eq. (2.9i) when α = 0.
Thus Eq. (2.9g) is equivalent to Eq. (2.9i) for all four possible values of α, i.e.,(

Λα0(−b)Λ0β(b) +
∑3
k=1 Λαk(−b)Λkβ(b)

)
= δαβ ,

which implies that, (
Λακ(−b)Λκβ(b)

)
= δαβ ,

which in turn implies that, (
Λ(−b)Λ(b)

)αβ
= Iαβ ,
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so,

Λ(−b)Λ(b) = I,

and therefore,

Λ(−b) = (Λ(b))−1. (2.9j)

Eq. (2.9j) shows that the Lorentz transformation matrix given by Eq. (2.9a) adheres to relativistic reciprocity.
Since our interest in Lorentz transformation is this tutorial is its application to electromagnetic fields,

and since those fields are governed by differential equations, we now work out the Lorentz transformations of
the two differential operators that enter into the differential equations which govern the scalar and vector elec-
tromagnetic potentials. The fundamental differential operator of the electromagnetic differential equations
is the space-time gradient,

(∂/∂xµ) = ((∂/∂x0),∇r), (2.10a)

which is a critical ingredient of “the equation of continuity” that enforces local charge conservation, and
which underlies the d’Alembertian differential operator,

(∂/∂xµ)ηµν(∂/∂xν) =
(
∂2/∂(x0)2 −∇2

r

)
, (2.10b)

that is the essence of the crucially-important electromagnetic wave equations.
The Lorentz transformation of the space-time gradient (∂/∂xµ) is of course (∂/∂(xµ)′), where (xµ)′ =

Λµβ(b)xβ . We next wish to work out the coefficients of this Lorentz transformation’s representation as
a linear combination of its untransformed components (∂/∂xα). Since the space-time gradient is a simple
first-order differential operator, we can formally obtain that particular linear representation of its Lorentz
transformation (∂/∂(xµ)′) by an appropriate application of the calculus chain rule, specifically,

(∂/∂(xµ)′) = (∂xα/∂(xµ)′)(∂/∂xα). (2.11a)

However, the coefficients (∂xα/∂(xµ)′) obtained in Eq. (2.11a) can only be evaluated after working out
the untransformed coordinates xα in terms of the transformed ones (xσ)′, σ = 0, 1, 2, 3, which compels
application of the inverse (Λ(b))−1 of the Lorentz-transformation matrix Λ(b). In detail, the xα are worked
out as linear combinations of the (xσ)′, σ = 0, 1, 2, 3, by applying the twin facts that,

(xσ)′ = Λσβ(b)xβ and
(
(Λ(b))−1

)ασ
Λσβ(b)xβ = δαβxβ = xα, (2.11b)

which together imply that,

xα =
(
(Λ(b))−1

)ασ
(xσ)′. (2.11c)

Inserting the Eq. (2.11c) result into the first factor on the right side of Eq. (2.11a) then yields,

(∂/∂(xµ)′) =
(
∂
[(

(Λ(b))−1
)ασ

(xσ)′
]
/∂(xµ)′

)
(∂/∂xα) =

(
(Λ(b))−1

)αµ
(∂/∂xα), (2.11d)

Since from the Eq. (2.9j) principle of relativistic reciprocity we know that (Λ(b))−1 = Λ(−b), and since
the matrix elements of Λ(b) are symmetric (see Eq. (2.9b)), the final form of the Eq. (2.11d) Lorentz
transformation of the space-time gradient in terms of the untransformed components of that gradient is,

(∂/∂(xµ)′) = Λµα(−b)(∂/∂xα), (2.11e)

whose form only differs from the form of the Lorentz transformation of the space-time coordinates, which is
(xµ)′ = Λµα(b)xα, by the reversal of the sign of b.

We now turn to the Lorentz transformation of the Eq. (2.10b) d’Alembertian differential operator
(∂/∂xµ)ηµν(∂/∂xν), which is transparently underlain by the Eq. (2.10a) space-time gradient (∂/∂xµ). We are
in a position to readily evaluate its Lorentz transformation (∂/∂(xµ)′)ηµν(∂/∂(xν)′), where (xµ)′ = Λµα(b)xα

and (xν)′ = Λνα(b)xα, by first applying the space-time gradient Lorentz-transformation result of Eq. (2.11e),
followed by applying the Lorentz-transformation invariance of ηµν , i.e., that Λ(b)ηΛ(b) = η which is set out
in Eq. (2.9h). Thus,

(∂/∂(xµ)′)ηµν(∂/∂(xν)′) = Λµα(−b)(∂/∂xα)ηµνΛνβ(−b)(∂/∂xβ) =

(∂/∂xα)Λαµ(−b)ηµνΛνβ(−b)(∂/∂xβ), (2.12a)
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where we have applied Eq. (2.11e) to the two Lorentz-transformed space-time gradient parts of the Lorentz-
transformed d’Alembertian differential operator, rearranged the order of some of the multiplicative fac-
tors, and utilized the index symmetry of Λµα(−b). We next apply Eq. (2.9h) to collapse the group
Λαµ(−b)ηµνΛνβ(−b) in the center of the final expression of Eq. (2.12a) to ηαβ , which implies that,

(∂/∂(xµ)′)ηµν(∂/∂(xν)′) = (∂/∂xα)ηαβ(∂/∂xβ), (2.12b)

so the Lorentz-transformed d’Alembertian differential operator is itself, i.e., the d’Alembertian differential
operator is invariant under Lorentz transformations, just as is the expanding spherical light surface.

3. Setting time-independent electromagnetic fields into motion at constant velocity

In this tutorial we are interested in conceivable undergraduate or high school physics lab electromagnetic
experiments which violate Newtonian precepts. Galilean constant-velocity transformations leave accelera-
tions invariant, so additional forces cannot be generated by constant-velocity transformations in Newtonian
physics. That consequence of Newtonian physics is resoundingly refuted by electromagnetic experiments: a
moving, but not a stationary, charge is accompanied by a moving azimuthal magnetic field; a moving, but
not a stationary, dipole magnet is accompanied by a moving electric field.

It has been known for hundreds of years that a metal wire will deflect the needle of a magnetic compass
which is sufficiently close to the wire when that wire is connected to a battery, but it would be more compelling
if a moving macroscopic object which had been statically charged was substituted for the invisible microscopic
free electrons in the metal wire which the battery caused to move. In 1831 Michael Faraday showed that
a bar magnet moving in the direction of its dipole moment is accompanied by a moving azimuthal electric
field which can transiently propel the free electrons in a metal wire coil around that coil. The presence of
the moving electric field when the magnet is moving (and its absence when the magnet is at rest) would
be more compelling if that electric field transiently deflected a low-mass macroscopic object which had
been statically charged and was hanging downward by a thread immediately above the magnet’s horizontal
trajectory, instead of the moving magnet transiently deflecting the invisible microscopic free electrons in a
metal wire coil.

The physically incorrect invariance of acceleration in constant-velocity Galilean transformations is very
strongly related to the Galilean/Newtonian postulate that constant-velocity transformations leave time in-
variant. Time invariance and acceleration invariance are both notably absent from Lorentz constant-velocity
transformations, which are guided by the equations of electromagnetism, wherein free waves which always
travel at the completely fixed speed c are utterly ubiquitous.

In this section we work out and discuss the magnetic field of a point charge that moves at an “everyday
speed” (|v| � c), and the electric field of a similarly moving point magnetic dipole. But on the way to
those results we work out the equations of electromagnetism in four-potential form, and develop the Lorentz
transformation of that four-potential.

We begin with a quick review of the Laws which govern the electric field E and the magnetic field B,

Coulomb’s Law: ∇r ·E = 4πd0, Faraday’s Law: ∇r ×E + ∂B/∂x0 = 0,

Gauss’ Law: ∇r ·B = 0, Biot-Savart/Maxwell Law: ∇r ×B− ∂E/∂x0 = 4πd, (3.1)

where d0
def
= ρ, the charge density, d

def
= (j/c), the current density divided by c, and, of course, x0

def
= ct.

When the magnetic field B and electric field E are attributed as follows to a four-potential Aµ = (A0,A),

B = ∇r ×A and E = −∇rA
0 − ∂A/∂x0, (3.2)

then Gauss’ Law and Faraday’s Law are satisfied. Coulomb’s Law and the Biot-Savart/Maxwell Law become,

−∇2
rA

0 − ∂(∇r ·A)/∂x0 = 4πd0 and ∇r(∇r ·A)−∇2
rA +∇r(∂A

0/∂x0) + ∂2A/∂(x0)2 = 4πd. (3.3a)

At this point it is important to take note of the fact that Eq. (3.2) doesn’t pin down Aµ = (A0,A) uniquely.
It is readily verified that, given an arbitrary scalar function X(x0, r) (which has the appropriate dimension),
then if (A0,A) satisfies Eq. (3.2), so does (A0−∂X/∂x0, A+∇rX), the “gauge indeterminism” of (A0,A).

We therefore now take advantage of this scalar-function degree of “gauge freedom” in (A0,A) to require
that (A0,A) satisfies the following scalar equation,
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∇r ·A = −∂A0/∂x0, (3.3b)

which is known as the “Lorentz condition”. The consequence of the Lorentz condition for the equation pair
of Eq. (3.3a) is that they simplify to now read,

∂2A0/∂(x0)2 −∇2
rA

0 = 4πd0 and ∂2A/∂(x0)2 −∇2
rA = 4πd. (3.3c)

We see that in Eq. (3.3c) the d’Alembertian differential operator
(
∂2/∂(x0)2 − ∇2

r

)
acts on both parts of

the electromagnetic four-potential Aµ = (A0,A), so it will be convenient to denote the charge density and
current density divided by c on the right sides of the two equations in Eq. (3.3c) as dµ = (d0,d). The Lorentz
condition of Eq. (3.3b) can be written in terms of Aµ = (A0,A) and the space-time gradient differential
operator (∂/∂xµ) = ((∂/∂x0),∇r), which was introduced in Eq. (2.10a), as (∂/∂xµ)Aµ(xσ) = 0. Thus the
Laws of electromagnetism are expressed in four-potential form as follows,(

(∂/∂xα)ηαβ(∂/∂xβ)
)
Aµ(xσ) = 4πdµ(xσ) and (∂/∂xµ)Aµ(xσ) = 0. (3.4)

If Eq. (3.4) has been solved for Aµ = (A0,A), the E and B fields can then be obtained by using Eq. (3.2).
Applying the operator (∂/∂xµ) to both sides of the first equation in Eq. (3.4) and summing over the

index µ produces zero on the left side because of the second equation in Eq. (3.4), i.e., because of the Lorentz
condition. Therefore this procedure must produce zero on the right side as well, i.e.,

(∂/∂xµ)dµ(xσ) = 0. (3.5a)

Eq. (3.5a) is called the charge density/current “equation of continuity”; it enforces local charge conservation.
It is self-evident that any constant-velocity Lorentz transformation of a charge density/current entity

dµ(xσ) is itself a charge density/current entity, and as such it is obliged to adhere to the equation of continuity
in order to enforce local charge conservation. Therefore we would expect the Lorentz transformation (dµ)′(xσ)
of the charge density/current entity dµ(xσ) to satisfy,

(∂/∂xα)
(
(dα)′(xσ)

)
= 0. (3.5b)

Another property that we would expect of the Lorentz transformation (dα)′(xσ) of the charge density/current
entity dα(xσ) is that (dα)′(xσ) would be a homogeneous linear transformation of the four components of
dα(xσ), but with each of those components evaluated at the Lorentz-transformed coordinates, i.e.,

(dα)′(xσ) = Ωαµdµ((xσ)′), where (xσ)′ = Λσβ(b)xβ . (3.5c)

Putting Eq. (3.5c) into Eq. (3.5b) produces,

(∂/∂xα)(Ωαµdµ((xσ)′)) = 0, where (xσ)′ = Λσβ(b)xβ . (3.5d)

The question now is, what matrix Ωαµ ensures that Eq. (3.5d) holds, given that the charge density/current
entity dµ(xσ) is such that Eq. (3.5a) holds? A radical shortcut to answering that question turns out to exist,
namely the systematic replacement of all occurrences of the independent variable xσ in Eq. (3.5a) by its
Lorentz-transformed counterpart (xσ)′ = Λσβ(b)xβ , which changes Eq. (3.5a) to,

(∂/∂(xµ)′)dµ((xσ)′) = 0, where (xσ)′ = Λσβ(b)xβ . (3.5e)

Using Eq. (2.11e), we replace the differential operator (∂/∂(xµ)′) in Eq. (3.5e) by Λµα(−b)(∂/∂xα) and then
rearrange the order of factors to obtain,

(∂/∂xα)(Λµα(−b) dµ((xσ)′)) = 0, where (xσ)′ = Λσβ(b)xβ . (3.5f)

Comparison of Eq. (3.5d) to the result obtained in Eq. (3.5f) shows that,

Ωαµ = Λµα(−b) = Λαµ(−b), (3.5g)

where Λαµ(−b) is, of course, symmetric in its index pair αµ.
We now insert the result given above by Eq. (3.5g) into Eqs. (3.5c) to obtain the Lorentz transformation

(dµ)′(xσ) of the charge density/current entity dµ(xσ),

(dµ)′(xσ) = Λµν(−b) dν((xσ)′), where (xσ)′ = Λσβ(b)xβ . (3.6)

In Eq. (3.4) the electromagnetic four-potential Aµ(xσ) is linked to its charge density/current source dµ(xσ) by
only the d’Alembertian differential operator ((∂/∂xα)ηαβ(∂/∂xβ)), which is Lorentz-transformation invariant
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(see Eq. (2.12b)). Therefore, the Lorentz-transformation character of Aµ(xσ) must be identical to that of
dµ(xσ), i.e.,

(Aµ)′(xσ) = Λµν(−b)Aν((xσ)′), where (xσ)′ = Λσβ(b)xβ . (3.7)

A consequence of the Eq. (3.7) Lorentz-transformation result for Aµ(xσ) is that, just as all Lorentz transfor-
mations of the charge density/current dµ(xσ) satisfy the equation of continuity, all Lorentz transformations
of the electromagnetic four-potential Aµ(xσ) satisfy the Lorentz condition.

We next present the Eq. (3.7) Lorentz transformation of Aµ(xσ) = (A0(x0, r), A(x0, r)) in vector form,
analogous to the Eq. (2.4k) presentation of the space-time Lorentz transformation in vector form,

(A0)′(x0, r) = γ(A0((x0)′, r′) + (b ·A((x0)′, r′))) and

A′(x0, r) = A((x0)′, r′) + (γ − 1)(b(b ·A((x0)′, r′))/|b|2) + γbA0((x0)′, r′), where

(x0)′ = γ(x0 − (b · r)) and r′ = r + (γ − 1)(b(b · r)/|b|2)− γbx0. (3.8)

In this tutorial we will only Lorentz-transform the time-independent electromagnetic potentials of sta-
tionary point sources. Thus there will be no dependence on the variable (x0)′, which we therefore sys-
tematically drop. We will also only Lorentz-transform these time-independent stationary systems to “ev-
eryday speeds”, so |b| � 1. Therefore we systematically drop all effects of order |b|2 or higher. Since
γ =

(
1/
√

1− |b|2
)

= 1 + O(|b|2), we set γ to unity. Under these specialized conditions, Eq. (3.8) becomes,

(A0)′(x0, r) = A0(r′) + (b ·A(r′)) + O(|b|2) and A′(x0, r) = A(r′) + bA0(r′) + O(|b|2), where

r′ = r− bx0 + O(|b|2) = r− vt+ O(|b|2). (3.9)

Upon its return to “everyday notation” which utilizes t = (x0/c) and v = bc, Eq. (3.9) becomes,

(A0)′(r, t) = A0(r− vt) + ((v/c) ·A(r− vt)) + O(|v/c|2) and

A′(r, t) = A(r− vt) + (v/c)A0(r− vt) + O(|v/c|2). (3.10)

These |v/c| � 1 Lorentz transformations of initially time-independent electromagnetic potentials also yield
the corresponding Lorentz-transformed electric and magnetic fields. We now work out the corresponding
Lorentz-transformed magnetic field B′(r, t),

B′(r, t) = ∇r ×A′(r, t) = ∇r × (A(r− vt) + (v/c)A0(r− vt)) + O(|v/c|2) =

B(r− vt)− (v/c)× (∇rA
0(r− vt)) + O(|v/c|2) =

B(r− vt) + (v/c)×E(r− vt)) + O(|v/c|2). (3.11a)

We next work out the Lorentz-transformed electric field E′(r, t) which corresponds to the above conditions,

E′(r, t) = −∇r(A
0)′(r, t)− (1/c)(∂/∂t)A′(r, t) + O(|v/c|2) =

−∇r(A
0(r− vt) + ((v/c) ·A(r− vt)))− (1/c)(∂/∂t)(A(r− vt) + (v/c)A0(r− vt)) + O(|v/c|2) =

E(r− vt)−∇r((v/c) ·A(r− vt)) + ((v/c) · ∇r)(A(r− vt) + (v/c)A0(r− vt)) + O(|v/c|2) =

E(r− vt)− (v/c)× (∇r ×A(r− vt)) + O(|v/c|2) =

E(r− vt)− (v/c)×B(r− vt) + O(|v/c|2), (3.11b)

where the Eq. (3.11b) term
(
(v/c)

(
(v/c) · ∇r

)
A0(r− vt)

)
was dropped because it is of order |v/c|2.

Displayed properly as a pair, the foregoing |v/c| � 1 Lorentz transformations of initially time-indepen-
dent electric and magnetic fields are,

E′(r, t) = E(r− vt)− (v/c)×B(r− vt) + O(|v/c|2),

B′(r, t) = B(r− vt) + (v/c)×E(r− vt) + O(|v/c|2). (3.12)

For the stationary point charge, E(r) = q(r/|r|3) and B(r) = 0. Therefore when the point charge has
constant velocity v we read off from Eq. (3.12) that,

B′(r, t) = q(((v/c)× r)/|r− vt|3) + O(|v/c|2),

E′(r, t) = q((r− vt)/|r− vt|3) + O(|v/c|2). (3.13)
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The Eq. (3.13) magnetic field, which vanishes when v = 0 (in contradiction to Newtonian precepts), is
azimuthal. Arranging the trajectory of a charged object to run along a magnetic north-south line should
enhance the deflection of the needle of a magnetic compass when the charged object passes immediately
beneath the compass.

For the stationary point magnetic dipole, E(r) = 0 and B(r) = ((3r(r ·m) −m|r|2)/|r|5). Therefore
when the point magnetic dipole has constant velocity v we read off from Eq. (3.12) that,

E′(r, t) = ((−3((v/c)× r)((r− vt) ·m) + ((v/c)×m)|r− vt|2)/|r− vt|5) + O(|v/c|2),

B′(r, t) = ((3(r− vt)((r− vt) ·m)−m|r− vt|2)/|r− vt|5) + O(|v/c|2). (3.14)

The Eq. (3.14) electric field, which vanishes when v = 0 (in contradiction to Newtonian precepts), is
azimuthal when the velocity v is parallel to the magnetic dipole’s magnetic moment m. That azimuthal
electric field can transiently propel the invisible microscopic free electrons in a metal wire coil through whose
center the dipole passes (Faraday), or it can transiently deflect a low-mass charged macroscopic object which
is hanging downward by a thread immediately above the dipole’s horizontal trajectory.
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