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Abstract The idealized electric dipole is visualized as two charges of equal strength and opposite sign which are
kept a fixed nonzero distance apart that is arbitrarily short. This configuration’s electric dipole-moment vector is
the charge strength multiplied by the fixed-length vector from the negative to the positive charge. We work out the
electric fields of electric dipoles, and then obtain their angular-orientation equations of motion in a constant electric
field by attributing a moment of inertia to them, which results in electric-dipole dynamics analogous to that of a
pendulum. The idealized magnetic dipole is visualized as a closed current loop of arbitrarily small nonzero spatial
extent. When its closed loop lies in a plane its magnetic dipole-moment vector is the loop current divided by the
speed of light times the area the loop encloses times the unit vector normal to that plane. The vector-function
form of the magnetic field of a magnetic dipole is identical to that of the electric field of an electric dipole. We
obtain the angular-orientation equation of motion of a magnetic dipole in a constant magnetic field by attributing a
proportional mass current to its circulating charge current, which results in magnetic-dipole dynamics analogous to
gyroscope precession. The closely related quantum spin dynamics of spin-1/2 electrons in a constant magnetic field
is then also discussed.

1. The electric fields produced by electric dipoles

Given a static point charge q at location r = d/2 together with the opposite static point charge −q at
location r = −d/2, the resulting static electric potential is,

V (r;−q,−d/2; q,d/2) = q/|r− d/2| − q/|r + d/2| =

(q/|r|)
[(

1
/√

1− (d · r/|r|2) + (|d|/(2|r|))2
)
−
(
1
/√

1 + (d · r/|r|2) + (|d|/(2|r|))2
)]

. (1.1a)

For |d| � |r| the electrostatic potential V (r;−q,−d/2; q,d/2) of Eq. (1.1a) is adequately represented by its
approximation through first order in (|d|/|r|), which is,

V (r; m) = (m · r)
/
|r|3, where the electric dipole-moment vector m ≡ (qd). (1.1b)

Implicit in the passage from the electrostatic potential V (r;−q,−d/2; q,d/2) of Eq. (1.1a) to the electrostatic
electric dipole-moment potential V (r; m) of Eq. (1.1b) is the mathematical idealization of taking joint limits
|d| → 0 and |q| → ∞ in such a way that the electric dipole-moment vector m ≡ (qd) remains fixed.

With the electrostatic electric dipole-moment potential V (r; m) of Eq. (1.1b) in hand, the corresponding
electrostatic electric dipole-moment field E(r; m) is straightforwardly obtained by taking the negative of the
gradient of V (r; m),

E(r; m) = −∇rV (r; m) = −∇r

(
(m · r)

/
|r|3
)

=
(
3(m · r)r− |r|2m

)/
|r|5. (1.2)

2. The net force and torque a constant electric field exerts on an electric dipole

A constant electric field E exerts equal and opposite forces on the two equal-strength, opposite-sign charges
q and −q of an electric dipole. We take those two charges as being rigidly joined in our electric dipole model,
so the constant electric field E exerts zero net force on that dipole.

Since the forces exerted by the constant electric field E on the two charges of the electric dipole are equal
and opposite, and we regard those two charges as rigidly joined with fixed distance |d| between them, that
constant electric field exerts a net torque on the electric dipole about its center when the electric dipole’s
electric dipole-moment vector qd = m isn’t parallel or anti-parallel to that constant electric field E. This net
torque about the rigid electric dipole’s center clearly has its maximum magnitude when the dipole-moment
vector qd = m is perpendicular to the electric field E, in which case that torque magnitude is obviously
equal to 2|qE||d/2| = |m||E|. More generally, when the angle between the dipole-moment vector qd = m
and the constant electric field E is θ, the two lever arms of the net torque about the electric dipole’s center
each have length |d/2|| sin θ|, so that torque magnitude is 2|qE||d/2|| sin θ| = |m||E|| sin θ|.

With the magnitude |m||E|| sin θ| of the net torque which the constant electric field E exerts on the
electric dipole of vector moment qd = m about its center now in hand, we next need to determine whether
the full correct expression for that net torque is +|m||E| sin θ or −|m||E| sin θ. In the first case that torque
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would correspond to the potential energy function V+(θ) ≡ +|m||E| cos θ, while in the second case that
torque would correspond to the potential energy function V−(θ) ≡ −|m||E| cos θ because,

−dV±(θ)/dθ = ∓|m||E|d cos θ/dθ = ±|m||E| sin θ.

We note that the potential energy function V+(θ) = +|m||E| cos θ has a maximum at θ = 0, which corre-
sponds to an unstable equilibrium, and a minimum at θ = π, which corresponds to a stable equilibrium,
whereas the potential energy function V−(θ) = −|m||E| cos θ has a minimum at θ = 0, which corresponds to
a stable equilibrium, and a maximum at θ = π, which corresponds to an unstable equilibrium.

In the case of the electric dipole which has the electric dipole-moment vector qd = m, its charge q
experiences the force qE in the direction of the constant electric field E, while its charge −q experiences the
force −qE counter to the direction of the constant electric field E, which produces a net torque on that dipole
whose direction is such as to decrease the existing angle θ which separates the direction of the dipole-moment
vector qd = m from the direction of the constant electric field E, a fact which is particularly obvious when
that existing angle of separation θ is equal to π/2. Therefore the angle θ = 0 between the direction of the
dipole-moment vector qd = m and the direction of the constant electric field E corresponds to a stable
equilibrium, whereas the angle θ = π between those two directions corresponds to an unstable equilibrium,
which implies that the correct potential energy function is V−(θ) = −|m||E| cos θ and the corresponding
correct net torque is −|m||E| sin θ.

Our next task is to combine this potential energy V−(θ) = −|m||E| cos θ for the electric dipole of moment
m in the constant electric field E with that electric dipole’s kinetic energy of angular motion to obtain its
Lagrangian and equations of angular orientation dynamics.

3. The angular orientation dynamics of an electric dipole in a constant electric field

The directional orientation of an electric dipole’s electric dipole-moment vector m in three dimensions is
described by the unit vector,

n̂m ≡ (m/|m|) = (cosφ sin θ, sinφ sin θ, cos θ), (3.1a)

where the z-axis of our coordinate system points in the direction of the constant electric field E, i.e.,

E = (0, 0, |E|). (3.1b)

If we attribute the moment of inertia I to the electric dipole with electric dipole-moment vector m in the
constant electric field E, then that electric dipole’s kinetic energy of angular motion T is,

T = (1/2)I|dn̂m/dt|2 =

(1/2)I|(−φ̇ sinφ sin θ + θ̇ cosφ cos θ, φ̇ cosφ sin θ + θ̇ sinφ cos θ, −θ̇ sin θ)|2 =

(1/2)I
(
(φ̇)2 sin2 θ + (θ̇)2

)
, (3.2a)

which, together with this electric dipole’s potential energy V−(θ) = −|m||E| cos θ in the constant electric field
E produces its Lagrangian L,

L = T − V−(θ) = (1/2)I
(
(φ̇)2 sin2 θ + (θ̇)2

)
+ |m||E| cos θ. (3.2b)

The two canonical (angular) momenta inherent in this Lagrangian are the polar angular momentum Lθ and
the azimuthal angular momentum Lφ, namely,

Lθ ≡ ∂L/∂θ̇ = I θ̇ and Lφ ≡ ∂L/∂φ̇ = Iφ̇ sin2 θ. (3.2c)

The corresponding two generalized-force equations inherent in the Eq. (3.2b) Lagrangian L are,

dLθ/dt = ∂L/∂θ ⇒ I θ̈ = −|m||E| sin θ + I(φ̇)2 sin θ cos θ and

dLφ/dt = ∂L/∂φ ⇒ Id
(
φ̇ sin2 θ

)
/dt = 0, (3.2d)

so azimuthal angular momentum is conserved. Eqs. (3.2d) are analogous to the equations of motion of
a massless rigid-arm pendulum of length l which supports a mass m at its bottom while hanging from a
frictionless universal pivot at its top in the practically constant gravitational field at the earth’s surface that
is characterized by acceleration g; to switch Eqs. (3.2d) to the pendulum equations of motion only requires
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the substitution of ml2 for I and the substitution of mgl for |m||E|. It is well known that these equations
of motion can be reduced to quadrature, as we shall explicitly show further on, but the consequent elliptic
integrals aren’t elementary functions. We next point out specialized exact solutions of Eqs. (3.2d) which
have time-independent θ and φ̇ (and therefore φ which are linear in time), and then develop sinusoidal ap-
proximations which are adequate to describe sufficiently small-amplitude time-dependent excursions around
these time-independent exact solutions.

4. Aspects of the angular behavior of an electric dipole in a constant electric field

It is convenient to write the Eq. (3.2d) equations of angular motion for an electric dipole of electric dipole
moment m and moment of inertia I in a constant electric field E in terms of a single constant ω which has
the dimensions of frequency,

θ̈ = −ω2 sin θ + (φ̇)2 sin θ cos θ and d
(
φ̇ sin2 θ

)/
dt = 0, where ω2 ≡ (|m||E|/I). (4.1)

The simplest solutions of Eq. (4.1) are those of stable and unstable static equilibrium,

θ(t) = 0 and θ(t) = π. (4.2)

Another specialized class of simple exact solutions of the two Eq. (4.1) equations of motion are those of
time-independent polar angle θ(t) = θ(t0), where 0 < θ(t0) < π/2, in conjunction with time-independent
time rate of change of the azimuthal angle φ(t) such that (φ̇(t))2 = (φ̇(t0))2 = (ω2/ cos(θ(t0))), which implies
that φ(t) is linear in time,

φ(t) = φ(t0)± ω(t− t0)
√

1/ cos θ(t0). (4.3)

This particular class of specialized exact solutions however clearly excludes the possibility that φ̇(t) = 0,
in which case Eqs. (4.1) describe electric dipole angular motion restricted to a single plane, i.e., φ(t) = φ(t0),
for which the equation of motion for the polar angle θ(t) that is given by Eq. (4.1) becomes,

θ̈ = −ω2 sin θ. (4.4a)

Eq. (4.4a) has, inter alia, the specialized time-independent solution θ(t) = 0, i.e., stable static equilibrium.
Eq. (4.4a), however, in addition describes time-dependent single-plane excursions of θ(t) around its special-
ized time-independent solution θ(t) = 0. When these time-dependent excursions θ(t) around the specialized
time-independent solution θ(t) = 0 are of sufficiently small amplitude, specifically when |θ(t)| � 1, then
these time-dependent excursions θ(t) are adequately approximated by the solutions of,

θ̈ = −ω2θ, (4.4b)

whose general solution θ(t) is the sinusoidal form,

θ(t) = θ(t0) cos(ω(t− t0)) + (θ̇(t0)/ω) sin(ω(t− t0)), (4.4c)

which, when the initial values θ(t0) and θ̇(t0) satisfy |θ(t0)| � 1 and |θ̇(t0)/ω| � 1, clearly satisfies the
required small-amplitude excursion condition |θ(t)| � 1.

We next similarly exhibit the particular form of the equation of motion for the polar angle θ(t) given
by Eq. (4.1) which has, inter alia, the specialized time-independent exact solution θ(t) = θ(t0), where
0 < θ(t0) < π/2. That equation in addition describes the time-dependent excursions of θ(t) around θ(t0),
for which we shall work out a sinusoidal approximation that is adequate when the amplitude of those
excursions is sufficiently small.

In order to carry out this program, we must first fully decouple the Eq. (4.1) equation θ̈ = −ω2 sin θ +
(φ̇)2 sin θ cos θ for θ(t) from the Eq. (4.1) equation d(φ̇ sin2 θ)/dt = 0 for φ̇(t) by formally solving the latter
for φ̇(t) as follows,

φ̇(t) =
(
φ̇(t0) sin2(θ(t0))

/
sin2(θ(t))

)
, (4.5a)

which, incidentally, implies that,

φ(t) = φ(t0) +
∫ t
t0

(
φ̇(t0) sin2(θ(t0))

/
sin2(θ(t′))

)
dt′. (4.5b)

We then insert the Eq. (4.5a) result for φ̇(t) into the Eq. (4.1) equation θ̈ = −ω2 sin θ + (φ̇)2 sin θ cos θ for
θ(t) to obtain,
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θ̈(t) = −ω2 sin(θ(t)) +
(
(φ̇(t0))2 sin4(θ(t0)) cos(θ(t))

/
sin3(θ(t))

)
. (4.5c)

In order for this decoupled Eq. (4.5c) equation for θ(t) to have the specialized time-independent solution
θ(t) = θ(t0), we must choose the following particular value for φ̇(t0),

φ̇(t0) = ±ω
√

1/ cos(θ(t0)), (4.5d)

which is consistent with the specialized Eq. (4.3), whereupon the decoupled Eq. (4.5c) becomes,

θ̈(t) = −ω2 sin(θ(t)) + ω2
(
sin4(θ(t0)) cos(θ(t))

/(
cos(θ(t0)) sin3(θ(t))

))
, (4.5e)

which indeed has the specialized time-independent solution θ(t) = θ(t0). The particular Eq. (4.5d) choice
φ̇(t0) = ±ω

√
1/ cos(θ(t0)) causes Eq. (4.5b) to become,

φ(t) = φ(t0)± ω
√

1/ cos(θ(t0))
∫ t
t0

(
sin2(θ(t0))

/
sin2(θ(t′))

)
dt′, (4.5f)

which reduces to Eq. (4.3) in the case of the specialized time-independent solution θ(t) = θ(t0) of Eq. (4.5e).
We next wish solve Eq. (4.5e) for small-amplitude time-dependent excursions θ(t) around its specialized

time-independent solution θ(t) = θ(t0) (where 0 < θ(t0) < π/2), just as we solved Eq. (4.4a) for small-
amplitude time-dependent excursions θ(t) (which are described by Eq. (4.4c)) around its specialized time-
independent solution θ(t) = 0.

Small-amplitude time-dependent excursions θ(t) around the specialized time-independent solution θ(t) =
θ(t0) (where 0 < θ(t0) < π/2) of Eq. (4.5e) have the representation,

θ(t) = θ(t0)[1 + ε(t; θ(t0), θ̇(t0))], where ε(t = t0; θ(t0), θ̇(t0)) = 0 and |ε(t; θ(t0), θ̇(t0))| � 1. (4.6a)

We insert the Eq. (4.6a) representation of θ(t) into Eq. (4.5e), and keep terms only through first order in
ε(t; θ(t0), θ̇(t0)). This produces a homogeneously linear, second-order differential equation for ε(t; θ(t0), θ̇(t0))
that has sinusoidal solutions. We now illustrate the laborious expansions through first order in ε(t; θ(t0), θ̇(t0))
needed to carry this out, starting with,

sin(θ(t)) = sin
(
θ(t0) + θ(t0)ε(t; θ(t0), θ̇(t0))

)
≈ sin(θ(t0)) + cos(θ(t0))θ(t0)ε(t; θ(t0), θ̇(t0)) =

sin(θ(t0))
[
1 + θ(t0)

(
cos(θ(t0))/ sin(θ(t0))

)
ε(t; θ(t0), θ̇(t0))

]
. (4.6b)

Similarly,

cos(θ(t)) ≈ cos(θ(t0))
[
1− θ(t0)

(
sin(θ(t0))/ cos(θ(t0))

)
ε(t; θ(t0), θ̇(t0))

]
, (4.6c)

and therefore,

ω2
(
sin4(θ(t0)) cos(θ(t))

/(
cos(θ(t0)) sin3(θ(t))

))
≈

ω2 sin(θ(t0))
[
1− θ(t0)

((
sin(θ(t0))/ cos(θ(t0))

)
+ 3
(
cos(θ(t0))/ sin(θ(t0))

))
ε(t; θ(t0), θ̇(t0))

]
. (4.6d)

Eq. (4.6d) together with,

−ω2 sin(θ(t)) ≈ ω2 sin(θ(t0))
[
−1− θ(t0)

(
cos(θ(t0))/ sin(θ(t0))

)
ε(t; θ(t0), θ̇(t0))

]
, (4.6e)

which follows from Eq. (4.6b) and,

θ̈(t) = θ(t0) d2ε(t; θ(t0), θ̇(t0))/dt2, (4.6f)

which follows from Eq. (4.6a), shows that the result of inserting the Eq. (4.6a) representation of θ(t) into
Eq. (4.5e) and keeping terms only through first order in ε(t; θ(t0), θ̇(t0)) produces the following homogeneously
linear, second-order differential equation for ε(t; θ(t0), θ̇(t0)),

d2ε(t; θ(t0), θ̇(t0))/dt2 =

−ω2 sin(θ(t0))
[(

sin(θ(t0))/ cos(θ(t0))
)

+ 4
(
cos(θ(t0))/ sin(θ(t0))

)]
ε(t; θ(t0), θ̇(t0)) =

−ω2
[(

1 + 3 cos2(θ(t0))
)/

cos(θ(t0))
]
ε(t; θ(t0), θ̇(t0)), (4.6g)

whose solution that satisfies ε(t = t0; θ(t0), θ̇(t0)) = 0 and |ε(t; θ(t0), θ̇(t0))| � 1 (see Eq. (4.6a)) is,
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ε(t; θ(t0), θ̇(t0)) = ε(θ(t0), θ̇(t0)) sin
(
ω(θ(t0))(t− t0)

)
, where |ε(θ(t0), θ̇(t0))| � 1

and ω(θ(t0)) ≡ ω
√

(1 + 3 cos2(θ(t0)))/ cos(θ(t0)) . (4.6h)

So from Eqs. (4.6h) and (4.6a),

θ(t) = θ(t0)
[
1 + ε(θ(t0), θ̇(t0)) sin

(
ω(θ(t0))(t− t0)

)]
, where |ε(θ(t0), θ̇(t0))| � 1, (4.6i)

represents small-amplitude time-dependent excursions around the specialized time-independent solution
θ(t) = θ(t0) of Eq. (4.5e) for any θ(t0) which satisfies 0 < θ(t0) < π/2. Eq. (4.6i) implies that,

θ̇(t0) = θ(t0) ε(θ(t0), θ̇(t0)) ω(θ(t0)), (4.6j)

so for 0 < θ(t0) < π/2, ε(θ(t0), θ̇(t0)) is explicitly given in terms of θ(t0) and θ̇(t0) by,

ε(θ(t0), θ̇(t0)) =
(
θ̇(t0)

/
(θ(t0) ω(θ(t0)))

)
=
(
θ̇(t0)

/
(θ(t0)ω)

)√
cos(θ(t0))/(1 + 3 cos2(θ(t0))) , (4.6k)

which for 0 < θ(t0) < π/2 allows the θ(t) of Eq. (4.6i) to be written,

θ(t) = θ(t0) +
(
θ̇(t0)

/
ω(θ(t0))

)
sin
(
ω(θ(t0))(t− t0)

)
, (4.6l)

provided that |θ̇(t0)| � (θ(t0) ω(θ(t0))) =
(
θ(t0) ω

√
(1 + 3 cos2(θ(t0)))/ cos(θ(t0))

)
.

We next insert the Eq. (4.6i) polar-angle result θ(t) for small-amplitude time-dependent excursions
around the time-independent solution θ(t) = θ(t0), where 0 < θ(t0) < π/2, into Eq. (4.5f) to obtain the small-
amplitude excursions around the corresponding azimuthal-angle result φ(t) = φ(t0)±ω

√
1/ cos(θ(t0))(t− t0)

which is given by Eq. (4.3). Through first order in ε(θ(t0), θ̇(t0)), insertion of the θ(t) of Eq. (4.6i) into the
Eq. (4.5f) expression for φ(t), namely,

φ(t) = φ(t0)± ω
√

1/ cos(θ(t0))
∫ t
t0

(
sin2(θ(t0))

/
sin2(θ(t′))

)
dt′,

produces,

φ(t) = φ(t0)±

ω
√

1/ cos(θ(t0))
∫ t
t0

[
1− 2

(
θ(t0) cos(θ(t0))

/
sin(θ(t0))

)
ε(θ(t0), θ̇(t0)) sin(ω(θ(t0))(t′ − t0))

]
dt′ =

φ(t0)± ω
√

1/ cos(θ(t0))(t− t0)∓

2
√

1/(1 + 3 cos2(θ(t0)))
(
θ(t0) cos(θ(t0))

/
sin(θ(t0))

)
ε(θ(t0), θ̇(t0))

(
1− cos

(
ω(θ(t0))(t− t0)

))
, (4.7)

where 0 < θ(t0) < π/2, |ε(θ(t0), θ̇(t0))| � 1, and we know from Eq. (4.6h) that,

ω(θ(t0)) = ω
√

(1 + 3 cos2(θ(t0)))/ cos(θ(t0)) .

The entity ε(θ(t0), θ̇(t0)) in the Eq. (4.7) result can be replaced by
(
θ̇(t0)

/
(θ(t0) ω(θ(t0)))

)
(see Eq. (4.6k))

provided that the condition |ε(θ(t0), θ̇(t0))| � 1 is replaced by the condition |θ̇(t0)| � (θ(t0) ω(θ(t0))).
We have so far focused on the specialized time-independent exact solutions of the Eq. (4.5c) decou-

pled polar-angle θ(t) equation of motion, and on the development of sinusoidal approximations to small-
amplitude time-dependent excursions around those time-independent exact solutions. The decoupled polar-
angle Eq. (4.5c) can, however, be reduced to quadrature in terms of elliptic integrals, so we conclude this
discussion of the angular orientation dynamics of electric dipoles in constant electric fields by carrying out
that reduction. It is useful to first abbreviate the initial-value combination φ̇(t0) sin2(θ(t0)), which is the
conserved azimuthal angular momentum Lφ divided by the moment of inertia I, as ωα, whereupon the
Eq. (4.5b) expression for the azimuthal angle φ(t) in terms of the polar angle θ(t) simplifies to,

φ(t) = φ(t0) + ω
∫ t
t0

(
α
/

sin2(θ(t′))
)
dt′, (4.8a)

and the Eq. (4.5c) decoupled equation of motion for the polar angle θ(t) simplifies to,

θ̈(t) = ω2
(
− sin(θ(t)) +

(
α2 cos(θ(t))

/
sin3(θ(t))

))
. (4.8b)

Multiplying Eq. (4.8b) by 2θ̇(t) and then integrating with respect to t yields,

(θ̇(t))2 = ω2
(
2 cos(θ(t))−

(
α2
/

sin2(θ(t))
)

+ β
)
, (4.8c)
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where the dimensionless constant of integration β is given in terms of initial values by,

β = (φ̇(t0) sin(θ(t0))/ω)2 + (θ̇(t0)/ω)2 − 2 cos(θ(t0)), (4.8d)

so β is the system’s conserved energy (T + V−) divided by (Iω2/2) = (|m||E|/2).
Multiplying Eq. (4.8c) by sin2(θ(t)) = (1 − cos2(θ(t))), allows its right side to be expressed entirely

in terms of powers of cos(θ(t)), while its left side becomes (sin(θ(t))θ̇(t))2 = (d cos(θ(t))/dt)2. Taking the
square root of both sides of that result produces,

d cos(θ(t))/dt = ω
√

(2 cos(θ(t))(1− cos2(θ(t))))− α2 + (β(1− cos2(θ(t)))), (4.8e)

which immediately reduces to quadrature as,

ω(t− t0) =
∫ cos(θ(t))

cos(θ(t0))

√
1/[(2x(1− x)(1 + x))− α2 + (β(1− x)(1 + x))] dx. (4.8f)

Because its integrand is the square root of the inverse of a cubic form in the integration variable x, the
integral in Eq. (4.8f) cannot be expressed in terms of elementary functions; it is termed an elliptic integral.

We next work out the magnetic fields produced by magnetic dipoles, which can be visualized as electric-
current closed-loop circuits of arbitrarily small nonzero spatial extent.

5. The magnetic fields produced by magnetic dipoles

A magnetic dipole’s closed-loop circuit of constant electric current I is described by a closed curve r(s),
where we conveniently choose the parameter s to be the curve’s running arc length, which implies that,

0 ≤ s ≤ l, where l is the curve’s length, and |r′(s)| = 1, (5.1a)

so r′(s) is a unit vector which describes the constant current’s local direction at the loop’s parameter value s,
i.e., each point of the loop r(s), 0 ≤ s ≤ l, has the corresponding current vector I(s) = Ir′(s). In addition,
the fact that the loop is closed of course implies that,

r(l) = r(0). (5.1b)

When the closed loop lies in a plane, the area it encloses times the unit vector normal to that plane is,

area([r(s)]) = (1/2)
∫ l
0
(r(s)× r′(s)) ds, (5.1c)

and the magnitude |area([r(s)])| of that area is regarded as arbitrarily small, but nonzero.
We denote the total charge which is circulating in the closed loop as Q, and assume that it is uniformly

distributed throughout the closed loop’s length l, with every part of it circulating through the loop at the
constant speed v that is given by,

v = (lI)/Q. (5.2a)

Therefore the circulating charge’s local velocity v(s) at the loop location r(s) is,

v(s) = v r′(s) = (l/Q)I r′(s) = (l/Q) I(s). (5.2b)

The charge of an infinitesimal length δs of the loop is (Q/l)δs, so the current density of an infinitesimal
length δs of the loop at the loop location r(s) is,

j(r; δs, r(s), I) = ((Q/l)δs) v(s) δ(3)(r− r(s)) = δs I(s) δ(3)(r− r(s)) = I r′(s) δ(3)(r− r(s))δs. (5.2c)

Therefore the current density of the entire closed loop is,

j(r; [r(s)], I) = I
∫ l
0

r′(s) δ(3)(r− r(s)) ds. (5.2d)

The Eq. (5.2d) current density j(r; [r(s)], I) for the entire closed loop satisfies the physical requirement
∇r · j(r; [r(s)], I) = 0 for being a time-independent current density because,

∇r · j(r; [r(s)], I) = I
∫ l
0
(r′(s) · (∇r δ

(3)(r− r(s)))) ds = −I
∫ l
0
(r′(s) · (∇r(s) δ

(3)(r− r(s)))) ds =

−I
∫ l
0
(d(δ(3)(r− r(s)))/ds) ds = −I

(
δ(3)(r− r(l))− δ(3)(r− r(0))

)
= 0, since r(l) = r(0). (5.2e)
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To obtain the magnetic field B(r) produced by a closed current loop magnetic dipole, we first work out
its vector potential A(r) using the divergence-free closed-loop current density j(r; [r(s)], I) of Eq. (5.2d),

A(r) = (1/c)
∫

j(r1; [r(s)], I)/|r− r1| d3r1 = (I/c)
∫ l
0
(
∫

r′(s)δ(3)(r1 − r(s))/|r− r1| d3r1) ds =

(I/c)
∫ l
0
(r′(s)/|r− r(s)|) ds = (I/(c|r|))

∫ l
0

[
r′(s)

/√
1− 2((r(s) · r)/|r|2) + (|r(s)|/|r|)2

]
ds. (5.3a)

For max{s| 0≤s≤l } |r(s)| � |r| the vector potential A(r) of Eq. (5.3a) is adequately represented by its ap-
proximation through first order in (|r(s)|/|r|), which is,

A(r) = (I/(c|r|))
∫ l
0
(r′(s)(1 + ((r(s) · r)/|r|2))) ds =

(I(r(l)− r(0))/(c|r|)) + (I/(c|r|3))
∫ l
0

r′(s)(r(s) · r) ds = (I/(c|r|3))
∫ l
0

r′(s)(r(s) · r) ds, (5.3b)

because r(l) = r(0). We next carry out integration by parts on the last integral in Eq. (5.3b),∫ l
0

r′(s)(r(s) · r) ds = (r(l)(r(l) · r)− r(0)(r(0) · r))−
∫ l
0

r(s)(r′(s) · r) ds = −
∫ l
0

r(s)(r′(s) · r) ds, (5.3c)

because r(l) = r(0). The result of Eq. (5.3c) implies that,∫ l
0

r′(s)(r(s) · r) ds = (1/2)
∫ l
0
(r′(s)(r(s) · r)− r(s)(r′(s) · r)) ds = (1/2)

∫ l
0
((r(s)× r′(s))× r) ds, (5.3d)

which together with the result for A(r) in Eq. (5.3b) yields that,

A(r) = ((m× r)/|r|3), where m ≡ (I/(2c))
∫ l
0
(r(s)× r′(s)) ds. (5.3e)

The Eq. (5.3e) entity m ≡ (I/(2c))
∫ l
0
(r(s)× r′(s)) ds, which pertains to a magnetic dipole’s closed loop r(s)

and constant electric current I, is that magnetic dipole’s magnetic dipole-moment vector—when the magnetic
dipole’s closed loop lies in a plane, m = (I/c) area([r(s)]) (see Eq. (5.1c)). Magnetic dipole-moment vectors
have the dimensions of charge times length, which matches those of electric dipole-moment vectors. The
magnetic dipole is mathematically idealized by taking the joint limits max{s| 0≤s≤l } |r(s)| → 0 and I → ∞
in such a way that the magnetic dipole-moment vector m = (I/(2c))

∫ l
0
(r(s)× r′(s)) ds remains fixed.

The Eq. (5.3e) vector potential A(r; m) ≡ ((m × r)/|r|3) for a magnetic dipole corresponds to the
magnetic field B(r; m) = ∇r ×A(r; m) = ∇r × ((m× r)/|r|3), which is (tediously) worked out to be,

B(r; m) = ∇r × ((m× r)/|r|3) = m(∇r · (r/|r|3))− (m · ∇r)(r/|r|3) =

m(3 + |r|(∂/∂|r|))(1/|r|3)− (m + ((m · r)(r/|r|)(∂/∂|r|)))(1/|r|3) =
(
3(m · r)r− |r|2m

)/
|r|5, (5.4)

a vector-function form identical to that of the electric field of an electric dipole given by Eq. (1.2).
If for the charge Q which is uniformly distributed along the length l of the closed current loop r(s),

0 ≤ s ≤ l, and which circulates around that loop at constant speed v = (l/Q)I, there is a corresponding
mass M with precisely those same properties, then the angular momentum vector L of that circulating mass
M comes out to be proportional to the current loop’s magnetic dipole-moment vector m.

The angular momentum δL of the motion of the circulating mass in the infinitesimal length δs of the
part of the loop located at r(s) is,

δL = r(s)× (((M/l)δs)v(s)) = (r(s)× ((M/l)v r′(s)))δs =

(r(s)× ((M/l)((l/Q)I)r′(s)))δs = (M/Q)I(r(s)× r′(s))δs. (5.5a)

Therefore the total angular momentum L of the motion of the circulating mass M in the loop is,

L = (M/Q)I
∫ l
0
(r(s)× r′(s)) ds = (2Mc/Q)m, (5.5b)

where m = (I/(2c))
∫ l
0
(r(s)× r′(s)) ds is the loop’s magnetic dipole-moment vector given by Eq. (5.3e).

Eq. (5.5b) shows that the charged, nonzero-mass matter circulating in the loop has angular momentum,
so its response to torque exerted on it by a constant magnetic field will be akin to a gyroscope’s response to
applied torque, namely precession. We next obtain and solve the homogeneously linear differential equation
for the precession of a magnetic dipole’s angular momentum L in a constant magnetic field B. Since Eq. (5.5b)
tells us that L is proportional the dipole’s magnetic-moment vector m, that equation also applies to m.
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6. The precession dynamics of magnetic dipoles in constant magnetic fields

Just as we assumed that the two equal and opposite charges q and −q of an electric dipole m = (qd) are
rigidly attached to each other by an idealized strut of length |d| which has no charge or mass, we shall assume
that the idealized structure of the constant-current I magnetic-dipole closed loop of length l and shape r(s),
0 ≤ s ≤ l, which confines the charge Q and mass M that circulates through it at constant speed v = (lI)/Q
is completely rigid and has no charge or mass.

We begin by calculating the net force F which a constant magnetic field B exerts on such a constant-
current I magnetic-dipole closed loop. The force δF which the constant magnetic field B exerts on the
infinitesimal length δs of the part of the closed loop located at r(s) is,

δF = (((Q/l)δs)(v(s)/c)×B = (((Q/l)δs)(v r′(s)/c)×B =

(((Q/l)δs)((lI)/Q)r′(s)/c)×B = (I/c)(r′(s)×B)δs, (6.1a)

Therefore the net force F which a constant magnetic field B exerts on the entire loop is,

F = (I/c)
∫ l
0
(r′(s)×B) ds = (I/c)

[
(r(l)×B)− (r(0)×B)

]
= 0, (6.1b)

since r(l) = r(0) because the loop is closed.
We next calculate the net torque trq which a constant magnetic field B exerts on such a constant-

current I magnetic-dipole closed loop. The torque δtrq which the constant magnetic field B exerts on the
infinitesimal length δs of the part of the closed loop located at r(s) is,

δtrq = r(s)× (((Q/l)δs)(v(s)/c)×B) = (I/c)(r(s)× (r′(s)×B))δs =

(I/c)
[
r′(s)(r(s) ·B)−B(r(s) · r′(s))

]
δs. (6.1c)

Therefore the net torque trq which a constant magnetic field B exerts on the entire loop is,

trq = (I/c)
∫ l
0

[
r′(s)(r(s) ·B)−B(r(s) · r′(s))

]
ds =

(I/c)
∫ l
0

r′(s)(r(s) ·B) ds− (I/(2c))B
(
|r(l)|2 − |r(0)|2

)
= (I/c)

∫ l
0

r′(s)(r(s) ·B) ds, (6.1d)

where we have used the fact that r(l) = r(0). We next refer to Eq. (5.3d), where it is pointed out that,∫ l
0

r′(s)(r(s) · r) ds = (1/2)
∫ l
0
((r(s)× r′(s))× r) ds =

(
(1/2)

∫ l
0
(r(s)× r′(s)) ds

)
× r,

wherein we can replace r by B. Combining doing so with the expression for trq given by Eq. (6.1d), and

also noting the Eq. (5.3e) definition, m ≡ (I/(2c))
∫ l
0
(r(s)× r′(s)) ds, yields the result,

trq = (I/c)
∫ l
0

r′(s)(r(s) ·B) ds =
(
(I/(2c))

∫ l
0
(r(s)× r′(s)) ds

)
×B = m×B. (6.1e)

Since the net torque trq exerted by the constant magnetic field B on a closed-loop magnetic dipole is equal
to the time rate of change of that dipole’s angular momentum L, Eq. (6.1e) implies that,

dL/dt = m×B = (Q/(2Mc))(L×B), (6.1f)

where we have applied the relation L = (2Mc/Q)m between L and m that is given by Eq. (5.5b). Note that
dm/dt = (Q/(2Mc))(m×B) as well, since L = (2Mc/Q)m, so Eq. (6.1f) is as well the equation of motion
of a magnetic dipole-moment vector in a constant magnetic field B. Eq. (6.1f) implies conservation of the
magnitude |L| of the angular momentum L of a magnetic dipole in a constant magnetic field B because,

d|L|2/dt = 2(L · (dL/dt)) = 2(Q/(2Mc))(L · (L×B)) = 0, (6.2a)

Thus a constant magnetic field B changes only the direction of the angular momentum L and magnetic
moment m of a magnetic dipole. In addition, a constant magnetic field B changes only those components of
the magnetic dipole’s angular momentum L which aren’t parallel to it because Eq. (6.1f) implies that,

d(L ·B)/dt = (Q/(2Mc))((L×B) ·B) = 0. (6.2b)

The expression of the solution of the Eq. (6.1f) equation for the angular momentum L of a magnetic
dipole in a constant magnetic field B becomes more compact when that equation is rewritten in the form,
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dL/dt = ω|B|(L× ûB), where, ω|B| ≡ ((Q|B|)/(2Mc)) and ûB ≡ (B/|B|), so |ûB|2 = 1. (6.2c)

Probably the easiest way to solve Eq. (6.2c) is via its second-order in time version (whose general solution
needs to be specialized to be that of the first-order in time Eq. (6.2c)), namely,

d2L/dt2 = ω|B|((dL/dt)× ûB) = ω2
|B|((L× ûB)× ûB) = ω2

|B|(ûB × (ûB × L)) =

ω2
|B|(ûB(ûB · L)− L) = −ω2

|B|(L− ûB(ûB · L)). (6.2d)

The vector entity ûB(ûB · L) in the last equality of Eq. (6.2d) is precisely the part of the vector L that is
parallel to the constant magnetic field B, which we know from Eq. (6.2b) to be independent of time t, so we
can express it as its value at the initial time t0, namely, ûB(ûB · L) = ûB(ûB · L(t0)), whereupon we can
rewrite Eq. (6.2d) in the form,

d2(L− ûB(ûB · L(t0)))/dt2 = −ω2
|B|(L− ûB(ûB · L(t0))), (6.2e)

which is merely a vector form of the simple harmonic oscillator equation, whose full solution in terms in
terms of initial values at the initial time t0 is,

(L(t)− ûB(ûB · L(t0))) = (L(t0)− ûB(ûB · L(t0))) cos(ω|B|(t− t0))+

((dL/dt)t=t0/ω|B|) sin(ω|B|(t− t0)), (6.2f)

from which we see that the full solution of Eq. (6.2d) for L(t) is,

L(t) = ûB(ûB · L(t0)) + (L(t0)− ûB(ûB · L(t0))) cos(ω|B|(t− t0))+

((dL/dt)t=t0/ω|B|) sin(ω|B|(t− t0)). (6.2g)

We in fact wish to solve the first-order in time equation given by Eq. (6.2c), from which we can see that,

(dL/dt)t=t0 = ω|B|(L(t0)× ûB). (6.2h)

We substitute the right side of Eq. (6.2h) into Eq. (6.2g) to obtain the solution of Eq. (6.2c),

L(t) = ûB(ûB · L(t0)) + (L(t0)− ûB(ûB · L(t0))) cos(ω|B|(t− t0)) + (L(t0)× ûB) sin(ω|B|(t− t0)). (6.2i)

By applying the facts that (ûB × ûB) = 0 and that,

((L(t0)× ûB)× ûB) = −(L(t0)− ûB(ûB · L(t0))),

it is readily verified that the L(t) given by Eq. (6.2i) satisfies Eq. (6.2c).
Furthermore, by applying the facts that |ûB|2 = 1 and (ûB · (L(t0)× ûB)) = 0 it is easily verified that

the L(t) given by Eq. (6.2i) satisfies,

(ûB · L(t)) = (ûB · L(t0)). (6.2j)

By also applying the facts that (L(t0) · (L(t0)× ûB)) = 0 and that,

|L(t0)− ûB(ûB · L(t0))|2 = |L(t0)× ûB|2 = |L(t0)|2 − (ûB · L(t0))2,

it can be verified that the L(t) given by Eq. (6.2i) satisfies,

|L(t)|2 = |L(t0)|2. (6.2k)

Eq. (6.2i) describes the rotating precession, with angular frequency (ω|B|) = ((Q|B|)/(2Mc)), of the
part of the initial angular momentum vector L(t0) which is perpendicular to the constant magnetic field B,
namely (L(t0)− ûB(ûB · L(t0))), in the particular plane perpendicular to B in which this part of the initial
angular momentum vector lies.

The spin angular momentum of an electron precesses in a manner similar to this in a constant magnetic
field B. A quantum system such as a spin-1/2 electron in a constant magnetic field B is always described by
a Hamiltonian operator, so it is worthwhile to obtain the classical Hamiltonian that for a constant magnetic
field B yields the equation of motion dL/dt = (Q/(2Mc))(L×B) given by Eq. (6.1f).

For a classical Hamiltonian H to produce the equation of motion dL/dt = (Q/(2Mc))(L × B), the
classical Poisson bracket of L with H, namely {L, H}, must be equal to (Q/(2Mc))(L ×B). To construct
such an H, we next obtain the classical Poisson brackets of the components of L, which in detail are,
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L = (Lx, Ly, Lz) = (r× p) = ((ypz − zpy), (zpx − xpz), (xpy − ypx)),

so Lx, Ly and Lz are functions of both r and p. A classical Poisson bracket is the antisymmetric combination
of the dot products of the gradients with respect to both r and p of two such functions. In particular,

{Lx, Ly} ≡
[
(∇rLx(r,p) · ∇pLy(r,p))− (∇rLy(r,p) · ∇pLx(r,p))

]
=[

(∇r(ypz − zpy) · ∇p(zpx − xpz))− (∇r(zpx − xpz) · ∇p(ypz − zpy))
]

=[
((0, pz,−py) · (z, 0,−x))− ((−pz, 0, px) · (0,−z, y))

]
= (xpy − ypx) = Lz.

The antisymmetry of the Poisson bracket now immediately implies that {Ly, Lx} = −Lz. That antisymmetry
also implies that {Lx, Lx} = {Ly, Ly} = {Lz, Lz} = 0. The remaining Poisson brackets of Lx, Ly and Lz are
very similar to {Lx, Ly}, and produce the well-known simple cyclic closed Lie algebra of the rotation group,

{Lx, Ly} = −{Ly, Lx} = Lz, {Ly, Lz} = −{Lz, Ly} = Lx, {Lz, Lx} = −{Lx, Lz} = Ly. (6.3a)

The nine Poisson brackets of Lx, Ly and Lz described above imply that,

{Lx, (L ·B)} = {Lx, (LxBx + LyBy + LzBz)} = LzBy − LyBz = −(LyBz − LzBy) = −(L×B)x, (6.3b)

and they likewise imply that {Ly, (L ·B)} = −(L×B)y and {Lz, (L ·B)} = −(L×B)z, so,

{L, (L ·B)} = −(L×B). (6.3c)

Eq. (6.3c) implies that the entity,

H ≡ −(Q/(2Mc))(L ·B). (6.3d)

is a classical Hamiltonian which produces the equation of motion dL/dt = {L, H} = (Q/(2Mc))(L×B) that
is given by Eq. (6.1f) for the magnetic dipole angular momentum L.

We next briefly discuss the spin-1/2 electron in a constant magnetic field B, whose quantum Hamiltonian
operator is largely modeled on the classical Hamiltonian of Eq. (6.3d).

7. The spin-1/2 electron in a constant magnetic field

The Hamiltonian operator for a spin-1/2 electron in a constant magnetic field B is required to have only
two energy eigenstates to accord with spectroscopic observation. If that Hamiltonian operator’s structure is
akin to that of the classical Hamiltonian H = −(Q/(2Mc))(L ·B) of Eq. (6.3d) for the angular momentum
L of a magnetic dipole current loop in a constant magnetic field B, then the components of the spin-1/2
electron’s spin angular momentum vector s must, like its Hamiltonian, be operators with only two spin
angular-momentum eigenstates. Therefore the spin-1/2 electron’s spin angular momentum vector s must
consist of three 2 × 2 Hermitian matrices sx, sy and sz which have quantum Poisson-bracket relations that
are appropriate to angular momentum, namely that are formally the same as the simple cyclic classical
Poisson bracket relations for Lx, Ly and Lz which are given in Eq. (6.3a) and accord with the closed Lie
algebra for the rotation group. Since the quantum Poisson bracket for quantum operators (and matrices) is
(−i/h̄) times their commutator, the three fundamental commutation relations that the three 2×2 Hermitian
spin-1/2 angular momentum matrices sx, sy and sz must adhere to are,

sxsy − sysx = ih̄sz, sysz − szsy = ih̄sx, szsx − sxsz = ih̄sy. (7.1a)

To satisfy the three angular-momentum commutation relations of Eq. (7.1a) with 2× 2 Hermitian matrices,
Wolfgang Pauli first explicitly exhibited three 2 × 2 Hermitian matrices σx, σy, and σz which mutually
anticommute and satisfy the following cyclic closed matrix multiplication relations,

σxσy = −σyσx = iσz, σyσz = −σzσy = iσx, σzσx = −σxσz = iσy, σ2
x = σ2

y = σ2
z = 1. (7.1b)

It is apparent that the 2× 2 Hermitian σx, σy, and σz each have the two eigenvalues ±1. Furthermore,

sx = (h̄/2)σx, sy = (h̄/2)σy, sz = (h̄/2)σz, (7.1c)

satisfy the Eq. (7.1a) angular-momentum commutation relations and are 2 × 2 Hermitian matrices. In
addition each one has the two eigenvalues ±(h̄/2).

10



Pauli’s explicit forms of the 2× 2 Hermitian matrices σx, σy, and σz are as follows: σz has (1, -1) along
its main diagonal and (0, 0) along its secondary diagonal, σx has (0, 0) along its main diagonal and (1,
1) along its secondary diagonal, and σy has (0, 0) along its main diagonal and (-i, i) along its secondary
diagonal. These very useful forms of σx, σy, and σz are, however, by no means unique; any 2 × 2-matrix
unitary transformation of them will still be Hermitian and will still satisfy the crucial matrix multiplication
relations given by Eq. (7.1b).

The minimal adaption of the classical Hamiltonian H = −(Q/(2Mc))(L·B) of Eq. (6.3d) for a magnetic-
dipole one-dimensional loop of uniformly-distributed charge Q and mass M which circulate at the same
constant speed and are affected by a constant magnetic field B, to the quantum spin-1/2 electron in that
constant magnetic field is by replacing Q by the electron charge −e, replacing M by the electron mass me and
replacing the classical angular momentum vector L = (Lx, Ly, Lz) by the electron’s quantum spin-1/2 angular
momentum vector s = (sx, sy, sz) of 2×2 Hermitian matrices which have eigenvalues ±(h̄/2). It is thereupon
found that the energy difference ((e|B|h̄)/(2mec)) between the two energy eigenvalues ±((e|B|h̄)/(4mec))
of that Hamiltonian corresponds to a transition-photon angular frequency of ((e|B|)/(2mec)), which exactly
matches the classical Hamiltonian’s precession angular frequency ω|B| = ((Q|B|)/(2Mc)) of Eq. (6.2c) for
Q = e and M = me. But this transition-photon angular frequency is only half of that of the spectroscopic
observation, so the quantum Hamiltonian for a spin-1/2 electron in a constant magnetic field B is adjusted
to be H = (e/(mec))(s ·B).

That the electron’s spinning charge and mass aren’t adequately modeled by a one-dimensional loop
of uniformly distributed charge and mass circulating at the same constant speed isn’t too surprising; the
spectroscopic observation might indicate, as one example, that the electron’s mean circulating-charge radius
is greater than its mean circulating-mass radius. Issues regarding the electron’s internal structure cannot
be definitively settled by experiments which scatter projectiles off of electrons, because the resolution they
can achieve is limited to approximately the Compton wavelength of the electron by the electron-positron
pair production which accompanies such scattering at sufficiently high energies and confuses the electron’s
location. One would in fact suppose that the scale of the electron’s internal structure reflects the Compton
wavelengths of the vector bosons of the weak interactions, which are vastly smaller than the electron’s
Compton wavelength. That the electron’s internal structure is a creature of the weak interactions is suggested
by the existence of the muon and tau particles, which have electron-like characteristics, albeit with much
higher masses than that of the electron, and which decay only weakly—the electron would appear to be the
ground state of a weak-interaction spectroscopic family.
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