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We reformulate Gauss-Bonnet-Chern theorem in relation with magnetic symmetry of geometrical optics. If
Euler-Poincare characteristic is a topological invariant, should unrestricted electric potential of U(1) gauge
potential be a topological invariant?

I. GAUSS-BONNET-CHERN THEOREM AND
CURVATURE

Related with the Riemannian-Christoffel curvature
tensor, Rµνρσ, the Gauss-Bonnet-Chern theorem1 can be
written as2
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where χ(M2n) is the Euler-Poincare characteristic.
Eq.(1) relates the Riemannian geometry which is local

geometry with the topological space which is global ge-
ometry. The Riemann-Christoffel curvature tensor is a
local invariant and the Euler-Poincare characteristic is a
global invariant.

II. MAGNETIC SYMMETRY AND CURVATURE

Refer to our previous work3∣∣∣∣∂ν { cω arccos
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where A
U(1)
µ is the unrestricted electric (scalar) potential

of the U(1) gauge potential, m̂U(1) is the restricted mag-
netic (vector) potential of the n-dimensional U(1) group
and nµν is the refractive index.

The relation of refractive index-curvature becomes3
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Eqs.(2),(3) show that there exist the magnetic symme-
try (magnetic monopole) represented by m̂U(1) in the ge-
ometrical optics, especially in the refractive index (2) and
the refractive index-Riemann-Christoffel curvature ten-
sor relation (3) where both are formulated in the (4+n)-
dimensions of unified space.

III. MAGNETIC SYMMETRY AND
GAUSS-BONNET-CHERN THEOREM

Substituting eq.(3) into eq.(1), we obtain
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IV. DISCUSSION AND CONCLUSION

Because the Euler-Poincare characteristic is a topolog-
ical invariant3, so we think that the unrestricted electric

potential of U(1) gauge potential, A
U(1)
µ , should be a

topological invariant.
If the Gauss-Bonnet-Chern theorem is a special case of

the Atiyah-Singer index theorem, what does the magnetic
symmetry imply to the Atiyah-Singer index theorem?
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