Magnetic symmetry, curvature and Gauss-Bonnet-Chern theorem

Miftachul Hadi^{1, 2}

 ¹⁾ Physics Research Centre, Indonesian Institute of Sciences (LIPI), Puspiptek, Serpong, Tangerang Selatan 15314, Banten, Indonesia.
 ²⁾ Institute of Mathematical Sciences, Kb Kopi, Jalan Nuri I, No.68, Pengasinan, Gn Sindur 16340, Bogor, Jawa Barat, Indonesia. E-mail: instmathsci.id@gmail.com

We reformulate Gauss-Bonnet-Chern theorem in relation with magnetic symmetry of geometrical optics. If Euler-Poincare characteristic is a topological invariant, should unrestricted electric potential of U(1) gauge potential be a topological invariant?

I. GAUSS-BONNET-CHERN THEOREM AND CURVATURE

Related with the Riemannian-Christoffel curvature tensor, $R_{\mu\nu\rho\sigma}$, the Gauss-Bonnet-Chern theorem¹ can be written as²

$$\chi(M^{2n}) = (-1)^n \frac{1}{2^{2n} \pi^n n!} \int_{M^{2n}} \sum \epsilon_{\mu\nu}$$
$$\sum R_{\mu\nu\rho\sigma} \, dx^\rho \wedge dx^\sigma \tag{1}$$

where $\chi(M^{2n})$ is the Euler-Poincare characteristic.

Eq.(1) relates the Riemannian geometry which is local geometry with the topological space which is global geometry. The Riemann-Christoffel curvature tensor is a local invariant and the Euler-Poincare characteristic is a global invariant.

II. MAGNETIC SYMMETRY AND CURVATURE

Refer to our previous work³

$$\left| \partial_{\nu} \left\{ \frac{c}{\omega} \arccos\left(A^{U(1)}_{\mu} \hat{m}^{U(1)} - \frac{1}{g} \hat{m}^{U(1)} \times \partial_{\mu} \hat{m}^{U(1)} \right) a^{-1}_{\mu} + ct \right\} \right| = n_{\mu\nu}$$

$$(2)$$

where $A^{U(1)}_{\mu}$ is the unrestricted electric (scalar) potential of the U(1) gauge potential, $\hat{m}^{U(1)}$ is the restricted magnetic (vector) potential of the *n*-dimensional U(1) group and $n_{\mu\nu}$ is the refractive index.

The relation of refractive index-curvature becomes³

$$gN_{\sigma} \partial_{\rho} \ln \left| \partial_{\nu} \left\{ \frac{c}{\omega} \arccos \left(A^{U(1)}_{\mu} \hat{m}^{U(1)} - \frac{1}{g} \hat{m}^{U(1)} \times \partial_{\mu} \hat{m}^{U(1)} \right) a^{-1}_{\mu} + ct \right\} \right|$$
$$= R_{\mu\nu\rho\sigma}$$
(3)

Eqs.(2),(3) show that there exist the magnetic symmetry (magnetic monopole) represented by $\hat{m}^{U(1)}$ in the geometrical optics, especially in the refractive index (2) and the refractive index-Riemann-Christoffel curvature tensor relation (3) where both are formulated in the (4+n)dimensions of unified space.

III. MAGNETIC SYMMETRY AND GAUSS-BONNET-CHERN THEOREM

Substituting eq.(3) into eq.(1), we obtain

$$(-1)^{n} \frac{1}{2^{2n} \pi^{n} n!} \int_{M^{2n}} \sum \epsilon_{\mu\nu}$$

$$\sum g N_{\sigma} \partial_{\rho} \ln$$

$$\left| \partial_{\nu} \left\{ \frac{c}{\omega} \arccos\left(A^{U(1)}_{\mu} \hat{m}^{U(1)} - \frac{1}{g} \hat{m}^{U(1)} \times \partial_{\mu} \hat{m}^{U(1)} \right) a^{-1}_{\mu} + ct \right\} \right| dx^{\rho} \wedge dx^{\sigma} = \chi(M^{2n})$$

$$(4)$$

IV. DISCUSSION AND CONCLUSION

Because the Euler-Poincare characteristic is a topological invariant³, so we think that the unrestricted electric potential of U(1) gauge potential, $A_{\mu}^{U(1)}$, should be a topological invariant.

If the Gauss-Bonnet-Chern theorem is a special case of the Atiyah-Singer index theorem, what does the magnetic symmetry imply to the Atiyah-Singer index theorem?

ACKNOWLEDGMENT

Thank to Professor Yongmin Cho for introducing me magnetic symmetry in gauge theory, Dr Malcolm Ringland Anderson and Richard Tao Roni Hutagalung for fruitful discussions. To beloved ones: Juwita and Aliya. In memory of Ibunda, Ayahanda. May Allah bless them with Jannatul Firdaus.

¹For even-dimensional oriented compact Riemannian manifold, M^{2n} , the Gauss-Bonnet-Chern theorem is a special case of the Atiyah-Singer index theorem (Spalluci E. et al (2004), *Pfaffian*. In: Duplij S., Siegel W., Bagger J. (eds), Concise Encyclopedia of Supersymmetry, Springer, Dordrecht.).

²Miftachul Hadi, Linear and non-linear refractive indices in Riemannian and topological spaces, https://vixra.org/pdf/2105. 0163v1.pdf, 2020.

³Miftachul Hadi, Magnetic symmetry of geometrical optics, https: //vixra.org/pdf/2104.0188v1.pdf, 2021.