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ABSTRACT

Initially, we proceeded by presenting a synthesis of the Foundation of Albert Einstein's 1916

Theory of General Relativity, necessary for the development of a theory in accordance with the 

Foundation of the Theory of General Relativity, in order to demonstrate that the radius of the

proton in Muonic-Hydrogen is smaller than that of Hydrogen by an amount equal to 4%, of the

radius of the proton in the Hydrogen.

INTRODUCTION: The synthesis of " Foundation of General Relativity"

In The Foundation of the General Theory of Relativity by Albert Einstein, one come to suppose 

that the general laws of motion, must be such that the mechanical behavior of physical system of 

1 2 1bodies  ,  ,..., , , ...,  is partly conditioned, in quiet essential respect, by distant masses n nS S S S 

1 2 1which we have not included in this system. Hence, if   R , R , ..., R , R , ...,  are space in any n n

1 2 1kind of motion relatively to one another in which the bodies  , , ..., , , ...,  are respecti-n nS S S S 

vely at rest, there is none which we may look upon as privileged a priori, without falling into the 

epistemological defect, through the introduction of a merely factitious cause and not a thing that 

can be observed, as this would contradict  Newton's  mechanics,  for which, if the laws of mecha-

nics apply to the space R  with respect to which the body S  is at rest, they will not apply to then n

1 1space R  with respect to wich the body S  is at rest. To suppose this, Albert Einstein used the n n 

Mach's principle according to which the inertia of bodies is a property induced by distant masses.



It follows that the laws of physics can applied to systems of reference in any kind of motion.

We assume that to a translational and uniformly accelerated relative motion of a reference system

K' with respect to a Galilean reference system K, due to the fact that an observer at rest with re-

spect to K' cannot conclude that he is actually on a reference system accelerated, we can give the 

following equivalent interpretation:                                                                                               

The space in question is influenced by a gravitational field (the notion of field was introduced by 

Faraday and Maxwell to indicate the set of values that a given physical quantity assumes in space) 

which generates the accelerated motion of the bodies with respect to K'.                                         

In fact, just as the gravitational force field, enjoys the property of imparting the same acceleration 

to all bodies, so relatively to K',  the acceleration which will have a mass sufficiently distant from 

the other masses, will be indipendent of the physical state and material nature of the mass (material 

point free to move).                                                                                                                              

In the following example, we introduce, in a space which is free of gravitational fields, a Galilean 

'reference K (x,y,z,t) and a system of coordinates K (x',y',z',t') in uniform rotation relatively to K , O O O

with the origins of both systems, as well as their axes z and z', permanently coincide.                      

Since both systems can be chosen for the description of physical phenomena, we arrive at the follo-

wing result: The differences between the spatial coordinates, can no longer be measured through a 

sample of length chosen as the unit of measurement unlike what happens in the theory of special re-

lativity, in which two selected material points of a stationary rigid body there always corresponds a

distance of quite definite lenght, moreover the rate of a clock depends upon where the clock may be.

For this reason to expose the General Theory of Relativity, infinitely small ( local ) coordinate sy-

stems will be chosen, limited by an infinitely small region of space.                                                

From the thought expounded by Albert Einstein it follows that, the laws of nature be covariant in a 

general way to any substitution.                                                                                                        

We thus arrived at the generalization of the theory of relativity, the development of which takes pla-

ce by means of tensors.

We can verify that through the principle of special relativity and the postulate of the constant of the 

speed of light in vacuum, we obtain the trasformation laws of Lorentz, which for each pair of infini-

tely close events in the continuous space-time (in terms of geometry, for each pair of points in the



2 2 2 2 2
1 2 3 4four-dimensional universe of Minkowsky) leave the interval unchanged  ds dx dx dx dx    

1 2 1in all space R , R , ..., R , R , ...,  ( the unit of time has been chosen in such way that the speed n n

of light is equal to 1).                                                                                                                    

In the general case, limiting to an infinitely small four-dimensional region, the desplacement from 

an inertial system K to a non-inertial ( arbitrary ) system K', change the expression of the invariant 

2  between two infinitely close event:                                                                                           ds

2 2 2 2 2 2
1 2 3 4   ds dx dx dx dx ds g dx dx g dx dx   

        
where we have suppressed  the sign using the simplified notation introduced by Albert Einstein 

(if an index occurs twice in one term of an expression, it is always to be summed unless the contrary 

is expressly stated). The g components vary as a function of space and time and must be considered 

from physical point of view, as the quantities that describe the gravitational field, in relation to the 

chosen reference system, and moreover, simultaneously determine the metric proprerties of the four-

dimensional space.  The equation of the law of motion of a material point relative to K,  describe  a 

four-dimensional straight line, i.e a geodetic and will also be the equations of motion of the material 

2

2
point with respect to K':  with 

d x
dx dx

ds


    
       

2since the geodetic is defined independently of the reference system exactly as the invariant ds .

 are the components of the gravitational field and vanish only when the point moves uniformly in  


1
a straight line: with ( ).

2

g gg
g

x x x
    

        
 

            
  

Putting ourselves in the condition of first approximation in which the are such as to make all small g

values of the  components ( at least those of the first order, neglecting the quantities of the second 


order and subsequent ),  and limiting the speed of material point,  such that is small,  compared to the 

speed  of light, we can consider only the terms in which ,  because the  for 1,2,3,  will 
idx

i
ds

    

4

be very small; consequently  will be close to 1, so from 1) we get:
dx

ds

2 2
4

442 2
 with .

d x dx dx d x
ds dx dt

ds ds ds dt

   
 
      

Furthermore supposing that the motion of the matter, generating the field is slow in comparison to the 



speed of light (quasi-static gravitational field), the derivations with respect to time will be negligible 

with respect to the spatial derivations so that 1) gives us in first approximation the equation of the mo-

tion of the material point according to Newton's theory:                                                                      

2
44

2

1
 with                                                                                                                  2)

2

d x g

dt x



 


  


44in which  play the part of the gravitational potential.
2

g

By advantageously choosing of the coordinates so that 1, Albert Einstein come to the followingg 

equations of the gravitational field in the absence of matter, which conform to the momentum and the

energy theorems:

0 with 1                                                                                                                3)g
x


  

 


     



Multiplying 2) by gives the following equation:g

1
[ ( ) ( ) ] 0  with 1       4)

2
g g g g g g

x x


             

          
 

                
 

t t

The quantities  with ,  appearing in 3), are to be considered as the energy components of  
  t t t

the gravitational field only.                                                                                                           

Since the theory of relativity has led to the conclusion that inert mass is energy, then this energy 

adding to the energy component of the gravitational field into the field equations of gravitation; 

if we consider the solar system, the total mass and therefore its total gravitating action, will 

depend on the total energy of the system, and therefore on the ponderable energy together with the 

gravitational energy. 

In addition Albert Einstein highlights that the energy of the gravitational field shallact gravitative-

ly in the same way as any other kind of energy and this leads us to write the equations of the gravi-

tational field in general form, adding to the component   of the energy of the gravitational field 
t

only, the components of the energy of the matter T , with ;so from 3) we obtain the follo-T T 
  

wing general equations of the gravitational field in mixed form:                                                  

1
( ) [( ) ( )] 0          5)

2
g g g T T g g

x x


              

           
 

                
 

t t

with 1.g 



The 4)  are traceable to the following general equation of the gravitational field in the symmetri-

cal covariant form: 

1
( )     with 1                                                                                  6)

2
T g T g

x


  

    


      


in which,    is the covariant energy tensor of a perfect fluid, where 
dx dx

T g p g g
ds ds

 

     

P and  denotes the pressure and density of fluid respectively. 

Since the energy tensor of matter is defined almost exclusively by the density of matter , than

, and for the order of approximation which we are, it cames down to the
dx dx

T g g
ds ds

 

   

44 then from 5) we get:T    

44                                                                                                                                                    7)g   

which represents the equation corresponding to the Poisson equation for the Newtonian gravita-

tional field.

From 2)  and  7), we obtained the following system of equations equivalent to Newton's law of 

gravitation: 

2 2
44

44

/ (1/ 2)( / )   with  = 1,2,3

     

d x dt g x

g

  



    

  

and by 2) and 7)  the expression for the gravitational potential becomes

                                                                                                                                                8)
8 V

d

r

  


 

while Newton's theory, with the unit of time which we have chosen, given

2
                                                                                                                                                9)

V

G d

c r

 
 

Subsequently, we derive the gravitational potential for a field producing by a point of mass at the 

origin of coordinates, and we obtain to the first approximation, the radially symmetrical solution: 

3

44

         , 1, 2,3

0                  1, 2,3                                                                                                        10)

1

x x
g a

g g

a
g

r

 
 

 

  


 


  

   

  


2 2 2
1 2 3with 0 for , 1 for ,  and r x x x            



2

8
Comparing 8) with 9) we get:                                                                                                  11)

G

c

 

while for 8), 10) and 11) we get:                                                                                              12)
4

M
a






which we rewrite                                                                                                                     12')
4

a M

r r






2

8
and for 11) and 12') we get:                                                                                                 12")

4

a GM

r c r






2 8
If  we remove time from the equation 12") we get: 4 with  G and             13)G

G

J M
c J r c

c


       

It is easy to verify that the unit measuring-rod appear a little shortened in relation to the system of

1coordinates, by the presence of the gravitational field, if the rod is laid along a radius: dx =1-
2

a

r

while the gravitational field of the point of mass has no influence on the lenght of a rod when it is

placed along the tangential direction.                                                                                              

As a result, Euclidean geometry is no longer valid, and the ratio of the circumference to the diame-

ter is less than  !                                                                                                                            

The following two examples were suggested by Albert Einstein to highlight the fact that the deve-

lopment of Relativity implied a non-Euclidean geometry.

1) In a space-time region without gravitational fields let us consider a circumference lying in the 

    plane XY of a Galilean reference K (x,y,z,t) with centre in the origin and radius r. Then, if we O

    measure the radius r of the circumference, through a measuring-rod at rest with respect to a sy-

    stem K'  that we consider in uniform rotary motion with respect to K (with Z Z' and O O') O O  

    the ratio between circumference and diameter, for the effect due to the theory of special relati-

    vity, result to be grater than                                                                                                    

2) f the space-time territory in which the circumference lies, is under the sway of a gravitational 

    field, the unit measuring-rod undergoes the shortening foreseen by the Theory of  General Rela-

    tivity and the ratio between circumference and diameter will be less than .  This is true all the

    time that we wish to take one and the same measuring-rod, independently of its place and orien-

    tation, as a realization of the same interval. In other words, given n unit measuring-rod all of the

    same lenght in contrast to the case where we had a space-time region without gravitational field



    we will need, a number of measuring-rod greater than r, to arrive at a lenght equal to r, for the

    simple fact that the gravitational field with its presence shortens the measuring-rods.                

Let's proceed by considering an alternative case to points 1) and 2):                                             

3) In a space-time we introduce two system of reference K and K' ( with Z Z' and O O' at any  

    moment) such that, each system of reference with respect to an observer at rest relatively to the

    other system of reference, rotate wich costant angular velocity and we consider a mass m at di-

    stance r from O, at rest with respect to the reference K.                                                            

    Then relative to K', the motion of this mass m will appear to be in uniform rotation around the 

    origin of K', and at a distance r from the origin of K'.                                                               

    It follows that an observer placed in the origin of K' is unable to conclude that he is an a system

    of reference in uniform rotation, and then given the following equivalent interpretation:

    The space-time territory in question, is under the sway of a gravitational field, of such intensity 

    as to generate the uniform rotation of the mass m, around the origin of K', and at a distance r 

    from the origin of K'.                                                                                                                  

    For observer placed in the origin of K', not being able to conclude that the system of reference

    is in uniform rotation (due to the relativity of the motion), the ratio between circumference and

    diameter must be equal to ,  and therefore, in the case of equivalent interpretation, it can only

    equal to                                                                                                                                    

    Since due to the sway of the gravitational field, the distance r of the mass m from the origin of

    K', will be shortened of r, we deduce that also the orbit of the mass m will no longer be equal

    to 2 r but to 2 (r - r), as the ratio between circumference and diameter, in the equivalent in-  

    terpretation must remain unchanged.                                                                                          

THE ROLE OF THE FOUNDATION OF GENERAL RELATIVITY IN THE PROTON 

RADIUS PUZZLE

11 22 33Being from the point of view of first approximation, the g  differ from value g = g = g =  -1

44

1
and g = 1 for small quantities compared to 1; then must be r and therefore 1- ,

21 /

a
a

ra r
 



which as has been have shown in the Theory of General Relativity, has the following geometrical

meaning: "The unit measuring-rod, when is laid along the radius, at a distance r from the point of

mass that generating the gravitational field, appear shortened by an amount equal to , in relation
2

a

r

to the system of coordinates K". This also applied to r = 1, i.e 1 and so 1- 1- .                 
2 2

a a
a

r
 

Therefore, if for a measuring-rod of lenght r, laid along the radius, we can write r 1-
2 2

a a
r r

r r
    
 

( the measuring-rod will be shortened by an amount equal to  ), then a spherical surface of
2

a
r r

r
 
 
 

radius , from point of view of first approximation ( neglecting the quantities of the second
2

a
r r

r


order and subsequent), having shown in the point 3) that the ratio of the circumference to the dia-

meter is equal to , we get: 4 ( ) 4 ( -2 ) 4 - 4 ;  i.e the spheri-
2 2 4

a a r a a
r r r r r r

r r r r
      ² ²

² = ² ² ² ²
²

cal surface 4  will be decrease by an amount equal to 4 , and we can note that the value of
a

r r
r

 ² ²

 r put to denominator, is always equal to the radius of spherical surface to which be subtracted the 

term 4 .                                                                                                                                    
a

r
r

 ²

8 J M
Therefore 4 , i.e the 13) gives us the value of that surface that must be subtractedG a

c
c c


 ²

to the spherical surface of r = c, which around the point of mass M that generated the gravitational

field in that space-time region, to which the spherical surface, of r = c, belongs.                             

J M( )
The equation 4 8                                                                                                       13')

( / ) /
Gc x a

x c x c x
 

² ²

²

is equivalent to 13), but to be in agreement with 12), in the 13') we must necessarily replace the

mass M with mass M.                                                                                                                x²

So, in accordance with the Theory of General Relativity we get the following equivalent equation

J ( M)( )
4 8                                                                                                                      13'')

( / ) ( / )
G xc x a

x c x x c x
 

²² ²

² ²

Through the equation 13'') we get the surface that must be subtracted to the spherical surface of 

radius r = .                                                                                                                                    
c

x



( ) 1
For  =  we get:  4  - 4 4  - 4 0;                                   

( / ) /

c
xc c c x a xa c c

x x x c x x c x
   

  
  

   
  
   

²
² ² ² ³² ²

³ ² ² ²

i.e for  the spherical surface of radius  becomes null, and therefore, the volume
c c

x a
x x

²

contained from the spherical surface will come to missing from the spherical volume of that

sphere with radius .                             
c

r
x
  

The volume vanished is a consequence of shortened suffered to unit measurement-rod in a gra-

vitational field when it is placed along the radial direction.                                                      

2

From 13) we obtain:  J M                                                                                                      14)G

c
a


 



Also the 14) is equivalent to 13) and we note that to the second member of the 14), we can get

the physical sense of a volume that is take up from a mass M in a medium of density J ,  withG

the mass M beloging to this medium; this volume, if we follow the same reasoning as in the case 

of equation 13"), must be subtracted by spherical volume of radius r = , as the 14) is equiva-
c



lent to 13).                                                                                                                                    

It is evident by the 14) that the volume to subtract is superiorly bounded from the spherical vo-

lume J  of radius r = .                                                                                                       MAX

c



Therefore, leaving the J  constant, we can vary the mass M until that max value M , necessa-G MAX

ry to take up the spherical volume of radius r = .                                                                    
c



As the mass M belongs to medium of volumetric density J  , the mass of medium will need to be G

limited and equal to M  and accordingly also its volume will need to be limited by a sphericalMAX

surface of radius r = .                                                                                                               
c



In this proof  J  have the dimension of volumetric density and as such we treated it, also we ha-G

ve replaced the point of mass M with a body of mass M, extensive in the space.

Starting from the Theory of General Relativity we derived a mathematical model, which allows 

us to idealize, empty space as a medium endowed with volumetric density. This does not mean



that phsical space possesses a volumetric density, as this volumetric density, could  only be the

result of the mathematical model that we have built. 

This does not mean, that the phsical space truly possesses a volumetric density, instead of being

empty.                                                                                                                                          

We apply this mathematical model to muonic hydrogen.                                                             

Although the proton consists of 3 quarks, we have considered it as a particle of uniform volume-

tric density because Albert Einstein pointed out that the mass is energy and energy is mass.           

Then must be M M  (M  is the proton mass), V while  is that volume within by spherical P MAX P MAX

3(4 / 3)
surface limited from the radius r  of the proton; then we get J .                          

M
P

P G P
P

r
J


 

For a muon bound to a proton, since the wave function of a particle, orbiting around the proton,

penetrates in that region of space occupied by the proton, it as been calculated, that the probabi-

lity of the muon to be inside the proton, is about 8 milion times greater than that of electron. 

This mean that all the times the muon is inside the proton, we can apply our mathematical model

and then J M  (M  is the muon mass that we treat as if it were equivalent to a material point),P  

gives us the value of that volume that must be subtracted from the spherical volume of a sphere of 

radius r .                                                                                                                                         P

CONCLUSION

We have shown that a particle (considered as a material point), penetrates inside another particle 

extended in space, causes in the latter a reduction of its spherical volume and so of its radius.

The theory having been built through the Foundations of the Theory of General Relativity, descri-

bes a phiysical phenomenon, which in an intrinsic way, was already foreseen by the Foundation

of the Theory of General Relativity.                                                                                               

The reduced volume V'  of the proton, due to the penetration of the muon into it, is given by fol-P

lowing equation:                                                                                                                            

3

3 3

4
( )4 4 3V' = ( ' ) V J M = ( )  M                                                                            15)

3 3 M

P

P P P P P
P

r
r r 


   

If we know the values ,  M  and M , we get it                                                                             P Pr 



3
M

' =  1                                                                                                                               16)
MP P

P

r r 
 

  
 

while, if we know the values ' ,  M  and M , we get it                                                               P Pr 

3

'
                                                                                                                                    17)

M
 1   

M

P
P

P

r
r







28M 1.88353 Kg, is the mass of muon (elementary particle similar to the electron)
 

27M 1.67262 Kg, is the mass of protonP
 

' 0.84087(39) fm, is the recent determination of the proton radius using the measurement of  Pr 

                                   the Lamb shift  in the muonic hydrogen atom

Through these values ( ' ,M ,M ) and the formula 17), we calculate the radius of the protonP Pr 

28

3 3
27

' 0.84087(39) fm 0.84087(39) fm
0.87503(39) fm

0.96096M 1.88353 Kg
 1    1   

M 1.67262 Kg

P
P

P

r
r






   
 


Since the effect on the radius of a proton, caused by a particle with very small mass as electron

are negligible, then 0.87503(39)fm  would be the radius of the proton when an electron isPr 

orbiting around it.

We have obtained a value of   in agreement with the 2014 value, equal to 0.8751(61) fm, P Pr r 

recommended by the Committee on Data for Science and Technology (CODATA 2014)

and furthermore the result is in agreement with the Standard Model.                              

If experimentally the radius of muonic-hydrogen is equal to the radius of hydrogen, then from



the point of view of theory development, the outcome of this experiment, would be a pivotal

result not in agreement with the Foundations of Theory of General Relativity, as it would clash

with those Foundations .
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