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Abstract

Both algebraic equation Det(p̂−m) = 0 and Det(p̂ + m) = 0 for u− and v− 4-spinors have

solutions with p0 = ±Ep = ±
√

p2 + m2. The same is true for higher-spin equations (or they
may even have more complicated dispersion relations). Meanwhile, every book considers the
equality p0 = Ep for both u− and v− spinors of the (1/2, 0) ⊕ (0, 1/2)) representation only,
thus applying the Dirac-Feynman-Stueckelberg procedure for elimination of negative-energy
solutions. The recent Ziino works (and, independently, the articles of several other authors)
show that the Fock space can be doubled. We re-consider this possibility on the quantum-field
level for both s = 1/2 and higher spin particles.

Some parts have also be presented at the XIII DGFM SMF Workshop, Nov. 4-8, 2019.
Leon, Gto., México.

1 Introduction.

The recent problems of superluminal neutrinos, negative-mass squared neutrinos, various schemes
of oscillations including sterile neutrinos, require much attention. The problem of the lepton mass
splitting (e, µ, τ) has long history. This suggests that something missed in the foundations of rela-
tivistic quantum theories. Modifications seem to be necessary in the Dirac sea concept, and in the
even more sophisticated Stueckelberg concept of the backward propagation in time. The Dirac sea
concept is intrinsically related to the Pauli principle. However, the Pauli principle is intrinsically
connected with the Fermi statistics and the anticommutation relations of fermions. Recently, the
concept of the bi-orthonormality has been proposed; the (anti) commutation relations and statistics
are assumed to be different for neutral particles [1]. We propose the relevant modifications in the
basics of the relativistic quantum theory below.

Next, Sakharov in 1967 [2] introduced the idea of two universes with opposite arrows of time,
born from the same initial singularity (i.e. Big Bang). Next, the authors of [3, 4] constructed
(within the framework of the present-day quantum field theory) negative-energy fields for spin-1/2
fermions. Currently, the predominating consensus is the dark matter (DM) and the dark energy
(DE) paradigm. Numerous possible candidates have been proposed for the DM, but to the date,
search for these candidates was not successful. “There is growing favor with the idea that new
ideas need to be considered until an answer is found.” “A paradigm shift that allows the serious
consideration of negative mass is a real possibility.” However, see [5] on the relation of inertial and
gravitational masses.
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The paper is composed in the following way: Introduction, General Framework, Main Results
and Conclusion. In the main text the Dirac spinor formalism is given. Next, the additional idea of
doubling the Fock space is presented, and a section in which alternative mathematical results are
furnished.

2 The General Framework.

The Dirac equation is:
[iγµ∂µ −m]Ψ(x) = 0 . (1)

The γµ are the Clifford algebra matrices, (µ, ν = 0, 1, 2, 3):

γµγν + γνγµ = 2gµν , (2)

gµν is the metrics of the Minkowski space. Usually, everybody uses the following definition of the
field operator [6, 7] in the pseudo-Euclidean metrics:

Ψ(x) =
1

(2π)3
∑

h

∫
d3p
2Ep

[uh(p)ah(p)e−ip·x + vh(p)b†h(p)]e+ip·x] , (3)

as given ab initio. After actions of the Dirac operator at exp(∓ipµxµ) the 4-spinors ( u− and v− )
satisfy the momentum-space equations: (p̂ −m)uh(p) = 0 and (p̂ + m)vh(p) = 0, respectively; h is
the polarization index. It is easy to prove from the characteristic equations Det(p̂∓m) = (p2

0−p2−
m2)2 = 0 that the solutions should satisfy the energy-momentum relation p0 = ±Ep = ±

√
p2 + m2.

The general scheme of construction of the field operator has been presented in [8]. In the case
of the (1/2, 0)⊕ (0, 1/2) representation we have:

Ψ(x) =
1

(2π)3

∫
d4p δ(p2 −m2)e−ip·xΨ(p) =

=
1

(2π)3
∑

h

∫
d4p δ(p2

0 − E2
p)e−ip·xuh(p0,p)ah(p0,p) = (4)

=
1

(2π)3

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)][θ(p0) + θ(−p0)]e−ip·x

∑
h

uh(p)ah(p)

=
1

(2π)3
∑

h

∫
d4p

2Ep
[δ(p0 − Ep) + δ(p0 + Ep)]

[
θ(p0)uh(p)ah(p)e−ip·x+

+ θ(p0)uh(−p)ah(−p)e+ip·x]
=

1
(2π)3

∑
h

∫
d3p
2Ep

θ(p0)
[
uh(p)ah(p)|p0=Epe−i(Ept−p·x)+

+ uh(−p)ah(−p)|p0=Epe+i(Ept−p·x)
]
,

where ah, b†h are the annihilation/creation operators, and in the textbook cases

uh =
(

exp(+σ ·ϕ)φh
R(0)

exp(−σ ·ϕ)φh
L(0)

)
, vh(p) = γ5uh(p) , (5)

where cosh(ϕ) = Ep/m, sinh(ϕ) = |p|/m, ϕ̂ = p/|p| . During the calculations above we had to
represent 1 = θ(p0) + θ(−p0) in order to get positive- and negative-frequency parts [9]. Moreover,
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during these calculations we did not yet assume, which equation this field operator (namely, the u−
spinor) satisfies, with negative- or positive- mass?1

In general, we should transform uh(−p) to the v(p). The procedure is the following one [10]. In
the Dirac case we should assume the following relation in the field operator:∑

h

vh(p)b†h(p) =
∑

h

uh(−p)ah(−p) . (6)

We know that [6]

ūµ(p)uλ(p) = +mδµλ , (7)
ūµ(p)uλ(−p) = 0 , (8)

v̄µ(p)vλ(p) = −mδµλ , (9)
v̄µ(p)uλ(p) = 0 , (10)

but we need Λµλ(p) = v̄µ(p)uλ(−p). By direct calculations, we find

−mb†µ(p) =
∑

λ

Λµλ(p)aλ(−p) . (11)

Hence, Λµλ = −im(σ · n)µλ, n = p/|p|, and

b†µ(p) = i
∑

λ

(σ · n)µλaλ(−p) . (12)

Multiplying (6) by ūµ(−p) we obtain

aµ(−p) = −i
∑

λ

(σ · n)µλb†λ(p) . (13)

The equations are self-consistent. In the (1, 0)⊕ (0, 1) representation the similar procedure leads to
somewhat different situation:

aµ(p) = [1− 2(S · n)2]µλaλ(−p) . (14)

This signifies that in order to construct the Sankaranarayanan-Good field operator, it satisfies
[γµν∂µ∂ν− (i∂/∂t)

E m2]Ψ(x) = 0, we need additional postulates. For instance, one can try to construct
the left- and the right-hand side of the field operator separately each other [9].

3 Main Results. Connections with Other Physical Models.

However, other ways of thinking are possible. First of all to mention, we have, in fact, uh(Ep,p)
and uh(−Ep,p) originally, which satisfy the equations:[

Ep(±γ0)− γ · p−m
]
uh(±Ep,p) = 0 . (15)

1Moreover, since bispinors are, in general, complex-valued, we can even use the different basis such as uα =
column(i 0 0 0) etc. instead of the well-accustomed one.
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Due to the properties U†γ0U = −γ0, U†γiU = +γi with the unitary matrix U =
(

0 −1
1 0

)
= γ0γ5

in the Weyl basis,2 we have in the negative-energy case:[
Epγ

0 − γ · p−m
]
U†uh(−Ep,p) = 0 . (16)

Thus, unless the unitary transformations do not change the physical content, we have that the
negative-energy spinors γ5γ0u− (see (16)) satisfy the accustomed “positive-energy” Dirac equation.
Their explicite forms γ5γ0u− are different from the textbook “positive-energy” Dirac spinors. From
the first sight (just Ep → −Ep) they are the following ones:

ũ(p) =
N√

2m(−Ep + m)


−p+ + m
−pr

p− −m
−pr

 , (17)

˜̃u(p) =
N√

2m(−Ep + m)


−pl

−p− + m
−pl

p+ −m

 . (18)

We use tildes because we do not yet know their polarization properties. It is not even clear, which
helicity operator, σ3/2 or (σ · p̂)/2, or some other should be used after T− conjugation [4]. Next,

Ep =
√

p2 + m2 > 0, p0 = ±Ep, p
± = Ep ± pz, pr,l = px ± ipy. (19)

What about the ṽ(p) = γ0u− transformed with the γ0 matrix? They are not equal to the previous
“negative-energy” 4-spinors vh(p) = γ5uh(p)? Obviously, they also do not have well-known forms of
the usual v− spinors in the Weyl basis, differing by phase factor and in the sign at the mass term.
The normalizations of these 4-spinors are to (±2N2).

Next, one can prove that the matrix

P = eiθγ0 = eiθ

(
0 12×2

12×2 0

)
(20)

can be used in the parity operator as well as in the original Weyl basis. However, if we would take
the phase factor to be zero we obtain that while u+

h (p) have the eigenvalue +1, but (R = (x →
−x,p → −p))

PRũ(p) = PRγ5γ0u↑(−Ep,p) = −ũ(p) , PR˜̃u(p) = PRγ5γ0u↓(−Ep,p) = −˜̃u(p) . (21)

Perhaps, one should choose the phase factor θ = π. Thus, we again confirmed that the relative
(particle-antiparticle) intrinsic parity has physical significance only.

Similar formulations have been presented in Refs. [11], and [12]. The group-theoretical basis for
such doubling has been given in the papers by Gelfand, Tsetlin and Sokolik [13], who first presented
the theory in the 2-dimensional representation of the inversion group in 1956 (later called as “the

2The properties of the U− matrix are opposite to those of P †γ0P = +γ0, P †γiP = −γi with the usual P = γ0,

thus giving
[
−Epγ0 + γ · p− m

]
Puh(−Ep,p) = − [p̂ + m] ṽ?(p) = 0. While, the relations of the spinors vh(Ep,p) =

γ5uh(Ep,p) are well-known, it seems that the relations of the v− spinors of the positive energy to u− spinors of the
negative energy are frequently forgotten, ṽ?(p) = γ0uh(−Ep,p).
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Bargmann-Wightman-Wigner-type quantum field theory” in 1993). M. Markov wrote long ago two
Dirac equations with the opposite signs at the mass term [11].

[iγµ∂µ −m] Ψ1(x) = 0 , (22)
[iγµ∂µ + m] Ψ2(x) = 0 . (23)

In fact, he studied all properties of this relativistic quantum model (while he did not know yet the
quantum field theory in 1937). Next, he added and subtracted these equations:

iγµ∂µϕ(x)−mχ(x) = 0 , (24)
iγµ∂µχ(x)−mϕ(x) = 0 . (25)

Thus, ϕ and χ solutions can be presented as some superpositions of the Dirac 4-spinors u− and v−.
These equations, of course, can be identified with the equations for the Majorana-like λ− and ρ−,
which we presented in Ref. [15] on the basis of postulates [14]. Of course, the signs at the mass
terms depend on, how do we associate the positive- or negative- frequency solutions with λ and ρ.

iγµ∂µλS(x)−mρA(x) = 0 , (26)
iγµ∂µρA(x)−mλS(x) = 0 , (27)
iγµ∂µλA(x) + mρS(x) = 0 , (28)
iγµ∂µρS(x) + mλA(x) = 0 . (29)

Neither of them can be regarded as the Dirac equation. However, they can be written in the
8-component form as follows:

[iΓµ∂µ −m] Ψ(+)(x) = 0 , (30)
[iΓµ∂µ + m] Ψ(−)(x) = 0 , (31)

with

Ψ(+)(x) =
(

ρA(x)
λS(x)

)
,Ψ(−)(x) =

(
ρS(x)
λA(x)

)
, and Γµ =

(
0 γµ

γµ 0

)
. (32)

It is easy to find the corresponding projection operators, and the Feynman-Stueckelberg propagator.
This may just related to the spin-parity basis rotation (unitary transformations). However, in

the previous papers I explained: the connection with the Dirac spinors has been found [15, 16]. For
instance, 

λS
↑ (p)

λS
↓ (p)

λA
↑ (p)

λA
↓ (p)

 =
1
2


1 i −1 i
−i 1 −i −1
1 −i −1 −i
i 1 i −1




u+1/2(p)
u−1/2(p)
v+1/2(p)
v−1/2(p)

 , (33)

provided that the 4-spinors have the same physical dimension. Thus, we can see that the two 4-
spinor systems are connected by the unitary transformations, and this represents itself the rotation
of the spin-parity basis. However, it is usually assumed that the λ− and ρ− spinors describe the
neutral particles, meanwhile u− and v− spinors describe the charged particles. Kirchbach [16] found
the amplitudes for neutrinoless double beta decay (00νβ) in this scheme. It is obvious from (33)
that there are some additional terms comparing with the standard formulation.
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One can also re-write the above equations into the two-component forms. Thus, one obtains the
Feynman-Gell-Mann [17] equations. As Markov wrote himself, he was expecting “new physics” from
these equations. Barut and Ziino [12] proposed yet another model. They considered γ5 operator as
the operator of the charge conjugation. Thus, the charge-conjugated Dirac equation has the different
sign comparing with the ordinary formulation:

[iγµ∂µ + m]Ψc
BZ = 0 , (34)

and the so-defined charge conjugation applies to the whole system, fermion+electromagnetic field,
e → −e in the covariant derivative. The superpositions of the ΨBZ and Ψc

BZ also give us the
“doubled Dirac equation”, as the equations for λ− and ρ− spinors. The concept of the doubling of
the Fock space has been developed in the Ziino works (cf. [13, 18]) in the framework of the quantum
field theory. In their case the charge conjugate states are simultaneously the eigenstates of the
chirality. Next, it is interesting to note that for the Majorana-like field operators

ν
ML

(xµ) =
∫

d3p
(2 π)3

1
2Ep

∑
η

[
λS

η (pµ) aη(pµ) e− i p·x + λA
η (pµ) a†η(pµ) e+ i p·x]

. (35)

we have [
ν

ML

(xµ) + Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3
1

2Ep

∑
η

[(
iΘφ∗ η

L
(pµ)

0

)
aη(pµ)e−ip·x+

+
(

0
φη

L(pµ)

)
a†η(pµ)eip·x

]
, (36)[

ν
ML

(xµ)− Cν
ML †

(xµ)
]
/2 =

∫
d3p

(2π)3
1

2Ep

∑
η

[(
0

φη
L
(pµ)

)
aη(pµ)e−ip·x+

+
(
−iΘφ∗ η

L
(pµ)

0

)
a†η(pµ)eip·x

]
, (37)

which, thus, naturally lead to the Ziino-Barut scheme of massive chiral fields, Ref. [12].
Next, the relevant paper is ref. [19]. It is obvious to merge u(p) and v(p) spinors in one doublet

of “positive energy” and v− and u− spinors, in another doublet of “negative energy” , as Markov
and Fabbri did. However, for us it does not matter the previous notations and interactions in
those papers. The point of my paper is that both u(p0,p) and v(p0,p) contains contributions to
positive/negative energies, cf. [20].

4 The Conclusions.

The main points of my paper are: there are “negative-energy solutions” in that is previously con-
sidered as “positive-energy solutions” of relativistic wave equations, and vice versa. Their explicit
forms have been presented in the case of spin-1/2. Both algebraic equation Det(p̂ − m) = 0 and
Det(p̂ + m) = 0 for u− and v− 4-spinors have solutions with p0 = ±Ep = ±

√
p2 + m2. The same

is true for higher-spin equations. Meanwhile, every book applies the Dirac-Feynman-Stueckelberg
procedure for elimination of negative-energy solutions. The recent Ziino works (and, independently,
the articles of several other authors) show that the Fock space can be doubled. We re-consider
this possibility on the quantum-field level for both s = 1/2 and higher spin particles. Next, the
relations to the previous works have been found. For instance, the doubling of the Fock space and
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the corresponding solutions of the Dirac equation obtained additional mathematical bases in this
paper.

I appreciate discussions with participants of several recent Conferences, and referee recommen-
dations.
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