Notes on Critical Zeros of an L-function

Gorou Kaku

Abstract

This is the summary report of "Trace Formula in Noncommutative Geometry and the Zeros of the Riemman Zeta
Function" by A.Connes.

We set the following notation.
K  aglobal field
Ky alocal field, completion of K at the place v of K
Ak the adele ring of K
Ck theidele class group K*\GL(Ak)

A

Ck the dual group of Ck.

We will summarize the spectral interpretation of critical zeros of L(X, s) associat-
ed X of Cx by Alain Connes. Let & be a test function. The Weil explicit formula says

, h(u—l)
g‘J‘KV* 1—4

Suppose that there exists a representation U of Ck and that

du = h©)+h(h)— Y hz.p.

L(x.p)=0

trU(h) = ZJ}%CJ*U
is satisfied. We see that

trUh) = hO)+h()— X h(x.p)

L(x,p)=0
holds. We can say that critical zeros of L(X, s) appear as the spectra of the opera-

tor U. ltis just the spectral interpretation of critical zeros of L(X, s).
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Let
X = K"\ Ag.

The left regular representation U of Cx on L?5(X) which is a weighted L? space can
be used to accomplish our task. Namely, it holds that

ttU(h) = hO)+h(1) — Y. h(x.p)+ oo-h(1).

L(x,p)=0
Rep = 1/2

However we will not try to treat the representation (U, L?5(X)) directly. Instead of
the representation (U, L25 (X)), we will think of the operator QAU where U is the left
regular representation of Cx on L?(X). Because, firstly there is a possibility of using
some results to compute tr QaU, secondly we can eliminate the parameter § of L.

We try to compute tr(QaU(h)). This has the relationship to the validity of the
Riemann Hypothesis. Suppose that we can compute as follows;

h(u

tr(QaU()) = 2log' (WA(1) + 3 j Sduto(l) A—eo

where 2log'(A) = d 1. It gives trU(h) independently of § since the cut-

LeCs, [A<IA™, A

off Qa can be performed directly on L?(X). Thus we obtain a S-independent trace
formula:

RO)+h(1) — 3 h(z,.p)+ o0-h(1) = 2log'(A)h(1) + zj M) L+ o)
L(%o.p)=0
Rep=1/2 A — o,

The left side is spectral and the right side is geometrical. From the Weil explicit for-
mula, we have seen that

Sl h(” = hO+hM— S hGp).

L(Zo.p)=0

Therefore, one obtains that

> hzep) = Y h.p)-
L(}y,p)=0 L(%y,p)=0
Rep=1/2
It means the validity of the Riemann Hypothesis. Conversely, the validity of the
Riemann Hypothesis implies that

h(u d +o0(l) A— oo,

tr(QuU(h)) = 2log'(AA(1) + Zf



Lastly we will mention trace formulae. The trace formula which is given by a zeta
function:

Zero points  Geometrical side

is a prototype. Selberg’s trace formula is that

Eigenvalues of Laplacian Geometrical side

There exists an operator M such that it is commutative with the Laplacian of H. The
operator is the integral operator which has k(z, w) as an integral kernel

M(f)@) = [k w)fow)duow).

The Selberg’s trace formula gives the explicit formula of Selberg’s zeta function.
The trace formula given by Connes is the same type as Selberg’s. It is that

Characters Geometrical side

Here U(h): C=(X) — C™(X)
UMEX) = [ h@U@ENx)d .
The operator U(h) is the integral operator which has k;(x, y) as an integral kernel

UM = [, k(e )y .



1. Zeta-Functions and L-Functions

We try to characterize L-functions from the view of the representation theory.

Definition 1.1. (Bruhat-Schwartz space) Denote the Bruhat-Schwartz space on

the adeles Ak by S(Ak). Itis the products I1 f, over each place v of K; for each in-
finite place «o each f.. is the usual Schwartz function on R", for each finite place v
each f, is a Schwartz function on a local field K, and f,, = 10, for all but finite many

v. Here, 1o: G — {0, 1} forACG

1 - A
1a(x) = { 0 .. iZA _

[An example]

Sae)=I1f, = fux I1/,,

pS°° p<oo

where 1., € S(R), fp S S(Qp) and j;y = 1z, for all but finite many p.

We will begin with the local case. Denote the set of the irreducible representa-
tions of Ky" by Irr(Ky"). Let (7v, Vz,) be an irreducible representation of K,". Put

m(fw= [, femwds, feSKy).

Suppose that trzz,( ) can be defined, namely 7.( f) is a trace class operator. So we
may think that there exists a character trz, of K", and

wm(f) = | . f@um,(e)d’s.
Denote the character trzv by Xo.,. Put

X(8) = Xov(g)Igl® seC.

X, is a quasi character of Ky".



Definition 1.2. (Local zeta-functions) For an arbitrary f, eS(Kv), let

Ayos () = (s duys ) = IK fv(g)xo’v(g)|g|sd*g.

This integral converges absolutely at Re(s) > 0.
Let

Arous () = {fon Aoy = [ RO~ A7) 7,08l d's

It is a holomorphic function of s at Re(s) > 0.

The global case is as follows.

Definition 1.3. (Global zeta-functions) Put xo =1L, Xo.,. For an arbitrary
feS(Ak), let
A (f)= il )= [, FOx00ld d'x.

This integral converges absolutely at Re(s) > 1.
Let
Ay,s =11, d'y, 5.

By construction 4',s( f ) makes sense whenever Re(s) > 0.

Lemma 1.1. Put ¥ = II, x, where x,(g) = Xo.»(g)|g]° s €C. For Re(s) > 1, the
following integral converges absolutely

A(f)= [ feoxwdx = [ f@r@lddx vfe SAy),

and 4y (f) = L(xo, s) 4% (f ). Here 4'x( f) is a holomorphic function of s at Re(s) >
0.

Proof. For Re(s)>1, f(x)x(x) = f (x)xy(x)|x|" is integrable. So _[M F) x(x)d x
converges absolutely at Re(s)>1. We can compute as follows;

A5 (fo) = [, K@= 1,071, g

= JK; 5L@x.(9)dg — IK; L0792, (9)d g
= [ r@r@ds — [ H@nmeds

= | hOn@ds — 1,0, L@r@ds
= (=10 ] H©Or@ds

= (1= 20,V [ H@1,&)d's.
It holds that
Ay, (f) =0 — 20, W) W) Au, (fo)
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Therefore,
IL, 4y, f) = L(Xo, ) A2 (f).
Here, the left term equals 4y ( f). By construction 4’y ( f) makes sense whenever

Re(s) > 0.
O



2. L*X) and L*(Ck)

Let f €S(Ak). We will think of the sum X, _x-f(rx). It converges absolutely and
gives a function on X. Since -0 = 0, X,x-f(r-0) = X, x-f(0). If £(0) # 0, 2,41 (0)
= co. So we require f(0) = 0. Moreover, consider X, _x-f(rx) = X,.x f(rx) ( f(0) =

0), the sum approximate JK f(rx)dr. Since dx = |x|d"x, dax = |ax|d"ax = |ax|d"x

= |a|dx. Thus we can compute as follows;
_ 4 -
JK f(rx)dr = IKf(r)|x| dr = |x| IJK f(r)dr.

When |x| — 0, |x|—1jK f(r)dr doesn’t make sense unless _[K f(r)ydr =0. Since K -

Ak, we also require '[A,f(x)dx = (.

Definition 2.1.
S(A)={fESAQI f(0) =0, [ fx)dx =01

There exists an exact sequence:

0 > S(Ax), » S(Ax) L5 C®C(1) — 0.

C is a trivial Cx module such that T(a)A = A foracsCk, A= C. C(1) is Tate twist
such that 7(a)A = |a| A for g&Ck, A= C. Considering KerL = S(Ak),, we will
understand that C corresponds to f(0) and C(1) comes from JAKf(j‘lx)dx =

| ], fedx.

Definition 2.2. Let L*(X, dx), be the completion of S(Ak), for the norm given by

AP = .| 00

Similarly, let L*(X, dx) be the completion of S(Ax) for the above norm.
7
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We obtain an exact sequence:
0—L(X),>L(X)-»>Ce®C(1)—0,

For f(x)EL*(X, dx),, let (Tf )(a) be the restriction of f(x) to Ck:

(Tf Na) = |a|'"’Y,cx-f(ra)  VasCk.

Lemma 2.1. Letf(x)=S(Ak),, then the series

(Tf)@) = la| "Ereef(ra)  VasCk
converges absolutely and one has
X vn 3| (Tf)a) | < ceoglall
and (T f)(a™") = (Tf )a).

Proof. The Poisson summation formula reads, for any f(x)= S(Ax),
X |2,k f(rx) = X,cx f (rx7h),

where f (&) = jAKf(g)a(géj)dg for a basic character a of the additive group Ax. We
obtain

%) 2 ek (%) = Dpcge £ x7D) + (—|x] £(0) + F(0)).

Here 7 (0) = [, f()dg. If fF(X)ES(AK)o then |x|Z, ¢ f(rx) = ¥, F (1)), One
obtains

P £ T = (x2S ke f ().

By this formula, it is enough to estimate (Tf )(a) for |a| — oo. (Tf )(a) decays faster
than any power of |a| for |a] — co. Thus, for any n, there exists a constant ¢ and

[(TF)@) | < clal™

is satisfied.

Let L?(Ck, d"x) be the Hilbert space using the norm:

lll” = | |E@f da.



Proposition 2.1.

(Tf Ya)=L*(Ck).
Proof. Suppose that f(x)EL*(X)o. Then
L Y f(rx)| dx < oo,
Since dx = |x|d x, e
jCK|(Tf)(a)|2d*a = [ Id S f(ra) I%CII = [ S f(ra) da <c.

Thus we can also obtain the following exact sequence:

T
0— L(X),—>L(C,)—H—0

where H = L*(Cx)/Im(T). Let U be a left regular representation of Cx on L*(X, dx)
and V be a left regular representation of Cx on L*(Ck, d'x). Set

(U@ f)x) = f(g7x) Vg&Clk, xE Ak
It turns out that
T(U(g) f )(a) = the restriction of f(g7'x)
= 8" (V(@)Tf )(a) va, g=Cx.

From this equation, it is that |g| " T(U(g) f)(a) = V(g)(Tf )(a).

Proposition 2.2.

Im(T) is an invariant subspace for V.

Proof.  Suppose that f€ L*(X),. For (Tf )(a),

V(e)(Tf )a) = |d| " |g " 2,k f(rg @)

if e f(g7%) € LX)y then (T gl flg™x))a@) = la g™
V(Im(T)) € Im(T) namely Im(T) is an invariant subspace for V.
Fix go€ Ck and put fg,(x) = f(go 'x). We can compute as follows;

J.CK',

Y.« f(rg"'a). Thus,

2
dax .

2 2
dx =d" |, dr = gfldl" |,

2 frg,"gx)

2* f(rgo_lx)

2 f(rx)



2
Since f< L*(X), and g Ck, we can say that |g,|g” jc ’ Y f(rx)| dx <co for almost all
Kl rek”

go- Therefore fg,(gx)E L*(X), for almost all g,. Especially fo(gx)E L*(X), for an
arbitrary g€ Ck. Now

2 2 2
. _ —1 . . —1/2 .
ICK rgé*fgo—l (r3gX) dX —_— J.Ck‘g| rg{‘fgoil (r,.X) dx - -[CK r§<|g| fgo—l(r’-x) dX .
2
Here 2,k fg, ' (5 X) = 2,cxf(rgo~'x). When g, = g then _[C > fgo,l (r;gx)| dx <oo,
Klrek”

2

SO _[C > g f,,2(rx) dx <oo. It means that g g ) ELAX),.
Klrek”
O

Because Ck is abelian locally compact, its regular representation (V, L*(Cx)) does

not contain any finite dimensional subrepresentation. This fact is an obstacle to our
attempt computing the trace of U. So we will replace L*(Cx) by L’s5(Ck) using the

polynomial weight (log?|a| )°'%, i.e. the norm | (€|, :L | E)|" (1+10g?|a))*?d a.

Definition 2.3.  Let each Hilbert space L*5(X)o and L?5(X) (5> 1) be the comple-
tion of S(Ak)yand S(Ak) respectively with the square norm

1A = 3 f)

The Hilbert space L25(CK) is obtained from the space of functions with the square
norm

2
(1+ (log|x|)*)*"* dx .

IEE = [ P (s Goglab® "
where we normalize the Haar measure of the multiplicative group Ck

jgk[l’/\]d g~logA A — +oo

These spaces are weighted L? spaces. The followings are basically.

Polynomials are dense in the L*g .

So,
the orthogonal polynomials in L*s are a complete orthogonal set in L .
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Therefore we can decompose each L space in the direct sum of finite dimensional
subspaces.

Proposition 2.3.

(a) The representation (V, L?5(Ck)) isn’ t unitary.
(b) [[V@ll; = O(Uoglal ) |a| — oo.
(©) V@l = Olog|a| ¥ || — o.

Proof.
(a) [V@éE]], = ICK‘f(a‘lg)|2(1+(1og|g|)z)a/2d*g
— ,[Ck‘é‘(a‘lg)r (1+ (loglaa”'g)")"d'g
— LJag)‘z(”(10g\ag|)2)5’2d*g_
Thus it does’t always hold that ||V(a)éj||fs = HgHz

(b) (c) Let p(u) = (14 u*)°”. Itis satisfied that

pogxy) _ p(logx+logy) _ o(logy), c=2

p(logx) o(logx)
We compute as follows;

V@i, = | |&@ o) plioglshd’s
= ] 1&@[ plioglaghd’s
< c-]_|&@ plioglahp(iogle)d’s = c- pllogla)| | &) plioglghd .

812

Therefore
V@] < c- (1+(logla ).
Then
(V@)™ < (c: (1+(logla] )2
We can say that
4

IV@)|[l® < - (1+(logla )?) < ¢*°- (1+(log|d] )?).
Thus,

410
V@l 8 1+ (logla])’

(logla])* (logla])’
It turns out that

V@l _ V@l _
WSCS |a|—>oo and WSCS |a|—>0.

We can show that
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V|’ :[ val, )"
|

(ogla)® || (logla)*
Therefore,
V(@] V(@]
|(l()g|a|)£2‘ >~C |a| —» oo and |(l()g|a|);2‘ <c |Cl| — 0.

Ck is abelian, so its irreducible unitary representation is also a character. We use
X, to denote a character of Ck since a character of Cxk = X,| - |°(peiR) where X, be

a character of Ck,1 which is the maximal compact subgroup: { ge Cxl|g|=11}. Ck is

locally compact, so it isn’t always that Ck= { X }. We will consider that

V(@) (x) = c(g)é(x) Vvgelk

for £(x) € L25(CK). It holds that ¢ |C1<,1 = Xo. We have seen that Visn’t unitary, so
when ¢|c,, = Xo then ¢ = X, |- 1” (peC ). Here

181" < [V(ells, geC.
Consider
&:oo (a>0) and limﬁzc><> (a<0).
4= log|g] 50 log|g]

Because |g|"”’ < |[V(g)ll;, g€ Ck; if Re(p) > 0 or Re(p) < 0 then each of them con-
flicts with the proposition 2.3. (b) and (c). Therefore, it is that p €iR . Namely,
c= X|-I° peiR .

There exists Y, € Cx such that Xo(g) = c(g).

Let
L*s 7 = {E) € L*s(Cr)l £(g7'x) = X, (g) E(x) VaECk VgECk |
and let
L5y, = 16) € L*5(Cx)| £(a™'x) = Xo(@)é(x) VxECk VaeCr.1 .
We see that

L?s 4,(Cx) = g') L% .

since Ck (Xo) = {me Ck | Zlce, =X} =1 %l 1" peiR }.
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3. Discrete Spectra and Imaginary Parts of Zeros
of the L function

We have a following decomposition:

Ck = CK,l X N.

Here Ck 1 is the maximal compact subgroup: { ge Ckl|g|=1}and N = {|g|| ge Cx }
= R%y. Since Ck,is abelian and compact, its irreducible unitary representation is a
character. Let X, be a character of Cx ;. We may say that Ck1 = {Xo}.

We will think of the left regular representation (V, L?5(Ck)) of Cx. Ck. acts by the

restriction of V to Cx1 and it is unitary. Recall [|[V(@)é|[, =||€|l VaECk.1. For &(x) €
L?5(Ck), we will consider that

V(@)é)(x) = c(a)é(x)  vasCk..

Since the left regular representation of Cx 1 is unitary, there exists Xo< Ck.1 such

that Xo(a) = c(a). Thus, fix Xo= Ck.1and put

L5 7, = {E(x) € L%5(Cr)| £a™'%) = Xo(@)E(x) VxECk VasCy,i}.

When Vy, = V|12 4, then (Vy,, L?s5 4,) gives a finite dimensional subrepresentation.
It turns out that

L25(CK) = Zo@ L25’ 2o

€ Ck,

since Ck,1 = {Xo}-
The dual space (L?5(Ck))" of L?5(Ck) can be identified with L?>_5(Cx). It is also
decomposed in the direct sum of the subspaces,

L* 5 4, = {n(x) € L*_s(Cp)| nlax) = X(a)n(x) Vx&Cx VasCk,}.
Here, we use the transposed of V

(Vi(@)n)(x) = nlax); n(x) € (L2s(Cx)) .

The pairing between L25(Ck) and its dual (L%5(Cx))” = L2_5(Ck) is given by
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()= ] fm@d s,

We can obtain the following exact sequences:
T
0— Li(X),—>L;(C,)>H—0.
Let

Im(T)° = {ne (L% (Cx) | (Tf, n) = 0 VfES(Ak)o}-

It holds that

(x) € Im(T)" jck Tf(@n(a)d a = 0, Vf< S(Ax),.

Proposition 3.1. Fix an extension X, of Xo as being equal to 1 on N. For any n(g)<
L? 5 4, We can write it as

(@) = Zo (@) ¥(Ig]) where |_[#(g)]” (1+(og|g)*) " d'g <co.
¥(|g|)is a tempered distribution on R™,. Let
’ﬁ'(t) = _[CKSZ’(a)|a|’At da.

Then lf’(t) has compact support.

Proof. We have seen that an extension X, of X, as a character of Cx has the form
Xo=Xol I’ (peiR). Then

20 (&) =2(a)|gl” gECk,
where a = g/|g|=Ck.1. Fix an extension X, as being equal to 1 on N, then

X (181) = 2D 181”7 = 1.

Thus p = 0. We can consider that it has the form X, =,|-|".
For geCk, put g = a-a 'g. Since a”!g €N, it turns out that |g| = a~'g. Then,

n(g) = Xo(a) - Xo(a™) - n(g) = Xy(a) - n(a~'g) = X(a) - n(lg1).
Now, %, (8) = Xo(a)lg|” = X.,(a). Thus we can write it as
n(g) = X (9)¥(lgl)

Since J'C @ ()| (1+ (log|g])*)**d"g <0, we can say that ¥(|g|) is a tempered distribu-
tion.
Denote h’s Fourier transform by h Cor F(h)):
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FE, 2) = |, hwr@ld d'u.
Let 4 (x) = h(x~"). Then

Vi) = | han(ax)d'a

= [ hoxmd’y = [ Ao o'y = (i ).
One has

Lemma 3.1. There exists an approximate unit f,=S(Ck), such that fn has compact

support, |[V(£,)|s< C Vn, and
V(f) — 1 strongly in L?5(Ck).

From this lemma, we can say that for any £(x)EL%5(Ck)
(V(fIEN(x) = £x)

for some fsuch that f has compact support. Consider its dual case, then we can
say that for any n(g)€ L* s y,

(Vi (mn)(g) = n(g)

for some & such that i has compact support.
We have

F((h*m)=FV(hn) = F@n).

Here F((h *xn)) = F(h)-F(n). Since h has compact support, F(}) also has
compact support. Therefore F((} * n)) has compact support. It means that F(n)
has compact support from the above equation. We may identify 7n(g) with ¥(|g]),

so we can say that ¥'(t)has compact support. -

Fix an extension X, of X, as being equal to 1 on N. For any n(g)< L2_5, 1o Write it
as
n(g) = X (¥(Ig]) where | [w(g)[ (1+(log|g)*)**d'g <co.

Put the “Fourier expansion” of ¥'(|g]);

w(lgl)= | Plgdt where ¥(t) = | ¥@ldda.
Thus,

n©) = | z&ld Twat.
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Since ’ﬁ(t) has compact support, we can compute as follows;

n(g) € Im(T)° <> (Tf, n) = jck Tf(a) JZ Z,@)|al" T(vydtd a
= || ron@ld"#wd ad =0, vf € S(Ap.-

Lemma 3.2. For Re(s) > 0, and any character X, of Ck,

| ON@z@ld™ d'a = cL(Z. 948 55(f). VIESAp.
where the non zero constant ¢ depends upon the normalization of the Haar measure
d’a on Ck.

Proof. Consider a fundamental domain D for the action of K* on Ag". Then Ax" =
DuUriDurDU ---. We may identify D with Ck. It holds that

[h@p@ld™da = | 3 fra)z@ld da

rek

= 3 | frap@ld da,

rek

we can consider that X, (a)|al|® is a quasi-character of Ck then
Xo(ra)ral® = X,(a)|lal® aeCk rek’,
SO
= Y| f@p@ld da

rek

= c] f@x@ldda.
From the lemma 1.1, for Re(s) > 1
c| F@p@ld da =cL(Ze. )4 55 (f).

Thus

[Lh@p@ld™d'a =cL(Z, 94 7).
It is said that

L4z (f) = | f@i@ld’ da

at Re(s) > 1. Since the left term makes sense whenever Re(s) > 0, the equation:
[ @@ @ld™"d'a =cL(Z, s)45:(f) holds for Re(s) > 0.
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Theorem 3.1. Suppose 77(g) € L2_5, %,- Fix an extension %, of X, as being equal
to1onN.
n(ge Im(T)° = L(X,,1/2 +it)¥(t) =0; teR.

Proof. To any function b= C.”(R"}), we can assign a test function f& S(Ax),
such that
A75(f)= [, @I d’x, Re()>0.
From the lemma 3.2,
[ V@i da = L7 12 +it) 4z (f).
Thus it turns out that

| ). T@k@la

"Tt)yd adt = |7 Ly v2+i0 e n (NHE (D)t

= |7 | 1 112410F Ob)|x"" d"xdt
for an arbitrary b C.”(R"}+). Then it holds that
n(g) e Im(M° = [~ [ Lz, 112+ b)) """ d'xdt=0
for an arbitrary b. Therefore
n(g) e Im(T)? = L(x,,1/2 +it)¥(t) = 0.
O
Lemma 3.3. Suppose that L( X, , 1/2 +it) lff(t) = 0. We get that Sf’(t), asa

distribution, is a finite linear combination of the distributions:

O(®); t satisfies L( X,, 1/2 +it) = 0, k < order of the zero and k < %

proof. Let
| ), oz @l Fodad = (F, | aoz@ld da),

and we shall consider that S’}(t) is a distribution. Suppose that L(X,, 1/2 +it) Sff(t)
= 0. If ‘ff(t)aé 0 then L( X,, 1/2 +it) = 0. We may say that Sff(t) is a distribution

supported on {t | L( X, , 1/2 +it) = 0} consisting of a single point. Therefore there
are coefficients ¢ such that

P(t) = 2 ¢ O,
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Corollary 3.1. Suppose that 7(g) & L* 5 4, and 7(g) € Im(T)°. Then 7(g) is a
finite linear combination of functions of the form,

Mk (8) = Xo(g)1gl" (loglgl)*
where t satisfies L( X, , 1/2 +it) = 0 and k < order of the zero. Moreover
N,k (g) € Im(T)°.
Proof. From the above lemma
(P(1), jCKTf(a) Fo@ld” d’a) = (X ¢ 5K, jCKTf(a) fo@\d”d"a).

We can compute as follows;

: k )
@O, [ Tap@ld”da) = ("0 (F) [, T@n@ld’da)

and
@ () [ r@p@ldda) = (%) | Han@id da -
= | @z @ldl" (ogla\ d'a
= ()] @7, @ld|" (logld)'d"a.
Therefore

(DK, jCK Tf(a@) g, (@\d” d’a) = (— i)t LK Tf(a),(@)ld|" (logla)'d’a .
It turns out that

J. @] _z@lal'¥wdid'a = [ | T@i @' F@)d adt
= (¥, ICK Tf (@), (@)d” d"a)
= | TF@X ', qy@ldl" Gogla)'d'a,

so we see that

| z@ld"Twdt = 3=, z,(@ld" (logla)" .

Here, n(g) = | #,(2lel Pvadt.
Let L( X,,s) = 0 and let k < order of the zero. From the lemma 3.2,
| aN@p@ld™d'a = cL(Z,5) 42 (f).
Thus we can say that
9 Y ~ s=U2 g%
(g) [ @@z @ld™d'a =o.
Here

(%)k ICK (TN a) g, (@)|d ™" d'a = jCK Tf (@) z,(a)|d' ™" (logla)) d"a.

Therefore
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.[CKTf(a)fCo(a)mr_m (log|a|)ka’*a = 0.

It means that %, (g)|g[*""? (log|g|)* € Im(T)°. Inour case s = 1/2 + it.

Let H = L25(CK)/Im(T). We shall think of the left regular representation W of Cx
on H.: (W, H) where one deduces W from V. We will consider its dual H*: (W®, ")

where one deduces W' from V. Here
H* = (L25(Cx)/Im(T))" = Im(T)".

One decomposes 7" in the direct sum of the subspaces
H* = ;agi?,“ ’}—[*Xo; ?—[*ZO = {‘fl E(ag) = Xo(a)é(g) VCIECKJ},

where H*xo - Lz_& 1o~ We see that the functions of the form 7 « (g) consists of a
basis of H". Here

(W () 0)x) = Zo (g0)|gx|" (log|gx|)}
= Z(®)1g|" 2 (0 |x|" (log|g|+log ) Vg, x €Cx.

It turns out that

k

(Wm0 =Y, 2Cr 170 (8) 1t k—n ().

n=0

Thus W* isn’t semi simple in general. Now, we see that

k

(Wi =Y 1Crg" (log&)" nex—n(x) VgEN.

n=0

Let W5y, = W* | H*y, and e' = g (geN). We will write the action of N on H'y, as
W (€): R — Hy,.
The following things
(@)  Wiye)=1,
(b)  Wi(e™) = Wi (W (e)

are satisfied. Thus foo(et) is a semi-group. From the theory of semi-group, we can
say that

t T
ero(et) =e o
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where

T t T 0 T t
Dy £ = tim WS- Wn (s _ dWa(e)s

50" t dt t=0-
Here
T t k . .
= ZO(Zt)nt’k)(X) = X CedE@™) "+ e () Y 1esn ()
l’li . .
=3 Glte" 1+ e nt 1 Y ne i (x).
First,
d C e*‘it. X . -0 ;
— dt & )} = oCrit €™ )] =g = it e ().
t=0
Secondly,
tit 4 ; ;i
d,Ce ;t nt,k_l(x)} = Celite™ t+ e 0} e ()] 4
t=0

a—0

We shall think that t* = limt*. Then {ite""-t+ €™ -1 }|,_, = 0. So

d,C.e™t nt,k,l(x)\
dt

= 0.
<o

Finally, when n >1

d an et-i[ tVl . nt,k—n(x)|
dt

= Ldite™ et Y a0 Z g =0
t=0

So we see that

dW"y,(e)n, ()

= it’?]t,k(X).
dt t=0

Thus

Dy Mk (X) = it 1y, 1 ().

The operator DTXO has discrete spectra. We may say that the discrete spectrum is
given by the element 7, « (x) of H’,.
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Theorem 3.2. XoE CA’K,l , 8 >1. Then Dy, has discrete spectra, spDy, C iR is the

set of imaginary parts of zeros of the L function with Gréssencharakter ¥, which
have real part equal to 1/2;

pespDy, = L(X,, 1/2+p) = 0 and p € iR, where %, is the unique
extension of X, to Cx which is equal to 1 on V.

Moreover the multiplicity of p in spDy, is equal to the largest integer of k < %, k <
multiplicity of 1/2+ p as a zero of L.

Now, let & be a test function on Cx and set
Wih) = | h(eoW(g)d's.
Denote h’s Fourier transform by 7 :

W)= [ ol du.

We can compute

(@00, 7)) = (3 Ca n (9): Tk (), 7))
= nuo(g) = Xo (g)|g|it.
Therefore,

aWih) = D, h(d, ib).

L(jo. 1/2+it) =0

Here, trW = trW".

Corollary 3.2. For any Schwartz function h& S(Ck) the operator _[C h(gW(g)d'g
in H is of trace class, and its trace is given by

uWh)y =Y, h(Z.p)

L(}y,12+p)=0
peilk

vyhere the multiplicitx is counted as in the theorem 3.2 and where Fourier transform
h of his defined by h(y,z)= _[C h(u) ()| d u.

We can obtain the following exact sequences:
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0— Ly(X), > L;(X)->C®C(1)—0
and

T
0— Ly(X),—>L;(C,)>H—0.

We will compute trU(h) for (U, L*5(X)) from spectral side. From the above first se-
qguence, considering Lefchetz formula, we will see that

A= tI'U(h) | L25(X), — U'U(h) | 125(X) + tI'U(l’l) |(C('D(C(1)'

From the second sequence, we will obtain

Therefore, it is satisfied that

trU(h) | L) = trU(h) | — trU(h) |y + ttU(h) | Ly TA — A

CeC)

We try to compute trU (h) spectrally. Here,
Uy =[] h@U@dg.
The first term trU(h) |<cea<c<1) gives

h(0)+ h(1)

since

)| = J, h@)1lg d’s = h(1,0)= h ()
and

uU) |y = [, Wl d'g=h1, 1) = hq.

Consider that T(U(g)é)(a) = |g|"(V(g)TE)(a) then it turns out that TU(g)T ' =
1g]"*V(g). We will see that (U, L?5(Ck)) coincides with (|- ["?V, L?5(Ck)). Thus

Ulpaycy is (1-1"V, L25(Cx)) and Ulyis (1 1V, Im(T)0).
So, from the corollary 3.2, we will understand that the second term gives

Y h(f,.p)-
L(%.p)=0
Rep=1/2

Finally, the term trU(h) |L25(CK) + A’ — A gives o-h(1). Here
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tI'U(h) |L25(CK) = J’CK h(g)|g|1/2 Zo(g)d*g + J'CK h(g)|g\”2 }Z(’)(g)d*

= J,1eld” 3 med's;

Xo€CK . 1
since
Y (8 = C| g=1
s 0 g#1>
= co-h(1).
Therefore

ttU(h) = hO)+h(1) — 3 h(z,.p)+ o h(1).

L(%,p)=0
Rep=1/2
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4. trU and Riemann Hypothesis

We try to compute trlU geometrically. Let us start with the computation of the
distribution theoretic trace of the operator U: C“(M) — C“(M),

(UE)(x) = E(p(x)).
Let k(x, y) be the Schwartz distribution on M X M such that
(UEx) = | Kk(x, ER)dy.
One gets k(x, y) = 6(y — ¢(x)) where § is the Dirac distribution. Then
trU = _[Mk(x, x)dx .,

Here k(x, x) = 8(x — ¢(x)). Put g(x) = x — @(x). Itis known that

o(x—x,)
g (x,)

where sum extends over all roots x; of g(x), and that

S(gx) = 2,

1

&(x,)

) dx =
[ ewseenax =Y, o

i

Therefore, one can compute the trace as a finite sum 2 and get
x, p(x)=x

trtU = ), 1

x, p(x) =x |1 - ¢,(x)| :

Let
m Ax— X, ¢ Ax — Ck.
Put
n(X)=ux, x€X and c(j) =21, jEAK.
Consider
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f:XxCx — X, fx, A)=Ax.

It corresponds to the above ¢. Let Z = Graph(f)={(x, A, f(x, 1))}. It corre-
sponds to the above k(x, y). The diagonal map is

0: XXCx — X XCg XX, 6(x,A)=I(x, A, x).

We see that Z N (X X Cx X X) corresponds to k(x, x). Here 671(Z) consists of the
pair (x, )€ X x Cg such that x € X, x = Ax. There exist r, g=K such that x = rx

and A =qj. ThusrxX =qj-rX. Let j = gj. We obtain
j X =X.
Recall

AK - H:/<ooKv X HvlooKv — H,VKV

where [1,..K, = {(x)EI1L,..K, | xv€ O, for almost all v}. The equality j & = %
means that j, ¥, = %,. If &,# 0 for all v, it follows that j,= 1for all v and j = 1.
So the projection of O_I(Z) N (Cxk—{1}) on X is the union of the hyperplanes

UHV, HV:ﬂ(I:Iv), I:]v — {XEAKl.XV: O}

Each A, is closed in Ak and is invariant under multiplication by elements of K*. Thus
each Hy is a closed subset of X. Namely the fixed points of X under f come from the
union on the hyperplanes. Let x be a generic point of Hy;

xEHy, where x, = 0 iff u = v.

Then Hy is the closure of the orbit of x, where the orbit of x is { gx| g=Ck}. Denote

the orbit of such point x by 7, and its isotropy group {g=Ck | gx = x} by L. It turns
out
h
trU(h) = 22#%&
Ve A |1_ A'

where # 7, is the length of the 74, A varies in I and & is a test function on Ck which
vanishes at 1. We have seen that the fixed points of X come from the union on the
hyperplanes. Although Hy # 7x, we can justify the above computation. It means
that not every point of the hyperplane contributes to the computation of trU(h).

Here
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Ix — KV*

by the map A=K, — (1, ---, 1, A, 1,--- ). Then Cx/I; is compact. There exists a
natural bijection between the orbit of x and Cx/I,. Thus #y, = jcm d'A2. We shall

normalize the Haar measures to be j ~d'2 =1. Thisisinsured by normalizing the

CK/I

Haar measure of the multiplicative group Ck

jg‘e[l’A]d g ~logA A — 400,

We shall identify Hywith v. We can write down the above sum with
h(u)
zv"J‘KV* ,LL.

We used
(UAE(x) = EA7'x).

If x = Ax then x = A~ 'x. Therefore, this amounts to replace the test function h(u)
by h(xY). It holds that

h(u™) .
wow = [ gt dn

We will compute trU(h) using Fourier transformations. For the simpler situation,
we shall only consider a finite set S of places of K. Let S be a finite set of places of
K containing all infinite places. The S-units of K is given by

O's={qeK | |lqv| =1 v&S}
O*s\Js! is compact where

JS — HKV*

veS
and .
Is'={je sl il =1}

Let Cs = O%\Js and Xs = O"s\ As where

As = J1Kv.

veS

We normalize the Haar measure of the multiplicative group Cs by
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J.‘g‘eu,AJd g~logA A —> 400,

We will think of L?(Xs) which is obtained by a completion of S(As) with the norm

=1

2
|lx|d " x .

> flgx)

We define U(A1) A& (s by

(U)E)(x) = E(A 7 1x) VxEAs.
We will think of the sum X, co f(gx), f €ES(As) and let Tbe an operator acting on
functions on As:
TEgeosf(qe) = [ Ky 3 flgnd's
. qe0 s
= [ kx,») Y, flgyd'y

qe0's

= 3 [ kx g'nfod'y.

qeO's

Here D is a fundamental domain for the action of ©*sonJs. Then we see that the
trace of its action on L*(Xs) is given by

T = ), J-Dk(x, q'x)dx
qe0’s
since k(gx, qy) = k(x, y) g O’s,

= z IDk(qx, x)dx .

qe0’s
For a given smooth compactly supported function 4 on Cs, let

Uh) = | h(@U(9)d'g

as an operator acting on L?(Xs). For any h&S(Cs) having compact support, there
exists a smooth compactly supported function fon Js such that

2 flag) =h(g) VEECs.

qe0's

Js=DugDuUg,DU --- . Since the integral which is performed on Cs is equivalent

to that on the fundamental domain D, so it holds that U(f) = U(h). Let T=U(f) =
U(h) as an operator acting on L?(Xs). The Schwartz kernel of T'is

kx,y) = | hQH3(y—20)d 2.

On the other hand, let Pa be the orthogonal projection onto the subspace,
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Pr={feL*Xs)| f(x) =0, vx, |x|>A }.
Pn is the multiplication operator by the function

] pa) =1 ¥ <A

P (x)=0 - |x|>A -

Put Po=7F 'PrnF *' where Fis the Fourier transform which depends upon the

basic character . Define the operator R by R f(x) = f(—x) then Fl=RF=FR.
Here

IASPA(é)_[ASf(x)a(xé)dx a(&-—mndé = J'Asf(x)J‘AspA((g)a(xg)a(é._n)dfdx
= [ F®],_pr@a(ex—n)dzdx
= [ r@Fp)a-nadr.

We see that P A is the operator acting on f < L*(Xs) like

(Paf)X) = | Flo)r=-x)f()dy.
Let
Rr= PAPA AeRx.

Denote the Schwartz kernel of Ra by ra(x, y). We see that

(Raf)x) = [ Flp )=, 0F)dy.
So

ra(x, y) = F(p)y — 0)pa(y) = pa()F (p)(y — x).
Moreover, for RaT = RaU(h),

(RaUM) f)x) = [ rax, 2 Kz »)f(y)dydz
= JAJAS}”A(X, Dk(z, y)dz f(y)dy .

Its kernel will be J‘Agm(x, 2)k(z, y)dz.

In practice, it is more convenient to define by means of transpose. The Schwartz
kernel of the transpose R*x is

FA™(x, y) = pa(x)F(pa)(x — y).

*] Pa=FPAF " in the original paper. However it must give a coherent explanation to define Pr=F'PAF.
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Here, F(pA)(x —y) = JAS pa@a(z(x—y))dz = j o(z(x - y))dz . Thus

€As, |74<A

p ('x)f(p )(X —_— y) — JZEAS,|Z\gAa(Z(X_y))dZ |X| <A

0 o d>A

Moreover, (Uh)p, ¥ ) = [ | kx, nomdy#(0dx = [ o] kx, »)¥(x)dxdy. So,

JAsk(x, VW (x)dx = '[Agkf(x, VW (y)dy since (Uh)p, ¥ )= @, U(h)¥ ). It means
that

k" (x, y) = k(y, x).

Now,
(UM)RA) f)(@) =der fUR*AU(h)p).
Here,
the left term = ((U(h)RA) f, @)
= | ] ]k, 2ratz, y)dz f(y)dy glx)dx
and

the right term = { f(x), (R*"AU"(h))p)
= IASf(X)jASIASFAT(x, k" (z, y)dz o(y)dy dx
= [ L] ok @y da fodx gy dy.

Therefore, we see that the Schwartz kernel of U(h)Ra will be

-[ASFAT(X’ 2k (z, y)dz = JASkT(Z, nra‘(x, z)dz
- J.Ask(y’ rat(x, 2)dz
= [ K0, 99,0 F (p)x - 2)dz.

For any g= O’s, put
Iy=] [ rx, 9K (2, gx)dzdx
then

tr(RAU(h)) = tr(U(h)RA) = Y, .

qe0’s
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We shall evaluate the /,. Letz=x + a. Put

k*(z, gx) = k(gx, x + a)
and
ra™(x, 2) = pa()F(p)((x — (x + @) = pax ) F(pr)(— a).

Then
[ raite Dka'(z, g0z = [ Kigx, x+a)p, () F(p,N-a)da.
Now, let (k(gx, x + 2a)*pA(x ) F(pr)(— @)t — a) be
_[AS k(gx, x +(t—a)+2a)p,(x)F(p,)(-a)da.
The Fourier transform of (k(gx, x + 2a)xp.(x ) F(p,)(—a))(t — a) is

F((k(gx, x + 2a)*p.(x)F(pa)(—a))(t — a))(&)
- J.As JAS k(gx, x+(t—a)+ 2a)pA (X)]-_(pA )N—a)da a(t&)dt
= J.Ask(Qx, x+(t—a)+2a)a((t —a)b)dt .[AS P () F(p,)(=a) a(a&)da
= JASk(qx, x+a'+2a)a(a'$)da’ JAS pr () F(p,)(—a) a(aé)da.

Leta = 0. Then

F((k(gx, x + 2a)%pa(x) F(pa) (= )t — a))()
= IASk(qx, x+a')oa(a'd)da' JASpA(x)}“(pA)(—a) a(ad)da.

Here, IASk(qX, x+a')ola'l)da' is the Fourier transform in a of k(qx, x + a):

o(x, &)= | f(),‘l)( [ 8Gc+a- iqx)a(aé)da)d*l .

On the other hand, IASPA(X)f(pA)(—a) a(aé)da is the Fourier transform in a of
PAx)F (pa)(— a):
oAlx, §) = pa(x)pa(&)
since F(py)(—a) = J—"_l(pA)(a). Therefore
F((k(gx, x + 2a)xpr(x) F(pA)(— a))(t — a))(&) = o(x, E)onlx, &),
Think of its Fourier inverse transform:

FUF (k(gx, x + 2a)#px(x) F(p)(— @)t — @))(©)(D)
= [ olx, Honlx, H (=g dé.
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Since

FUF ((k(gx, x + 2a)%px(x) F(p)(— @)t — a))(&))(2)
= JAS k(gx, x+(@—a)+2a)p,(x)F(p,)(—a)da,

when t = 0 then

[ kax, x+@)p, ) F(p)(~a)da = [ o(x, Honlx, HdE.

Thus
JASrAf(x, 2)ka'(z, gx)dz = J’Agg(x, Eon(x, E)dE.
Therefore,
J.xEDJ‘ASrAT(xa Z)kT(Z7 QX)dde == JXEDJ-ASO-(X, f)O'A(x, 5)d§dx
- xeD,\x\gA"g‘gAO‘(‘x’g)dxdé:_
Then
Iy =
qgf)’*s ' qe0" ‘SJ‘ eD, <A, [g<A 0(x,8)dxds.

From this formula, we can obtain the following theorem.

Theorem 4.1. Let h&S(Cs) have compact support. Then when A — <o, one has

tr(RAU(R)) = 2log (A1) + 3 [ 1)

veS |_|

du + o(1)

where 2log'(A) =

-, u, -+, 1) and [" means the principal value.

d'A, each K," is embedded in Cs by the map u — (1, 1,

LeCs, [AelA™!, A

Let Qa be the orthogonal projection on the subspace of L*(Xs) spanned by the
f(x)e S(As) such that f(x) and (Ff)(x) vanish for |x|>A. Here,

Im(Py) = { FELX(Xs) | fx) =0, vx, |x|>A L.

On the other hand,
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Im(Pa) = { F(Ff) € LX(Xs) | (FF)E) = 0, VE, |E]>A .
Put
Ba = Im(PA)NIm( P a).

Here P A and Px are commutative on Ba. We will say that P a and Pa are commuta-
tive if we can obtain Ba. We see that Qa becomes the orthogonal projection on the
subspace Ba of LA(Xs). Let f& LX(Xs). It yields that F ' (pa(&) Fpalx) f))(E))(x)E

Im( P A Pa). Its Fourier transform vanishes for |£|> A, but it itself doesn’t always
vanish for |x|>A. So Ba CIm( P a Pa). It yields that Poa(x) fﬁl(pA(f)]—"(f(x))(ge))(x)e

Im(PA P A). It itself vanishes for |x|>A, but its Fourier transform doesn’t always
vanish for |£|>A. So BAC Im(Pa P o). Since Ba € Im( P A Pa), we can replace Ra of

the Theorem 4.1 by Qa. Suppose that P A and Pa are commutative, then we can
show the following.

Corollary. Let Qa be the orthogonal projection on the subspace of L?(Xs) spann-

ed by the f&S(As), which vanish as well as Fourier transform for | x| >A. Let hE
S (Cs) have compact support. Then when A — oo, one has

tr(QuU(h)) = 2log' (MA(1) + 3 j )

veS

d + o(1).

We can get from this corollary an S-independent global formulation:

h(u

tr(QaU() = 2log' (A1) + 3 j Sduto(l) A—eo

where h& S (Ck) has compact support.

Let Qa be the orthogonal projection on the subspace of L?>(X) spanned by the
€S (Ak), which vanish as well as Fourier transform for | x| >A. Let A€ S (Ck) have
compact support. Let Sa be the orthogonal projection on the subspace of L*(C):

Sa={ € L*(Cx) | E(x) = 0, vx, |x|& AT, Al}
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Let Ba,o be the subspace of L?(X), spanned by the f &S (Ak)o, which vanish as well

as Fourier transform for |x|>A and let Qa0 be the orthogonal projection on Ba..
Let f€S(Ak)o be such that f(x) and (Ff)(x) vanish for |x|>A. Then Tf(x) vanishes
for |x|>A. From Lemma 2.1, Tf(x) = TFf(x~!). So Tf(x) vanishes for |x|<A™".
This shows that T(Ba,)) € Sa. Analogously let Ra,, be the orthogonal projection, and
we will think of f&Im(Ra,). It doesn’t always hold that f(x) vanishes for |x|>A, so
we can’t always say that Tf (x) vanishes for |x|>A. Thus we can’t always state
that T(Im(Ra,0)) € Sa. It must be instructive to understand the difference between

Qa and RA.

Put Q'a0 =T QaoT . It holds that Q' < Sa. Then the following distribution on
Ck of positive type is given

AN ) = tr((Sa— Q'A,O)V(f)).
Here

Ar(fxf)=0 fi(x)= f(x", x € Ck.

Let =S (Ck) have compact support. Set f(x) = |x|""*h(x™"). Since TU(a) =
la|"*V(a)T,

TU(h) = ICKh(g)TU(g)d*g = ICKh(g)lgV/2 V(e)Td'g
= | fEV@Td s =v(F)T

where f(g) :f(g_l). Then

1 ~

UMT =T 'V(f).
It holds that
QaV( ) =TQaoT V() =T QuoUMnT .
We see that
tr(Q' a0V f ) = tro(T Quo UMT ) = tr(Qa U(R)).
Let

sa(x)=1 - |x]e[A7), Al
SA =
sa(x)=0 - |xe[A7], AT -
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We can write the Schwartz kernel of SAV(f) as

s k(x, y) = sa() [ FOHS(y=ax)d’a.
Then

tr(SAV( f)) = jCKSA(X)k(X, x)dx = JCKSA(X)LKJ?(’T])5(X—M)d*idx
- J‘IXIGIA’I,A] & dx = J'|x|€[A“’A] Q@ dx = 2h(1) -log'(A).

| x|
Therefore, if we can show that

h(u d +0o(l) A—co

tr(QaU(h)) = 2log (A)A(1) + ZJ

then Aw (An A — <o) becomes the Weil distribution. Since Aa is a positive type,

Ao is also a positive type. It means that the Weil distribution is positive, so the
Riemann Hypothesis is valid.

We will think of the space
Ha = Im(Sa)/T(Ba,o).

Then
trU(h) |gy, = tr((Sa — Q'a0)| - ["*V(h)) = tr((Sa — Q' a0)V( f )

and trU(h) |y, gives Z fz(;zo,p). When A — oo, Im(SA)/T(Ba,o) is identified with

L(}o,p)=0
Rep=1/2

L*(Cx)/T(L?*(X)o). Therefore

tr(Sa—QuaV(f )= Y hZp) A—co

L(},p)=0
Rep =172

Suppose that the Riemann Hypothesis is valid. Then, from the Weil explicit formula,
it holds that

A ~ ~ h
> h(y.p)—h(0)—h(1) = ZIK ll(u ;
L(Zo- 1/2+P) 0
peiR
We may say that
i 2 h
(1= QraV(F) = = % J.. U

- ul

It yields that
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h(u™)

du +o(l) A— oo,
[1-4

tr(QaU(h)) = 2log'(MA(1) + Y[

Therefore, if P A and Pa are commutative then the Riemann Hypothesis is valid.
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5. Riemann Hypothesis
and Prolate Spherodial Wave Functions

We have been supposing that Ba sufficiently well behaves. However we have
some difficulties which one has to overcome.

Let v be a finite place and let’s think of Ky. We will restrict ourselves to (,. The
Fourier transform of a function f € Ll(Qp) is

fl@) = [ f@e™™ dx

where {‘}, is the fractional part of a p-adic number
oo -1
{Zalpl }p: Zaipl'

We will think of the function space C.~((Q,) of compactly supported, locally con-

stant functions. Let B<pn(a) ={x€ Q| [x—al, <p"} andlet B<;:(0) = B< .

Lemma 5.1.  Iffe L'(Q,), x # 0 then
J fady =, [ 70y

Proposition 5.1.  Denote the characteristic function of B< » by £,». Then
&) = prép(a).

Proof.

Epl(w) = J.@ e_z”i{xw}”fpn (x)dx
from the lemma 5.1 !
= |a|; j@ e (@07'x)dx;

when |0~ x|, < p" then |x|, < p"|@|p,

-1 =2mi{x}
= e p
@, [, e

Plol,

(x)dx = |l e dx

"
[, < p"lol,
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Let m be the integer such that p” = p"|w|,. If |w|,<p—"thenm<0, so

I e dy = pm,
X, < p"

If m > 0 then there exists an y with |y|, < p” such that €7 £ 1. B<,m = B<m(y)
sincey € B<,n. Thus

J’ Pt _[ o O g p2m0, J‘ e g
I, < p" ld, < p" \

al,<p"

So
J’ o 2 g 0.
I, < p"
We see that
if |a)|p§p_” then épn(a)) = |a)|p—1pm :pn
and that

if |w|,>p—"then épn(a)) = 0.

Suppose that f'is supported on B < ,» and constant on the cosets of B<,» We can

choose a finite set of {a;} SB< = such that

!
Bspm = H(ak +Bspfn)
k=0

where f'is equal to zero outside B < ,» and f'is constant on each set B< ,-(ax). Then
f has the form

Z ck&fp,n (x—a,).

Since the Fourier transform of the characteristic function &, is & () = p"&,+(w)

and it yields that f(x —a)(@) = e 27 (@),

i
2ri{ayx}y, —n n
Do a] < p

f) =14 5
0 x|, > p"

Let m > 0. There exists a non-zero function f supported on B<,» and constant on
the cosets of B<,-». Then it turns out that f is a function on Q, which vanishes as
well as its Fourier transform for |x|, >p™. On the other hand, if m < 0 then such a
function is identically zero because m < — m. We see that Ba for Q, makes sense for

large A. Especially, we will think of a function
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m(x) = D, 2(@)E . (x—a),

where y is a character of Q,*. If m (= 0) is sufficiently large, we may consider 77,(x)
as the function which vanishes as well as its Fourier transform for |x|,>p™ and
agrees with y on B< .

When v is an Archimedian place there exists no non-zero function on K,, e.g. R,
which vanishes as well as its Fourier transform for |x|>A. Namely Ba for R makes

no sense. The work of Landau, Pollak and Slepian allows to overcome this difficulty.
The results are as follows.

Given any 7> 0 and any Q >0, we can find a countably infinite set of real functions
wo(t), wi(t), wa(t), --- and a set of real positive numbers

/10>ﬂ«1>12>"'

with the following properties:

i. The y;(¢) are bandlimited, i.e. its Fourier transform F(y;)(@) vanishes for |w|>
Q, orthogonal on the real line and complete in B = { f()e L*(R) | (Ff)(w) = 0,
Vo, lo|>Q }:

- 0 i)
j_wWi(t)Wj(t)dt — { 1 i=7j i,jZ 0, 1,2, -

ii. Intheinterval —7/2 <t < T/2, the y; are orthogonal and complete in L*7:

™ (o g
J‘—T/Zl//i(t)l//j(t)dt o { Ai l=] la.] - Oa 1’ 2a

Here L?75, is the class of all complex valued function f(¢) defined for —7/2 <t <
7/2 and integrable in absolute square in the interval (—77/2, 172).

iii. For all values of #, real or complex,

Aiyi(t) = Jm sin(Q(t — 5)) w(s)ds i=0,1,2, -

-T/2 7[(1 — S)

Both the y’s and the A’s are functions of ¢ = Q7/2. In order to make this depend-
ence explicit, we write
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Ai=2i(c), yi(t) = yilc, 1), 1=0,1,2, -

For any f(#)< B, we can write, from i.,

£ = Yany,
where

a= | fow,®adr.
T/2 T2
Since J:m fOy,()dt = J_T/Zatwi(t) v, () dt = A,

T2
@y =112 fOw,O)d.

This means that we can write f(7) from values of f(¢) in the interval (=772, T/2).
Fix 2 = A for a given A. For any f(¢)€ L*(R), we can obtain

f@ - <A

PAf(f):{ 0 - lf>A -

Denote the function p, f(?) in the interval (—77/2, T/2) by p. f(¢)7. We may say that
ox f(D)12 €L*75, thus we can write

onfDn= Danw,(c, 1) ¢=QTnR, =k
n=0

This description p, f(£)72 = 2 any,(c, t)is valid only for |¢| <7/2. The right term, if
n=0

it converges, gives a function over the whole real line, so p, f(?)72 is extended to a

function over the whole real line. Namely, 2 any, (c, t)describes the function over
=0

a whole real line which fits p, f(¢)72 in the interval (—=1T17/2,7T/2). We also denote it by
P f(O)n. Since the w(c, t)’s are bandlimited, if p, f(#)72 is a bandlimited function

then Zan v,(t) t ER converges and give a bandlimited function p, f(¢)72. So we will
n=0 >
see that the series Zan v, (t) t€R does not converge in general. However it must

give a formal descrig’gion of pr f(£)12. Even if it is formal, we might say that p, f(#)7
is bandlimited actually.

Now, we will see that it does not always hold that p, f(¢#)7. = p. f(t). However,
when T'— oo then p, f()72 = p. f(t). Thus we could say that p, f(£)72 = pa f(t) for
sufficient large 7. Thus we can admit Ba formally and it will sufficiently well behave.
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Even if 2 A and Pa do not commute exactly, we may be allowed to consider that P
and Px are commutative actually.

We will think of the case K = Q. Let S = {oo, Dis s pd} be a finite set of places

of K containing all infinite places.
We will think of the left regular representation (U, L?(Xs)) of Cs.1 which is the sub-

group: {g € Cs||g| =1}. We see that U isn’t always unitary since L?(Xs) is based
on the additive measure dx = |x|d x. However, if U is restricted to Cs then

dg~'x = |g-x|d g7 x = |x|d x = dx,
so the restriction of U to Cs 1 is unitary. For £(x) € L*(Xs), we will consider that

(U(a)é)(x) = c(@)§(x)  VasCs,.

Since the left regular representation of Cs; is unitary, there exists Xo< Cs.1 such

that Xo(a) = c(a). Fix Xo= és,l and put

LPr = {EeL(Xy)| &@'0)= 2,(@)é(x) VxeX,, aeCy,}.
One decomposes L?(Xs ) into the direct sum of subspaces:
L*(Xs)= @ L.
Xo0€Csu

For A large enough, we can find

pi™< A\, mi=0; 1<i<d.

We can choose a finite set of { ax p, } € B<,m such that
l
B <pm = H (ak,p[ + BSp["”’ ) .
k=0
We will find
i
779(;;,.(36) = z Zpi (akyp[_)gp;ml (_x - ak,p,-)
k=0

where y =11 g,,., and we will find a vector

Nxo(x) =11 77%01;,-(95) ELZ%O-
Put
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NMro(x — ax); ar = 11 ak,p; .

On the other hand, let 2 = A for a given A. We can obtain a countably infinite set
of real functions yo(c, 1), wi(c, ), -+ ;¢ = 27172. We will see that the linear span
of

{wole, 1), wile, 1), walc, 1), -+ ; aolx — ao), =+, Mrolx — ar) }

makes a subspace Ba of L?4,. Denote it by Ba*’. As we have seen, BA* is given for-
mally. Thus P A and Pa don’t commute on L?, exactly, but Ba* behaves well. One

decomposes L?(Xs) into the direct sum of subspaces: L*>(Xs) = x%% L?%,. Thus we

can say that P A and Pa commute on L?(Xs ) actually.
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