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Abstract The Galilean-boost space-time transformation implies that accelerations are unchanged by changes of the
relative constant velocity of the measuring instruments. Newton’s Second Law then suggests that forces are also
unchanged, but the torque a constant-velocity charge exerts on a compass needle at its point of closest approach
changes with that velocity. This conflict motivates us to solve for the electromagnetic fields of a point charge moving
at constant velocity, and to then inspect the results for the correct extension of the Galilean boost, a program we carry
out by first deriving the electromagnetic wave equations, which we solve by Fourier methods, including indirectly
via obtaining their causal Green’s function. The constant-velocity point charge’s electromagnetic fields display the
space part of the Lorentz boost, which for infinite lightspeed becomes the space part of the Galilean boost. The
time part of the Lorentz boost follows from its space part and the reciprocity of measuring instruments which have
relative constant velocity. The frequently-presented consequences of the Lorentz boost are then developed in detail,
as is the less familiar surprising Thomas-precession rotation produced by acceleration not parallel to velocity.

Galilean-boosted fields of a static charge: zero magnetic field and excess electric-field symmetry

Pondering the velocity of a person walking on the deck of a moving boat versus that of a person walking
on a nearby stationary wharf, Galileo arrived at the hypothesis of the additivity of constant velocities.
That hypothesis was broadened into the more comprehensive Galilean-boost space-time transformation of
coordinates (r, t) measured by stationary instruments to the corresponding coordinates (r′, t′) measured by
instruments traveling at constant velocity v,

r′ = r− vt and t′ = t. (1)

Two successive such Galilean-boost transformations with constant velocities v1 and v2 respectively yields,

r′′ = r′ − v2t
′ = r− v1t− v2t = r− (v1 + v2)t, taking t′′ = t′ = t into account, (2)

in accord with Galileo’s hypothesis of the additivity of the constant velocities v1 and v2.
Additional important consequences of the Galilean-boost space-time transformation of Eq. (1) are that

time intervals and simultaneous-endpoint space intervals are the same when measured by instruments trav-
eling at any constant velocity v as they are when measured by stationary instruments,

∆t′ = (t′2 − t′1) = (t2 − t1) = ∆t, and also,

∆r′ = (r′2 − r′1) = (r2 − r1)− v(t2 − t1) = (r2 − r1) = ∆r for t2 = t1, i.e. for ∆t = 0, (3)

and that the boost velocity v adds to velocities, while accelerations are the same,

dr/dt = d(r′ + vt)/dt = dr′/dt+ v = dr′/dt′ + v, and also,

d(dr/dt)/dt = d(dr′/dt′ + v)/dt = d(dr′/dt′)/dt = d(dr′/dt′)/dt′, (4)

which in conjunction with Newton’s Second Law suggests that forces are also the same. Indeed, the constant-
velocity-v 6= 0 Galilean boost of the fields E = qr/|r|3 and B = 0 of a stationary charge-q point entity is,

E = q(r− vt)/|r− vt|3 and B = 0, (5)

in disagreement with the peak torque a constant-velocity-v 6= 0 point charge exerts on a magnetic-dipole
compass needle. The Eq. (5) constant-velocity-v 6= 0 Galilean-boosted point-charge field results are invalid
except in the limit that the constant c in the electromagnetic field equations is made infinite; c among other
things is the vacuum speed of light. The vanishing magnetic field result in Eq. (5) for a constant-velocity-
v 6= 0, charge-q point entity occurs in spite of that entity’s nonvanishing current density j, namely,

j = qvδ(3)(r− vt), (6)

whose insertion into the electromagnetic-field Biot-Savart/Maxwell Law, i.e.,

∇×B = (1/c)(4πj + ∂E/∂t) = 4πq(v/c)δ(3)(r− vt) + (1/c)(∂E/∂t), (7)
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obviously must yield a nonvanishing magnetic field. But in the c→∞ limit the Eq. (7) Biot-Savart/Maxwell
Law no longer implies that current densities produce magnetic fields. The Galilean-boost transformation
becomes “valid” only in this physically-inapplicable c→∞ limit. However, because c is over twenty thousand
times greater than speeds which produce permanent departure from the earth’s gravity, earthbound biological
creatures have over the eons developed the overwhelmingly strong intuition that the Eqs. (2) through (4)
implications of the unphysical c→∞ Galilean-boost are actually true.

The magnetic field implied by the Eq. (7) Biot-Savart/Maxwell Law is orthogonal to the constant velocity
v of the point charge which produces it, just as the magnetic field produced by a current flowing through a
straight wire is orthogonal to that wire. Therefore the magnetic field produced by a constant-velocity point
charge has cylindrical symmetry only, in marked contrast to the spherical symmetry about r = vt exhibited
by the Galilean-boosted electric field of Eq. (5).

But notwithstanding that the electic field of a static or a sufficiently slowly-moving point charge has
or tends toward spherical symmetry, the electric field of any moving point charge in fact gets modified
by its accompanying time-varying only-cylindrically-symmetric magnetic field because of the influence of
time-varying magnetic fields on electric fields set out in Faraday’s Law, i.e.,

∇×E = −(1/c)(∂B/∂t). (8)

Therefore it is to be expected that the spherical symmetry of the electic field of a static point charge gets
degraded, to at least some degree, to cylindrical symmetry when that charge has nonzero constant velocity v.
However in the physically-inapplicable c→∞ limit the Eq. (8) Faraday’s Law shows that the time-varying,
only-cylindrically-symmetric magnetic field can no longer modify the electric field, which accords with the
spherical symmetry about r = vt of the unphysical Eq. (5) Galilean-boosted point-charge electric field.

Having seen that the electromagnetic-field Biot-Savart/Maxwell Law and Faraday’s Law are incompatible
with the Galilean boost, as exemplified by the unphysical Eq. (5) Galilean-boosted electic and magnetic fields
for constant-velocity-v 6= 0, we are now obliged to solve for the correct electric and magnetic fields produced
by a constant-velocity-v 6= 0, charge-q point entity using the four electromagnetic-field Laws, which, besides
the Eq. (7) Biot-Savart/Maxwell Law and the Eq. (8) Faraday’s Law, include Coulomb’s Law,

∇ ·E = 4πρ, (9)

and Gauss’ Law,

∇ ·B = 0, (10)

with the charge density ρ and current density j of that constant-velocity-v, charge-q point entity, which are,

ρ = q δ(3)(r− vt) and j = q v δ(3)(r− vt) = vρ, (11)

followed by inspection of the results to find the correct finite-c replacement for the c→∞ Galilean boost.

Fields of a constant-velocity point charge and the space-time boost transformation they imply

The Biot-Savart/Maxwell Law of Eq. (7) and the Faraday’s Law of Eq. (8) couple the B and E fields to each
other. We will use vector calculus to manipulate these two Laws to produce one equation which pertains
exclusively to B together with a second equation which pertains exclusively to E. Combining Gauss’ Law of
Eq. (10) with the equation for B and Coulomb’s Law of Eq. (9) with the equation for E will then produce
identical-form wave equations for B and E that differ only in their sources.

The two sources for the identical-form wave equations for E and B turn out to be linear combinations of
partial first derivatives of the charge density ρ and the current density j, but Eq. (11) provides those densities
themselves for a constant-velocity charged point entity. To circumvent that disconnect, it is standard practice
to define a scalar potential φ which satisfies the same wave-equation form, but with 4πρ as its source, and
to as well define a vector potential A which also satisfies the same wave equation form, but with (4π/c)j as
its source. If the wave equations for these potentials φ and A can be solved, then the electromagnetic fields
E and B will simply be linear combinations of partial first derivatives of these potentials.

Using Fourier-transform methods we will solve for the scalar potential φ whose source is 4π times the
ρ of Eq. (11). The corresponding j of Eq. (11) is vρ, where v is constant, so the vector potential A, whose
source is (4π/c)j = (v/c)(4πρ), follows immediately from the scalar potential φ as,
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A = (v/c)φ. (12)

Partial first differentiation of A and φ then yields B and E. These results are to be inspected for the correct
finite-c replacement of the unphysical c→∞ Galilean-boost space-time transformation given by Eq. (1).

We now turn to the calculational details of the electromagnetic field equation steps which we have so
far in this section been outlining in words. Taking the curl of both sides of the Eq. (7) Biot-Savart/Maxwell
Law, which is (∇×B) = (1/c)(4πj + (∂E/∂t)), yields,

∇× (∇×B) = (4π/c)(∇× j) + (1/c)(∂(∇×E)/∂t), (13a)

so since it is an identity that ∇× (∇×B) = ∇(∇ ·B)−∇2B, and the Eq. (8) Faraday’s Law tells us that
∇×E = −(1/c)(∂B/∂t), Eq. (13a) becomes,

∇(∇ ·B)−∇2B = (4π/c)(∇× j)− (1/c)2(∂2B/∂t2). (13b)

The Eq. (10) Gauss’ Law tells us that ∇ ·B = 0, which eliminates the first term of Eq. (13b), which then
can readily be rearranged into the wave-equation form,

(1/c)2(∂2B/∂t2)−∇2B = (4π/c)(∇× j). (13c)

Also, taking the curl of both sides of the Eq. (8) Faraday’s Law, which is (∇×E) = −(1/c)(∂B/∂t), produces,

∇× (∇×E) = ∇(∇ ·E)−∇2E = −(1/c)(∂(∇×B)/∂t). (14a)

We now substitute the right side of the Eq. (7) Biot-Savart/Maxwell Law, which is ∇ × B = (1/c)(4πj +
(∂E/∂t)), for the occurrence of ∇×B within the right side of the second equality of Eq. (14a) to obtain,

∇(∇ ·E)−∇2E = −4π(1/c)2(∂j/∂t)− (1/c)2(∂2E/∂t2). (14b)

The Eq. (9) Coulomb’s Law tells us that ∇ ·E = 4πρ. The entity ∇ ·E also occurs within the first term on
the left side of Eq. (14b); we now substitute 4πρ for ∇ · E in that term, after which the terms of Eq. (14b)
are readily rearranged into the following wave-equation form,

(1/c)2(∂2E/∂t2)−∇2E = −4π
(
∇ρ+ (1/c)2(∂j/∂t)

)
. (14c)

We already mentioned that the source terms on the right-hand sides of the Eq. (13c) and (14c) magnetic
field and electric field wave equations are linear combinations of partial first derivatives of the charge density
ρ and the current density j, not linear combinations of ρ and j themselves. We also mentioned that that
disconnect is circumvented by instead seeking the solutions of the closely-related electromagnetic scalar
potential φ and vector potential A wave equations, which are,

(1/c)2(∂2φ/∂t2)−∇2φ = 4πρ and (1/c)2(∂2A/∂t2)−∇2A = (4π/c)j, (15a)

since it is readily verified from Eqs. (13c), (14c) and (15a) that,

B = ∇×A and E = −∇φ− (1/c)(∂A/∂t). (15b)

Our next task is to work out the scalar potential φ for a charge-q point entity which travels at constant
velocity v that arises via the Eq. (15a) scalar-potential wave equation (1/c)2(∂2φ/∂t2) − ∇2φ = 4πρ from
the Eq. (11) charge density ρ = q δ(3)(r − vt). We note once again from Eqs. (12) and (11) that in this
particular case of a charged point entity that travels at constant velocity v, j = vρ where v is constant,
which implies that A = (v/c)φ, obviating the need to separately solve for A.

One approach to working out φ is via propagation of its source ρ with the causal Green’s function for
this electromagnetic form of wave equation. We will later pursue that approach since that Green’s function’s
nonzero locus is an important space-time invariant under constant-velocity changes. Here, however, we
approach φ in a specialized way based on the form of its source ρ = q δ(3)(r− vt). The two approaches give
the same result for φ via initial algebraic forms of φ which have a markedly dissimilar appearance.

Since Eq. (15a) tells us that to obtain the φ produced by ρ = q δ(3)(r− vt), we must solve,

(1/c)2(∂2φ/∂t2)−∇2φ = 4πq δ(3)(r− vt) = (q/(2π2))
∫
eik·(r−vt)d3k, (16a)

we make the specialized Fourier ansatz that,

φ =
∫
eik·(r−vt)f(k)d3k, (16b)
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which, when inserted into Eq. (16a) yields,

f(k) = (q/(2π2))
(
|k|2 − (k · (v/c))2

)−1
, (16c)

which inserted in turn into Eq. (16b) presents the solution φ of Eq. (16a) as the integral,

φ = (q/(2π2))
∫
eik·(r−vt)

(
|k|2 − (k · (v/c))2

)−1
d3k. (16d)

We assume that the charged point entity’s constant speed |v| is less than that of light c, so we can seek a
linear change of the vector integration variable k to K such that |K|2 = |k|2 − (k · (v/c))2. To work out K,
it is useful to introduce the charged point entity’s fixed travel-direction unit vector,

û ≡ (v/|v|), from which it follows that |û|2 = 1. (17a)

We now decompose k into two parts which are respectively parallel to and perpendicular to both û and v,

k = k‖ + k⊥, where k‖ ≡ û(û · k) and k⊥ ≡ k− û(û · k), which imply that,

|v|2|k‖|2 = ((k · û)|v|)2 = (k · v)2, (v · k⊥) = 0, (k‖ · k⊥) = 0 and |k|2 = |k⊥|2 + |k‖|2. (17b)

The Eq. (17b) orthogonal decomposition of k enables us to arrive at the linear relation of K to k,

|K|2 = |k|2 − (k · (v/c))2 = |k|2 − |v/c|2|k‖|2 = |k⊥|2 + (1− |v/c|2)|k‖|2 = |k⊥ +
√

1− |v/c|2 k‖|2, (17c)

where the last equality reflects the orthogonality of k⊥ to k‖. The linear relation of K to k thus is,

K = k⊥ +
√

(1− |v/c|2) k‖ = k− û(û · k) +
√

1− |v/c|2 û(û · k), (17d)

where the second expression reflects the explicit formulas of Eq. (17b) for k⊥ and k‖ in terms of û and k.
To change the vector integration variable in Eq. (16d) from k to K we also need to solve Eq. (17d) for

k in terms of K, which requires only a few steps. Contracting both sides of Eq. (17d) with û yields,

(û ·K) =
√

1− |v/c|2 (û · k) ⇒ (û · k) =
(√

1− |v/c|2
)−1

(û ·K). (17e)

Insertion of the Eq. (17e) result for (û · k) into the right side of Eq. (17d) in turn yields,

K = k−
(√

1− |v/c|2
)−1

û(û ·K) + û(û ·K) ⇒

k = K− û(û ·K) +
(√

1− |v/c|2
)−1

û(û ·K) = K⊥ +
(√

1− |v/c|2
)−1

K‖. (17f)

To effect the desired change of the vector integration variable in Eq. (16d), the right side of Eq. (17f) is
substituted for all occurrences of k in Eq. (16d). A simple instance of such an occurrence in Eq. (16d) is,

d3k = d2K⊥

[(√
1− |v/c|2

)−1
dK‖

]
=
(√

1− |v/c|2
)−1

d3K = γ d3K, (18a)

where we henceforth use the standard abbreviation γ for
(√

1− |v/c|2
)−1

. The occurrence in Eq. (16d)
of (|k|2 − (k · (v/c))2)−1 becomes just |K|−2, according to Eq. (17c). Finally, k occurs in Eq. (16d) within
eik·(r−vt). Inserting the Eq. (17f) change of vector integration variable, namely k = K− û(û ·K)+γû(û ·K),
into k · (r− vt) and noting that v is perpendicular to (K− û(û ·K)) produces, upon changing the orders of
factors to send all occurrences of K to the left side of the expression, that,

k · (r− vt) = K · (r− û(û · r) + û(û · (γ(r− vt)))). (18b)

Inserting the three consequences of the change of integration variable from k to K into Eq. (16d) yields,

φ = (qγ/(2π2))
∫
eiK·(r−û(û·r)+û(û·(γ(r−vt))))|K|−2d3K. (18c)

Unlike the Eq. (16d) integral for φ, the Eq. (18c) integral for φ is just as easy to evaluate when v 6= 0 as it
is to evaluate when v = 0, the case for which both the Eq. (16d) integral and the Eq.(18c) integral clearly
yield φ = q/|r|, the static Coulomb potential. So from its v = 0 case, Eq. (18c) obviously yields,

φ = qγ/|r− û(û · r) + û(û · (γ(r− vt)))|. (19a)
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It is pointed out in Eq. (12) and also below Eq. (15b) that A = (v/c)φ, so,

A = qγ(v/c)/|r− û(û · r) + û(û · (γ(r− vt)))|. (19b)

The B and E fields are obtained from A and φ by partial first differentiation using Eq. (15b),

B = ∇×A = qγ((v/c)× r)/|r− û(û · r) + û(û · (γ(r− vt)))|3. (19c)

E = −∇φ− (1/c)(∂A/∂t) = qγ(r− vt)/|r− û(û · r) + û(û · (γ(r− vt)))|3. (19d)

In the physically inapplicable c→∞ limit, γ → 1 and Eqs. (19c) and (19d) revert to the Eq. (5) Galilean-boost
results, i.e., to B = 0, the nonexistence of magnetic fields in a Galilean universe, and to E = q(r−vt)/|r−vt|3,
which is spherically symmetric around r = vt, as expected in a Galilean universe.

The actual cylindrically-symmetric Eq. (19c) magnetic field has vanishing component in the point-charge
entity’s direction of motion, and so departs drastically from spherical symmetry. Electric fields of a point
charge at rest are spherically symmetric, but Eq. (19d) shows that they technically shed spherical symmetry
as soon as the point charge has nonzero velocity; in the extreme case that the point charge is moving at a speed
sufficiently near that of light that γ � 1, Eq. (19d) shows that its electric field strongly “pancakes” in the
charge’s direction of motion; a behavior somewhat akin to a charge’s magnetic field having zero component
in the charge’s direction of motion. Electric and magnetic fields become somewhat more similar as their
sources approach the speed of light, albeit the Eq. (19c) magnetic field is always everywhere orthogonal to
the Eq. (19d) electric field.

The denominators of the potentials and fields of Eqs. (19a) through (19d) all display the vector (r− û(û ·
r) + û(û · (γ(r− vt)))), which reverts to r in the static |v| = 0 case, as it of course must. In the unphysical
c→∞ limit, which causes γ → 1, it becomes (r−vt), the right side of the space part of the Galilean boost. It
also has another, more subtle, feature in common with the right side of the space part of the Galilean boost,
namely that its part which is perpendicular to v (and therefore perpendicular to û = (v/|v|)) is exactly the
same as the part of merely r itself which is perpendicular to v.

The part of an arbitrary vector Ξ which is parallel to v is û(û · Ξ), where the unit vector û ≡ (v/|v|),
so the part of this arbitrary vector Ξ which is perpendicular v is (Ξ − û(û · Ξ)). Thus the part of r which
is perpendicular to v is (r − û(û · r)). The part of (r − û(û · r) + û(û · (γ(r − vt)))) which is parallel to
v is û(û · (γ(r − vt))), so the part of (r − û(û · r) + û(û · (γ(r − vt)))) which is perpendicular to v is also
(r− û(û · r)). Similarly, the part of (r− vt), the right side of the space part of the Galilean boost, which is
parallel to v is (û(û · r)− vt), so the part of (r− vt) which is perpendicular to v is as well (r− û(û · r)).

Therefore the Galilean boost, whose space part is r′ = r − vt, leaves invariant the part of r which is
perpendicular to v, namely (r− û(û · r)). Likewise, if we were to take r′ = (r− û(û · r) + û(û · (γ(r− vt))))
to be the space part of the finite-c extension of the physically inapplicable c → ∞ Galilean boost, then that
finite-c Galilean-boost extension would as well leave invariant the part of r which is perpendicular to v. Other
features the Eqs. (19a)–(19d) electromagnetic-field motivated r′ = (r− û(û · r) + û(û · (γ(r−vt)))) has in its
favor to be the space part of the correct finite-c Galilean-boost extension is that it correctly reduces to r′ = r
when |v| = 0 and that it reduces to r′ = r− vt, the space part of the Galilean boost, in the limit c→∞.

Of course the space part alone of a putative finite-c boost transformation isn’t enough, we need the
time part as well. The time part of a constant-velocity boost transformation is typically determined by the
space part in conjunction with the principle of relativistic reciprocity, namely that two sets of instruments
which have constant relative velocity v are subject to exactly the same transformation rules. Thus a boost
transformation from unprimed to primed space-time coordinates is required to also be valid when the unprimed
and primed space-time coordinates are swapped, with the understandable additional stipulation that the sign
of v is reversed as well.

For example, the time part of the Galilean boost is obtained from its space part,

r′ = r− vt, (19e)

and the relativistic reciprocal of this space part, which of course is,

r = r′ + vt′, (19f)

To show this, we first contract both Eqs. (19e) and (19f) with v to obtain the pair of scalar equations,
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(v · r′) = (v · r)− |v|2t and (v · r) = (v · r′) + |v|2t′. (19g)

The time part of the boost gives t′ in terms of t and (v · r), so we eliminate (v · r′) by substituting the first
of the Eq. (19g) pair of equations into the second one to obtain,

(v · r) = (v · r)− |v|2t+ |v|2t′, (19h)

which yields that,

|v|2(t′ − t) = 0, (19i)

so the time part of any nontrivial Galilean boost, namely one having v 6= 0, is,

t′ = t, (19j)

which is precisely the time part which Eq. (1) gives for the Galilean boost.
We now take the space part of the correct finite-c Galilean-boost extention to be the electromagnetic,

r′ = r− û(û · r) + û(û · (γ(r− vt))), (20a)

and obtain its time part from this space part and its relativistic reciprocal, which of course is,

r = r′ − û(û · r′) + û(û · (γ(r′ + vt′))). (20b)

We next contract both Eq. (20a) and Eq. (20b) with v to obtain the pair of scalar equations,

(v · r′) = γ((v · r)− |v|2t) and (v · r) = γ((v · r′) + |v|2t′). (20c)

The time part of the boost gives t′ in terms of t and (v · r), so we eliminate (v · r′) by substituting the first
of the Eq. (20c) pair of equations into the second one to obtain,

(v · r) = γ(γ((v · r)− |v|2t) + |v|2t′), (20d)

which, with help from the identity γ2 − 1 = (|v|2/c2)γ2, is readily solved for t′ in terms of t and (v · r),

t′ = γ(t− ((v · r)/c2)). (20e)

Eqs. (20a) and (20e) together comprise the the electromagnetic extension to finite c of the physically-
inapplicable c → ∞ Eq. (1) Galilean boost. It is universally known as the Lorentz boost; we obtained it
via inspection of the electromagnetic fields produced by a point charge moving at constant velocity v, which
were first worked out by Oliver Heaviside. It was because George Fitzgerald had read Heaviside’s paper and
had seen the electromagnetic fields of Eqs. (19c) and (19d) that he was able to provide the physics world
with its first solid clue as to proper interpretation of the unexpected null result of the Michelson-Morley
experiment: although the physically-inapplicable c→∞ Galilean boost predicts, as we have seen in Eq. (3),
that the boost velocity v has no effect on space and time interval measurements, that isn’t true of the Lorentz
boost given by Eqs. (20a) and (20e).

Consequences of the finite lightspeed Lorentz-boost extension of the unphysical Galilean boost

The Eq. (20e) time part of the finite-c Lorentz boost predicts that unlike the Eq. (3) result for the c → ∞
Galilean boost, the boost velocity v shortens the time interval measured by a stationary clock. For time
intervals ∆t′ ≡ (t′2 − t′1) and ∆t ≡ (t2 − t1), and space interval ∆r ≡ (r2 − r1), Eq. (20e) yields,

∆t′ = γ(∆t− ((v ·∆r)/c2)) = γ∆t for a clock at a fixed location, which obviously requires ∆r = 0. (21a)

Therefore,

∆t = (1/γ)(∆t′) =
√

1− |v/c|2 (∆t′), (21b)

so a time interval ∆t′ recorded by a clock moving at constant velocity v is recorded by a stationary clock as
shortened by the factor

√
1− |v/c|2, i.e., a stationary observer who consults his own stationary clock notes

that the moving clock ticks at a slower rate than his stationary clock. That may seem counterintuitive,
but the intuition which earthbound biological creatures have developed over the eons is inapplicable to that
tick-rate disparity. Such earthbound creatures could not possibly, over the eons, have developed an intuition
for speeds as high as 43,000 km per hour, because that speed permanently removes entities which attain it
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from the earth’s gravitational influence. Yet a clock moving at that speed has its tick rate slowed by less
than one part in a billion relative to the tick rate of a stationary clock, which isn’t within the competence of
the inherent sense of time of biological creatures to detect.

The Eq. (20a) space part of the finite-c Lorentz boost predicts, somewhat analogously to its Eq. (20e)
time part, that unlike the Eq. (3) result for the c → ∞ Galilean boost, the boost velocity v shortens the
component of a space interval which is oriented in its direction, as measured by stationary instruments. For
space intervals ∆r′ ≡ (r′2 − r′1) and ∆r ≡ (r2 − r1), and time interval ∆t ≡ (t2 − t1), Eq. (20a) yields,

∆r′ = ∆r− û(û ·∆r) + γû(û · (∆r− v∆t)). (21c)

As usual for a space-interval measurement, that measurement must be simultaneous at the two ends of the
space interval, so t2 = t1, which imples ∆t = 0 in Eq. (21c), and therefore,

∆r′ = ∆r− û(û ·∆r) + γû(û ·∆r). (21d)

Using û, the unit-vector direction of the constant velocity v, we now decompose both ∆r′ and ∆r into two
orthogonal vectors that are respectively perpendicular and parallel to v,

∆r′ = ∆r′⊥ + ∆r′‖, where ∆r′⊥ ≡ ∆r′ − û(û ·∆r′) and ∆r′‖ ≡ û(û ·∆r′), (21e)

and likewise for ∆r, i.e., ∆r = ∆r⊥+ ∆r‖, where ∆r⊥ ≡ ∆r− û(û ·∆r) and ∆r‖ ≡ û(û ·∆r). When these
perpendicular/parallel decompositions of ∆r′ and ∆r are combined with Eq. (21d), we obtain,

∆r′ = ∆r′⊥ + ∆r′‖ = (∆r′ − û(û ·∆r′)) + û(û ·∆r′) = (∆r− û(û ·∆r)) + γû(û ·∆r) = ∆r⊥ + γ∆r‖, (21f)

which yields that,

∆r′⊥ = ∆r⊥ and ∆r′‖ = γ∆r‖, (21g)

so ∆r⊥ is unaffected by the boost, but for ∆r‖ we have that,

∆r‖ = (1/γ)(∆r′‖) =
√

1− |v/c|2 (∆r′‖). (21h)

Thus a space interval moving at constant velocity v appears to stationary instruments to be shortened in
the direction of v by the factor

√
1− |v/c|2 relative to the length measured by instruments that are traveling

with that space interval. This is the “Fitzgerald contraction” of moving objects in their direction of motion,
which helped physicists begin to understand the results of the Michelson-Morley experiment.

That an object moving at constant velocity contracts in length in its direction of motion also seems
at odds with intuition, and makes a great many people long for the physically-inapplicable c → ∞ Galilean
boost. Again the answer to concerns about contradicting the intuition developed over the eons by earthbound
biological creatures is that they could not possibly have developed an intuition for a speed as high as 43,000
km per hour because that speed permanently removes entities which attain it from the earth’s gravitational
influence, but its Fitzgerald contraction that contradicts intuition will still be less than one part in a billion,
which isn’t within the competence of biological organs to detect.

That the finite-c Lorentz-boost extension of the c → ∞ physically-inapplicable Galilean boost, unlike
the latter, doesn’t preserve space and time intervals, raises the question of whether there exists any space-
time locus that the Lorentz boost does preserve. The fact that the speed of light c is a constant of the
electromagnetic field equations suggests that the space-time locus of a light wavefront—whose evolution in
time is of course governed by the constant speed c of light—is preserved by the finite-c Lorentz boost. In the
theory of light wavefront evolution (Huygens), the underlying fundamental “building block” wavefront (from
which any other wavefront results only through reinforcement) is the expanding spherical-shell wavefront
whose radius grows uniformly with time at the rate c and has the space-time locus,

|r− r0|2 = c2(t− t0)2 for t ≥ t0. (22a)

This lightspeed-expanding spherical-shell wavefront space-time locus turns out to be faithfully embedded in
the functional form of the causal Green’s function G(r, t; r0, t0) for electromagnetic wave equations,

(1/c)2(∂2G(r, t; r0, t0)/∂t2)−∇2
rG(r, t; r0, t0) = 4π δ(3)(r− r0) δ(c(t− t0)). (22b)

In the next section we sketch the steps which solve Eq. (22b) for the causal Green’s function G(r, t; r0, t0)
for electromagnetic wave equations, and then also sketch an alternate calculation of the Eq. (19a) scalar
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potential φ for a point entity of charge q which moves at constant velocity v by propagating the effect of its
source charge density ρ = qδ(3)(r− vt) with the causal Green’s function G(r, t; r0, t0) of Eq. (22b).

First, however, we verify a key property of the finite-c Lorentz boost transformation of Eqs. (20a) and
(20e), namely that it preserves the space-time quadratic form |r|2 − (ct)2 for all constant velocities v which
satisfy |v| < c; the fact that the Lorentz boost is guaranteed to preserve only |r|2 − (ct)2 implies that it
doesn’t necessarily preserve the lengths of space and time intervals. Of course its preservation of |r|2 − (ct)2

implies that it in particular preserves the lightspeed-expanding spherical-shell wavefront space-time locus
|r|2 = (ct)2. This last property was Einstein’s basic postulate for deriving the finite-c Lorentz boost, but one
is obliged to add to that Einstein postulate a mild further postulate that articulates the specific property
of the boost which boost velocity v entails, and one is further obliged to add to the Einstein postulate the
requirement that the Galilean transformation be the consequence of the c→∞ limit of the finite-c boost.

The Eq. (20a) r′ together with the Eq. (20e) t′ imply that |r′|2 − (ct′)2 = |r|2 − (ct)2 because,

|r′|2 − (ct′)2 =
∣∣r− û(û · r) + û(û · (γ(r− vt)))

∣∣2 − (γ(ct− ((v/c) · r))
)2

=

|r|2 − (û · r)2 + γ2
[(

(û · r)− |v|t
)2 − (ct− (|v|/c)(û · r)

)2]
=

|r|2 − (û · r)2 + γ2
[(

1− (|v|/c)2
)
(û · r)2 −

(
1− (|v|/c)2

)
(ct)2

]
= |r|2 − (ct)2. (22c)

Solution for and application of the electromagnetic wave-equation causal Green’s function

Since δ(3)(r− r0) = (2π)−3
∫
d3k eik·(r−r0), we make for the G(r, t; r0, t0) of Eq. (22b) the Fourier ansatz,

G(r, t; r0, t0) =
∫
d3k h(k, t; t0) eik·(r−r0), (23a)

which when inserted into Eq. (22b) yields that h(k, t; t0) satisfies the time differential equation,

(1/c)2(∂2h(k, t; t0)/∂t2) + |k|2h(k, t; t0) = (2π2c)−1δ(t− t0). (23b)

In order to be causal, G(r, t; r0, t0), and therefore also h(k, t; t0), must vanish when t < t0. Using the
Heaviside step function θ(t− t0), which vanishes when t < t0 and is equal to unity when t ≥ t0, we construct
the following form for h(k, t; t0) that is a causally proper solution of Eq. (23b) in both of the time regions
t < t0 and t > t0,

h(k, t; t0) = Kθ(t− t0) sin(|k|c(t− t0) + η), (23c)

where the constants K and η are to be chosen to produce the singular function (2π2c)−1δ(t− t0) on the right
side of Eq. (23b). Since the second time derivative of θ(t− t0) is δ′(t− t0), yet no such derivative of a delta
function occurs on the right side of Eq. (23b), h(k, t; t0) must be continuous at t = t0, so the correct value
of the constant phase η in Eq. (23c) is zero. With η set to zero, we now prepare to insert the right side of
Eq. (23c) into Eq. (23b) to determine the correct value of the constant K,

(1/c)(∂(Kθ(t− t0) sin(|k|c(t− t0)))/∂t) =

(K/c)[δ(t− t0) sin(|k|c(t− t0)) + |k|cθ(t− t0) cos(|k|c(t− t0))] =

K|k|θ(t− t0) cos(|k|c(t− t0)). (23d)

Using the Eq. (23d) result to differentiate Kθ(t− t0) sin(|k|c(t− t0)) again with respect to time yields,

(1/c)2(∂2(Kθ(t− t0) sin(|k|c(t− t0)))/∂t2) = (1/c)(∂(K|k|θ(t− t0) cos(|k|c(t− t0)))/∂t) =

(K|k|/c)[δ(t− t0) cos(|k|c(t− t0))− |k|cθ(t− t0) sin(|k|c(t− t0))] =

(K|k|/c)δ(t− t0)− |k|2Kθ(t− t0) sin(|k|c(t− t0)). (23e)

Comparison of Eq. (23e) with Eq. (23b) shows that the correct value of K is (2π2|k|)−1. Putting this value
of K into Eq. (23c) (with η set to zero) yields h(k, t; t0) = (2π2|k|)−1θ(t− t0) sin(|k|c(t− t0)) which is then
inserted into Eq. (23a) to obtain for G(r, t; r0, t0),

G(r, t; r0, t0) = θ(t− t0)(2π2)−1
∫
d3k (sin(|k|c(t− t0))/|k|) eik·(r−r0) =
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(θ(t− t0)/π)
∫∞
0
kdk sin(kc(t− t0))

∫ 1

−1 dα e
ik|r−r0|α =(

2θ(t− t0)/(π|r− r0|)
) ∫∞

0
dk sin(kc(t− t0)) sin(k|r− r0|) =(

θ(t− t0)/(2π|r− r0|)
) ∫∞
−∞ dk

[
cos
(
k(|r− r0| − c(t− t0))

)
− cos

(
k(|r− r0|+ c(t− t0))

)]
=(

θ(t− t0)/|r− r0|
)
δ(|r− r0| − c(t− t0)). (23f)

A second delta function of argument |r − r0| + c(t − t0) doesn’t occur in Eq. (23f) because of the presence
of the causal Heaviside step function θ(t− t0). A slightly more compact, neater form of the Eq. (23f) result
for the electromagnetic wave-equation causal Green’s function G(r, t; r0, t0) is,

G(r, t; r0, t0) = 2θ(t− t0) δ(|r− r0|2 − c2(t− t0)2), (23g)

which is nonzero only on precisely the Eq. (22a) lightspeed-expanding spherical-shell wavefront space-time
locus |r− r0|2 = c2(t− t0)2 for t ≥ t0.

We now sketch an alternate calculation of the Eq. (19a) scalar potential φ for a point entity of charge
q which moves at constant velocity v by propagating the effect of its source charge density ρ = qδ(3)(r− vt)
with the Eq. (23g) causal Green’s function G(r, t; r0, t0) = 2θ(t− t0) δ(|r− r0|2 − c2(t− t0)2),

φ(r, t) =
∫
G(r, t; r0, t0) ρ(r0, t0) d3r0 d(ct0) =

2q
∫
θ(t− t0) δ(|r− r0|2 − c2(t− t0)2) δ(3)(r0 − vt0) d3r0 d(ct0) =

2qc
∫ t
−∞ δ(|r− vt0|2 − c2(t− t0)2) dt0 =

2qc
∫ t
−∞ δ

(
|r|2 − (ct)2 + 2(ct0)[(ct)− ((v/c) · r)]− (ct0)2(1− |v/c|2)

)
dt0 =

2qc
∫ t
−∞ δ

(
(ct0)2(1− |v/c|2)− 2(ct0)[(ct)− ((v/c) · r)] + (ct)2 − |r|2

)
dt0. (24a)

where in the last step the sign of argument of the delta function was reversed, which is permitted since the
delta function is an even function. The next step will be to change the variable of integration from from t0
to y = −(ct0/γ), where, as usual, γ =

(
1/
√

1− |v/c|2
)
. Therefore (ct0) = −γy and dt0 = −(γ/c)dy,

φ(r, t) = 2qγ
∫∞
−(ct/γ) δ

(
y2 + 2yγ[(ct)− ((v/c) · r)] + (ct)2 − |r|2

)
dy. (24b)

The final change of the variable of integration is from y to l = y+ γ[(ct)− ((v/c) · r)], so dy = dl. The lower
limit of integration gets shifted from −(ct/γ) to −γ[((v/c) · r)− (1− (1/γ2))(ct)] = −γ(v/c) · (r− vt),

φ(r, t) = 2qγ
∫∞
−γ(v/c)·(r−vt) δ

(
l2 − [|r|2 + γ2((ct)− ((v/c) · r))2 − (ct)2]

)
dl (24c)

We now express the entity [|r|2 +γ2((ct)− ((v/c) ·r))2− (ct)2] within the Eq. (24c) delta function in terms of
the constant-velocity direction unit vector û ≡ (v/|v|), and we as well apply the identity γ2 − 1 = γ2|v/c|2
twice in order to obtain the particular algebraic form of this entity we want,

[|r|2 + γ2((ct)− ((v/c) · r))2 − (ct)2] = [|r|2 + γ2((ct)− |v/c|(û · r))2 − (ct)2] =

|r|2 + (γ2 − 1)(ct)2 − 2γ2|v|t(û · r) + γ2|v/c|2(û · r)2 =

|r|2 + γ2|v/c|2c2t2 − 2γ2|v|t(û · r) + (γ2 − 1)(û · r)2 =

|r|2 − (û · r)2 + γ2[(û · r)2 − 2(û · r)|v|t+ |v|2t2] =

|r|2 − (û · r)2 + γ2((û · r)− |v|t)2 = |r|2 − (û · r)2 + (û · (γ(r− vt)))2 =

|r− û(û · r) + û(û · (γ(r− vt)))|2. (24d)

We insert the result of Eq. (24d) into Eq. (24c) to obtain,

φ(r, t) = 2qγ
∫∞
−|v/c|(û·(γ(r−vt))) δ

(
l2 − |r− û(û · r) + û(û · (γ(r− vt)))|2

)
dl =

qγ/|r− û(û · r) + û(û · (γ(r− vt)))|, (24e)

the Eq. (19a) result, obtained there using a different approach. As one sees from Eq. (24d), however, getting
the algebraic forms of the identical results of the two approaches to align is awkward and tedious.
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Lorentz boosts as “hyperbolic rotations of space-time planes” in four dimensions

Eq. (22c) demonstrates that finite-c Lorentz boosts preserve |r|2 − (ct)2 = (x1)2 + (x2)2 + (x3)2 − (x4)2,
where we are taking the liberty of designating ct as x4. That preservation of the quadratic form (x1)2 +
(x2)2 + (x3)2− (x4)2 by linear Lorentz-boost transformations of the coordinates (x1, x2, x3, x4) is reminiscent
of the preservation of the quadratic form (x1)2 + (x2)2 + (x3)2 by linear planar-rotation transformations of
the coordinates (x1, x2, x3). To sharpen the analogy of Lorentz boosts to planar rotations we now reexpress
Eqs. (20a) and (20e) in terms of x4 ≡ ct and β ≡ |v/c| =

√
1− (1/γ2),

r′ = r− û(û · r) + û(γ((û · r)− βx4)) and x′4 = γ(x4 − β(û · r)), (25a)

which transforms only the (û · r)—x4 “plane” subspace of the four-dimensional space (x1, x2, x3, x4), leaving
the four-dimensional vector (r− û(û · r), 0), which is orthogonal to that “plane”, unchanged.

Furthermore, since, as is readily verified from Eq. (25a) and the definitions of β and γ in terms of |v/c|,

(û · r′) = γ((û · r)− βx4), x′4 = γ(x4 − β(û · r)) and γ2 = (1− β2)−1, (25b)

we readily work out that,

(û · r′)2− (x′4)2 = γ2
[
((û · r)−βx4)2− (x4−β(û · r))2

]
= γ2(1−β2)

[
(û · r)2− (x4)2

]
= (û · r)2− (x4)2. (25c)

Thus a direction-û Lorentz boost leaves the (û · r)—x4 “planar” quadratic form (û · r)2 − (x4)2 invariant.
It is interesting and instructive to construct the closest analogy to the Lorentz boost of constant velocity v

that can be achieved using ordinary rotations in the three dimensions (x1, x2, x3) = (r). Since Lorentz boosts
transform only those “planes” which contain the x4-axis, we shall restrict our analogy to rotations of only
those planes which contain the (̂j ·r)-axis where ĵ is a completely fixed (although arbitrary) three-dimensional

unit vector. Besides the (̂j · r)-axis, the ingredients of our restricted-rotations analogy to the Lorentz boost

include all three-dimensional vectors s which are orthogonal to ĵ, namely all three-dimensional s which satisfy
(̂j · s) = 0; all of these s can be expressed in the form s = r− ĵ(̂j · r), where r is a three-dimensional vector.

Among the three-dimensional vectors s which are orthogonal to ĵ, the unit vectors n̂ are of special interest;
they satisfy |n̂|2 = 1 and (̂j · n̂) = 0. Using these ingredients, our planar rotational analogy of the Lorentz

boost is the following ordinary rotation in the (n̂ · s)—(̂j · r) plane,

s′ = s− n̂(n̂ · s) + n̂(cos θ (n̂ · s) + sin θ (̂j · r)) = s− n̂(n̂ · s) + n̂(cos θ ((n̂ · s) + tan θ (̂j · r))) and,

(̂j · r′) = cos θ (̂j · r)− sin θ (n̂ · s) = cos θ ((̂j · r)− tan θ (n̂ · s)). (26a)

This rotation in the (n̂ · s)—(̂j · r) plane leaves the vector s − n̂(n̂ · s), which is orthogonal to that plane,
unchanged. Furthermore, since Eq. (26a) implies that,

(n̂ · s′) = cos θ (n̂ · s) + sin θ (̂j · r) and (̂j · r′) = cos θ (̂j · r)− sin θ (n̂ · s), (26b)

it follows that,

(n̂ · s′)2 + (̂j · r′)2 =
(
cos θ (n̂ · s) + sin θ (̂j · r)

)2
+
(
cos θ (̂j · r)− sin θ (n̂ · s))2 = (n̂ · s)2 + ((̂j · r)

)2
, (26c)

so this rotation in the (n̂ · s)—(̂j · r) plane leaves the planar quadratic form (n̂ · s)2 + ((̂j · r))2 invariant.
The most obvious inadequacy of this rotational analogy to Lorentz boosts is the sign difference in the

associated planar quadratic forms, which are (û · r)2 − (x4)2 for the Lorentz boosts, but (n̂ · s)2 + (̂j · r)2 for
its rotational analogy. Therefore using the comparison of Eq. (25a) with Eq. (26a) to try to draw an analogy
between γ and cos θ and between β and tan θ isn’t useful. However, inserting an imaginary angle θ = iυ
into the rotational analogy is more enlightening; taking γ = cosh υ and β = tanh υ is indeed viable in light of
the fact that γ = (1/

√
1− β2). Thus Lorentz boosts aren’t ordinary circular (trigonometric) rotations, but

“hyperbolic” ones, which makes it useful to express Eq. (25a) in the form,

r′ = r− û(û · r) + û(cosh υ (û · r)− sinh υ x4) and x′4 = cosh υ x4 − sinh υ (û · r), (27a)

where the unit vector û and the rapidity parameter υ are related to the boost velocity v as follows,

û = (v/|v|), cosh υ = 1/
√

1− |v/c|2 = γ, tanh υ = |v/c| = β, sinh υ = |v/c|/
√

1− |v/c|2 = γβ,

exp(υ) = cosh υ + sinh υ =
√

(1 + |v/c|)/(1− |v/c|) and υ = (ln(1 + |v/c|)− ln(1− |v/c|))/2, (27b)
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so when |v/c| � 1, υ is very close to |v/c| = β, but as |v/c| → 1, υ →∞.
Although Lorentz boosts differ from ordinary rotations in having hyperbolic instead of circular (i.e.,

trigonometric) character, they share the characteristic of rotations of affecting only a planar, two-dimensional
subspace of the space which they transform. That notwithstanding, ordinary rotations are free to transform
any plane whatsoever of the three-dimensional space, whereas Lorentz boosts are rigidly constrained to trans-
form only those planes of the four-dimensional space which include the x4-axis. An issue that arises with
Lorentz boosts’ rigid limitation to planes which include the x4 axis is that the net effect of two successive
Lorentz boosts may be to produce transformation of a plane in the four dimensional space which doesn’t
include the initial x4 axis (of course Lorentz boosts, unlike Galilean boosts, change the x4 axis). As a matter
of fact, two successive Lorentz boosts in nonparallel directions always have the net effect of transforming a
plane in the four-dimensional space which doesn’t include the initial x4 axis, so two successive nonparallel
Lorentz boosts don’t comprise a Lorentz boost of the original space-time coordinates. Such a pair of boosts,
however, turns out to transform those original space-time coordinates by a boost plus an ordinary space
rotation. An entity which is accelerating in a direction not parallel to its velocity is continuously subjected
to successive nonparallel boosts, and therefore continuously undergoes ordinary space rotations, a condition
known as Thomas precession.

In Newtonian theory, a frictionless gyroscope will always point in the same direction (toward the North
Star, for example), regardless of any acceleration of the vehicle carrying the gyroscope, which is the basis
for inertial guidance systems. But Lorentz boosts violate the precepts of inertial guidance to a very slight
extent to produce the Thomas precession phenomenon. Another way to see that inertial guidance is very
slightly at odds with the Lorentz-boost consequences of acceleration not parallel to velocity is to note that
those inside a moving vehicle observe Fitzgerald contraction of the universe in the direction of their velocity,
so acceleration of the vehicle in a direction not parallel to its velocity produces rotation of the direction in
which the universe appears to be contracted to those inside the vehicle. A gyroscope which is supposed to
faithfully point toward a given star thus faces the shifting of the apparent positions of a great many stars
that is produced by acceleration not parallel to the vehicle’s velocity.

We next work out the Thomas-precession vector angular velocity of an entity whose acceleration isn’t
parallel to its velocity. We do so by applying two successive Lorentz boosts in arbitrary nonparallel directions,
the second of which is infinitesimal, since acceleration changes velocity smoothly. We verify that that pair of
nonparallel boosts fails to produce solely a Lorentz boost of the original space-time coordinates, but instead
effects a boost plus a rotation of those coordinates.

Nonparallel Lorentz-boost pairs and the vector angular velocity of Thomas precession

Before plunging into the algebra of a pair of nonparallel Lorentz boosts, it is extremely useful to note from
Eq. (27a) that two particular partial derivatives of respectively the space part r′(r, x4) and the time part
x′4(r, x4) of a bona fide Lorentz boost yield identical complete information about the boost velocity,

−(∂ r′(r, x4)/∂x4) = −∇r x
′
4(r, x4) = sinh υ û. (28a)

The first of our nonparallel pair of Lorentz boosts is in direction û1 with rapidity υ1 (see Eq. (27a)),

r′ = r− û1(û1 · r) + û1(cosh υ1 (û1 · r)− sinh υ1 x4) and x′4 = cosh υ1 x4 − sinh υ1 (û1 · r), (28b)

while our second boost is in direction û2 with infinitesimal rapidity δυ2 that is kept only to first order,

r′′ = r′ − û2 δυ2 x
′
4 and x′′4 = x′4 − δυ2 (û2 · r′), (28c)

Inserting Eq. (28b) into Eq. (28c) to eliminate r′ and x′4 from the latter produces an unwieldy result,

r′′ = r− û1(û1 · r) + û1(cosh υ1 (û1 · r)− sinh υ1 x4)− û2 δυ2(cosh υ1 x4 − sinh υ1 (û1 · r)) and

x′′4 = cosh υ1 x4 − sinh υ1 (û1 · r)− δυ2 û2 · (r− û1(û1 · r) + û1(cosh υ1 (û1 · r)− sinh υ1 x4)). (28d)

which, after regrouping terms reads,

r′′ = r− û1(û1 · r) + (û1 cosh υ1 + û2 δυ2 sinh υ1)(û1 · r)− (û1 sinh υ1 + û2 δυ2 cosh υ1)x4 and

x′′4 = (cosh υ1 + δυ2(û1 · û2) sinh υ1)x4 − (sinh υ1 + δυ2(û1 · û2)(cosh υ1 − 1))(û1 · r)− δυ2(û2 · r). (28e)
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Putting the Eq. (28e) space-time transformation to the Eq. (28a) test for a bona fide Lorentz boost yields,

−(∂ r′′(r, x4)/∂x4) = sinh υ1 û1 + δυ2 cosh υ1 û2 versus

−∇r x
′′
4(r, x4) = (sinh υ1 + δυ2(û1 · û2)(cosh υ1 − 1))û1 + δυ2 û2, (28f)

so the Eq. (28e) pair of nonparallel Lorentz boosts isn’t a Lorentz boost. However, we note the norm equality,

|∂ r′′(r, x4)/∂x4)|2 = |∇r x
′′
4(r, x4)|2 = sinh2 υ1 + 2δυ2(û1 · û2) sinh υ1 cosh υ1 =

(sinh υ1 + δυ2(û1 · û2) cosh υ1)2 = (sinh(υ1 + δυ2(û1 · û2)))2, (28g)

so −(∂ r′′(r, x4)/∂x4) is a rotated version of −∇r x
′′
4(r, x4); it needs to be emphasized that −∇r x

′′
4(r, x4)

isn’t rotated because x′′4(r, x4) is the coordinate time component, which is rotationally invariant.
Thus the two Eq. (28a) equalities, i.e., −(∂ r′(r, x4)/∂x4) = −∇r x

′
4(r, x4) = sinh υ û, for bona fide

Lorentz boosts are changed for the Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts as follows:
the equality −∇r x

′′
4(r, x4) = sinh υ û still holds for the rotationally-invariant −∇r x

′′
4(r, x4), and determines

the boost part of the Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts, but −(∂ r′′(r, x4)/∂x4)
is a rotated version of the rotationally-invariant −∇r x

′′
4(r, x4), and determines the rotation part of the

Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts.
From −∇r x

′′
4(r, x4) = sinh υ û, together with the last equality of Eq. (28g) it follows that,

υ = υ1 + δυ2(û1 · û2), (28h)

for the boost part of the Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts. We furthermore
obtain from −∇r x

′′
4(r, x4) = sinh υ û together with the results of Eqs. (28f) and (28g) that,

û = ((sinh υ1 + δυ2(û1 · û2)(cosh υ1 − 1))û1 + δυ2 û2)/(sinh υ1 + δυ2(û1 · û2) cosh υ1) =

(1− (δυ2(û1 · û2)/ sinh υ1))û1 + (δυ2/ sinh υ1)û2. (28i)

The Eq. (28h) rapidity parameter υ and the Eq. (28i) velocity-direction unit vector û fully specify the
boost part of the Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts. The remaining non-boost
part of the Eq. (28e) non-Lorentz-boost pair of nonparallel Lorentz boosts is the rotation angle it produces
between −∇r x

′′
4(r, x4) and −(∂ r′′(r, x4)/∂x4). Therefore as a complement to the velocity-direction unit

vector û = ((−∇r x
′′
4(r, x4))/|∇r x

′′
4(r, x4)|) obtained in Eq. (28i), we now obtain its rotated counterpart

ûrot = ((−∂ r′′(r, x4)/∂x4)/|∂ r′′(r, x4)/∂x4|) from Eqs. (28f) and (28g),

ûrot = (sinh υ1 û1 + δυ2 cosh υ1 û2)/(sinh υ1 + δυ2(û1 · û2) cosh υ1) =

(1− (δυ2(û1 · û2) cosh υ1/ sinh υ1))û1 + (δυ2 cosh υ1/ sinh υ1)û2. (28j)

The unit vectors û and ûrot differ only by an infinitesimal amount. Therefore their cross product gives the
infinitesimal angle between them multiplied by the unit normal vector to the plane in which they lie, which
is an infinitesimal vector angle that we denote as δΘ,

δΘ = û× ûrot = [(1− (δυ2(û1 · û2)/ sinh υ1))û1 + (δυ2/ sinh υ1)û2]×
[(1− (δυ2(û1 · û2) cosh υ1/ sinh υ1))û1 + (δυ2 cosh υ1/ sinh υ1)û2] =

δυ2((cosh υ1 − 1)/ sinh υ1)(û1 × û2). (28k)

Eq. (28k) is written in terms of direction unit vectors and rapidities, but we need it expressed in terms
of velocities. For the infinitesimal rapidity δυ2 that is straightforward because δυ2 = |δv2/c|, so δυ2û2 =
(δv2/c). For û1 we proceed from its definition: û1 = (v1/|v1|) = (v1/c)(cosh υ1/ sinh υ1). Putting these
results, namely δυ2û2 = (δv2/c) and û1 = (v1/c)(cosh υ1/ sinh υ1), into Eq. (28k) yields,

δΘ = (cosh υ1(cosh υ1 − 1)/ sinh2 υ1)(v1 × δv2)/c2 =

(cosh υ1/(cosh υ1 + 1))(v1 × δv2)/c2 =
(

1
/(

1 +
√

1− |v1/c|2
))

(v1 × δv2)/c2. (28l)

If an entity has trajectory r(t), then in the infinitesimal time interval [t, t + δt], v1 = ṙ(t), δv2 = (r̈(t))δt
and δΘ = (dΘ(t)/dt)δt, so,

dΘ(t)/dt =
(

1
/(

1 +
√

1− |ṙ(t)/c|2
))

(ṙ(t)× r̈(t))/c2, (28l)

the Thomas-precession vector angular velocity of an entity whose trajectory is r(t).
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