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The second-order equation in the (1/2, 0)⊕ (0, 1/2) representation of the Lorentz group

has been proposed by A. Barut in the 70s, ref. [1]. It permits to explain the mass splitting

of leptons (e, µ, τ). The interest is growing in this model (see, for instance, the papers

by S. Kruglov [2] and J. P. Vigier et al. [3, 4]). We noted some additional points of this

model.

The Barut main equation is

[iγµ∂µ + α2∂
µ∂µ − κ]Ψ = 0 , (1)

where α2 and κ are the constants later related to the anoma-

lous magnetic moment and mass, respectively. The matrices

γµ are defined by the anticommutation relation:

γµγν + γνγµ = 2gµν , (2)

gµν is the metrics of the Minkowski space, µ, ν = 0, 1, 2, 3.

The equation represents a theory with the conserved current

that is linear in 15 generators of the 4-dimensional represen-

tation of the O(4, 2) group, Nab =
i
2
γaγb, γa = {γµ, γ5, i}.

Instead of 4 solutions the equation (1) has 8 solutions with

the correct relativistic relation E = ±
√

p2 + m2
i
. In fact, it

describes states of different masses (the second one is m2 =

1/α2 − m1 = me(1 + 3
2α

), α is the fine structure constant),

provided that the certain physical condition is imposed on

α2 = (1/m1)(2α/3)/(1 + 4α/3), the parameter (the anoma-

lous magentic moment should be equal to 4α/3). One can

also generalize the formalism to include the third state, the τ-

lepton [1b]. Barut has indicated at the possibility of including

γ5 terms ( e.g., ∼ γ5κ
′
).

The most general form of spinor relations in the (1/2, 0)⊕
(0, 1/2) representation has been given by Dvoeglazov [5]. It

was possible to derive the Barut equation from the first prin-

ciples [6]. Let us reveal the connections with other models.

For instance, in refs. [3, 7] the following equation has been

studied:

[(i∂̂ − eÂ)(i∂̂ − eÂ) − m2]Ψ = [(i∂µ − eAµ)(i∂
µ − eAµ) −

−1

2
eσµνFµν − m2]Ψ = 0 (3)

for the 4-component spinor Ψ. Â = γµAµ; Aµ is the 4-vector

potential; e is electric charge; Fµν is the electromagnetic ten-

sor. σµν = i
2
[γµ, γν]−. This is the Feynman-Gell-Mann equa-

tion. In the free case we have the Lagrangian (see Eq. (9) of

ref. [3c]):

L0 = (i∂̂Ψ)(i∂̂Ψ) − m2ΨΨ . (4)

Let us re-write the equation (1) into the form:∗

[iγµ∂µ + a∂µ∂µ + b]Ψ = 0 . (5)

So, one should calculate (p2 = p2
0
− p2)

Det

(

b − ap2 p0 + σ · p
p0 − σ · p b − ap2

)

= 0 (6)

in order to find energy-momentum-mass relations. Thus,

[(b − ap2)2 − p2]2 = 0 and if a = 0, b = ±m we come to

the well-known relation p2 = p2
0
− p2 = m2 with four Dirac

solutions. However, in the general case a , 0 we have

p2 =
(2ab + 1) ±

√
4ab + 1

2a2
> 0 , (7)

that signifies that we do not have tachyons. However, the

above result implies that we cannot just put a = 0 in the so-

lutions, while it was formally possible in the equation (5).

When a → 0 then† p2 → ∞; when a → ±∞ then p2 → 0.

It should be stressed that the limit in the equation does not

always coincide with the limit in the solutions. So, the ques-

tions arise when we consider limits, such as Dirac → Weyl,

and Proca → Maxwell. The similar method has also been

presented by S. Kruglov for bosons [8]. Other fact should be

mentioned: when 4ab = −1 we have only the solutions with

p2 = 4b2. For instance, b = m/2, a = −1/2m, p2 = m2.

Next, I just want to mention one Barut omission. While we

can write
√

4ab + 1

a2
= m2

2 − m2
1 , and

2ab + 1

a2
= m2

2 + m2
1 , (8)

but m2 and m1 not necessarily should be associated with mµ,e
(or mτ,µ). They may be associated with their superpositions,

and applied to neutrino mixing, or quark mixing.

The lepton mass splitting has also been studied by Markov

[9] on using the concept of both positive and negative masses

in the Dirac equation. Next, obviously we can calculate

anomalous magnetic moments in this scheme (on using, for

instance, methods of [10, 11]).

We previously noted:

∗Of course, one could admit p4, p6 etc. in the Dirac equation too. The

dispersion relations will be more complicated [6].
†a has dimensionality [1/m], b has dimensionality [m].
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• The Barut equation is a sum of the Dirac equation and

the Feynman-Gell-Mann equation.

• Recently, it was suggested to associate an analogue of

Eq. (4) with the dark matter, provided that Ψ is com-

posed of the self/anti-self charge conjugate spinors, and

it has the dimension [energy]1 in the unit system c =

~ = 1. The interaction Lagrangian is LH ∼ gΨ̄Ψφ2, φ

is a acalar field.

• The term ∼ ΨσµνΨFµν will affect the photon propaga-

tion, and non-local terms will appear in higher orders.

• However, it was shown in [3b,c] that a) the Mott cross-

section formula (which represents the Coulomb scatter-

ing up to the order ∼ e2) is still valid; b) the hydrogen

spectrum is not much disturbed; if the electromagnetic

field is weak the corrections are small.

• The solutions are the eigenstates of γ5 operator.

• In general, the current J0 is not the positive-defined

quantity, since the general solution Ψ = c1Ψ+ + c2Ψ−,

where [iγµ∂µ ± m]Ψ± = 0, see also [9].

• We obtained the Barut-like equations of the 2nd order

and 3rd order in derivatives.

• We obtained dynamical invariants for the free Barut

field on the classical and quantum level.

• We found relations with other models (such as

the Feynman-Gell-Mann equation).

• As a result of analysis of dynamical invariants, we can

state that at the free level the term ∼ ∂µΨσµν∂νΨ in the

Lagrangian does not contribute.

• However, the interaction terms ∼ Ψ̄σµν∂νΨAµ will con-

tribute when we construct the Feynman diagrams and

the S -matrix. In the curved space (the 4-momentum

Lobachevsky space) the influence of such terms has

been investigated in the Skachkov works [10, 11].

Briefly,the contribution will be such as if the 4-potential

were interact with some “renormalized” spin. Perhaps,

this explains, why did Barut use the classical anoma-

lous magnetic moment g ∼ 4α/3 instead of α
2π

.
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