An Attempt to approach mathematically the Concept of Time-Crystals.

(15-11-2020).

Udo E. Steinemann,
Findeisen-Str,; 5/7,
71665 Vaihingen an der Enz,
Germany.
e-Mail: udo.steinemann@t-online.de

A. Abstract.

F. WILCZEK has published an article on the concept of time-crystals (please look into [1]). This article is to be understood as an attempt to drawn a picture mathematically, which approaches the contents of WILCZEK's article.

1. Introduction.

The concept of a crystal is mainly connected with two mayor properties:

- Symmetry and
- Spontaneous break of symmetry.

With regard to symmetry a certain class of transformations is essential:

- Transpositions are highlighted by individual increments of steps.

An idealized crystal linearly transposed by a multiple of the distance between its elements will preserve its layout beyond the transposition; but under this condition only. According to transpositions crystals are characterized as afflicted with reduced degrees of symmetry (in comparison with the symmetry of a continuum). The situation is similar to rotation-symmetry of square and cycle. In this respect the crystal's symmetry also is called broken in relation to that of continua. Because the degree of crystal-symmetry normally changes abruptly due to critical external influences (like temperature e.g.), the break is also called spontaneous.

- Spontaneous symmetry-breaks are decisive for crystals.

A symmetry-break occurs e.g. when a fluid or gas cools down and finally enters the crystal-state by a so-called phase-transition. Within this process the crystal will obtain a lower degree of symmetry as allowed by physical laws before this situation.

Crystals can be divided into two classes:

- Spatial crystals keep their symmetric properties in spatial transpositions and preserve them independently on elapsed time as long as this is compatible with the physical conditions.
- Time-crystals show their essential symmetric properties in space-time transpositions only.

In spatial crystals a spontaneous symmetry-break will occur, if from an energy point of view the new crystallization becomes more preferable. During a phase-transition energy will not be preserved. If the state of a lower energy-level breaks the symmetry of a crystal and a new crystallization has been settled, energy is again maintained and the captured state will exist as long as the actual situation does allow. This explains stability of a spatial crystal after a phase-transition. But this is still no longer valid for time-crystals. Here energy is preserved even in spontaneous symmetry-breaks and therefore an energy related measure to explain this kind of breaks is no longer suitable.
But there exists a more general conception appropriate to deal with spontaneous symmetry-breaks, which is also applicable for time-crystals.

- The reason why extended networks (connections of many parts) most often are tempted to resist a reorganisation and tries to keep its actual stability, based on the fact that most disordering influences act locally and long-range forces will them overrule.
- But material-states will not last forever, thus finally (sooner or later) a symmetry-break will occur and a new order will be established.

A network of parts may be identified as a time-crystal, if the following characteristics become apparent:
$1^{\wedge} 1$. The network's symmetry will only be realized in space-time, regularities considered in space alone may change fluently by observations at different moments in time.
$1^{\wedge} 2$. Most properties of the network are directly bounded to its regularities.
This is mainly extracted from the article of F. WILCZEK published in [1]. The following is to be understood as an attempt to approach the conceptual characteristics ($1^{\wedge} 1 . / 2$) of time-crystals by a picture mathematically drawn.

2. A Fusion of SIERPINSKI-Gasket and PASCAL-Triangle.

The following conception mainly based on a fusion of an IFS-developed SIERPINSKI-gasket and patterns according to divisibility of numbers in a PASCAL-triangle relative to primes. Both basic objects (gasket and triangle-patterns) will be merged to form a geometrical model, which is to be understood as a mathematical picture comparable with WILCZEK conception.

2.1. SIERPINSKI-Gasket.

Unit-square (Q) in a (u,v)-plane maybe specified by:
2.1^1. $\mathrm{Q}=\{(\mathrm{u}, \mathrm{v}) \mid[0 \leq \mathrm{u} \leq 1] \wedge[0 \leq \mathrm{v} \leq 1]\}$.

If contractions:
$\left.2.1^{\wedge} 2 . \quad \mathrm{w}_{\mathrm{a}_{e} \mathrm{~b}_{e}}=《\left(\left[\mathrm{u}+\mathrm{a}_{e}\right] / 2\right) \wedge\left(\left[\mathrm{v}+\mathrm{b}_{e}\right] / 2\right) \wedge\left(\mathrm{a}_{e}, \mathrm{~b}_{e} \in[0,1]\right) \wedge(e \in[0,1])\right\rangle$
are iteratively applied on (Q), one will obtain the following congruent sub-squares of (Q):

- $\left\langle\left[\mathrm{Q}_{\mathrm{a}_{n} \mathrm{~b}_{n}}=\mathrm{w}_{\mathrm{a}_{n} \mathrm{~b}_{n}}(\mathrm{Q})\right] \Rightarrow\left[\mathrm{Q}={ }_{\mathrm{a}_{n} \mathrm{~b}_{n}} \cup \mathrm{Q}_{\mathrm{a}_{n} \mathrm{~b}_{n}}\right]\right\rangle$
- $\left\langle\left[Q_{a_{1} a_{n} b_{1} b_{n}}=w_{a_{1} b_{1}}\left(Q_{a_{n} b_{n}}\right)\right] \Rightarrow\left[Q_{a_{n} b_{n}}={ }_{a_{1} b_{1}} \cup Q_{a_{1} a_{n} b_{1} b_{n}}\right] \Rightarrow\left[Q={ }_{a_{n} b_{n}} \cup\left(a_{1} b_{1} \cup Q_{a_{1} a_{n} b_{1} b_{n}}\right)\right]\right\rangle$

This will lead to the following pictures:

If (u) and (v) from Equation (2.1^1.) are expressed in binary extension by:
2.1^3. $\left\langle\mathrm{u}={ }_{(\mathrm{j}=1)} \Sigma^{(\mathrm{j}=\infty)}\left[\mathrm{a}_{\mathrm{j}} 2^{-\mathrm{j}}\right]\right\rangle \wedge\left\langle\mathrm{v}={ }_{(\mathrm{j}=1)} \Sigma^{(\mathrm{j}=\infty)}\left[\mathrm{b}_{\mathrm{j}} 2^{-\mathrm{j}}\right]\right\rangle \wedge\left\langle\mathrm{a}_{\mathrm{j}}, \mathrm{b}_{\mathrm{j}} \in\{0,1\}\right\rangle$
and Equation (2.1^2.) becomes restricted in the following way:

$$
\text { - } \mathrm{w}_{\mathrm{a}_{e} \mathrm{~b}_{e}}=《\left(\left[\mathrm{u}+\mathrm{a}_{e}\right] / 2\right) \wedge\left(\left[\mathrm{v}+\mathrm{b}_{e}\right] / 2\right) \wedge\left(\mathrm{a}_{e}, \mathrm{~b}_{e} \in\{0,1\}\right) \wedge(e \in\{0,1\}) \wedge\left(\mathrm{a}_{e}+\mathrm{b}_{e} \leq 1\right\rangle
$$

all sub-squares from set $\left\{\mathrm{Q}_{\mathrm{a}_{1} \mathrm{a}_{0} \mathrm{~b}_{1} \mathrm{~b}_{0}}\right\}$ in Figures (2.1^1.[a/b]) are excluded, where the addition of (a_{e}) and (b_{e}) cause at least one carry (KUMMER's carry condition). One will get instead of Figures (2.1^1.[a/b]):

These are the first (2) steps of an Iterated Function System (IFS) appropriate to create finally a 2 -adic structure of SIERPINSKI-gasket. Subsequently the patterns will be considered from more general point of view.

With unit-square (Q) in (u,v)-plane in Equation (2.1^1.) and a binary expansion in Equation (2.1^3.) one can provide a number-theoretical description of the SIERPINSKI-gasket (S):

- $\mathrm{S}=\left\{(\mathrm{u}, \mathrm{v}) \subset \mathrm{Q} \mid \exists \operatorname{expansions}\left\langle\left[\mathrm{u}=\left(0 . \mathrm{a}_{0} \mathrm{a}_{1} \ldots\right)_{\mathrm{p}=2}\right] \wedge\left[\mathrm{v}=\left(0 . \mathrm{b}_{0} \mathrm{~b}_{1} \ldots\right)_{\mathrm{p}=2}\right]\right\rangle \leftarrow\left\langle\left[\mathrm{a}_{e}+\mathrm{b}_{e} \leq 1\right] \leftarrow[e \in\{0,1,2 \ldots\}]\right\rangle\right\}$.

This can be expressed in IFS-form:

2.1~4. $\left.\mathrm{S}={ }_{{ }_{e}} \bigcup \mathrm{w}_{\mathrm{a}_{e} \mathrm{~b}_{e}}(\mathrm{~S})\right] \leftarrow\left\langle\left[\mathrm{a}_{e}, \mathrm{~b}_{e} \in\{0,1\}\right] \wedge\left[\mathrm{a}_{e}+\mathrm{b}_{e} \leq 1 \leftarrow e \in\{0,1\}\right]\right\}$.

The binary representation allows one to pursue, how the iteration of Equation (2.1~4.), applied to an arbitrary point in the square (Q), yields a sequence of points that tends closer and closer to the SIERPINSKI-gasket. If the maps $\left(\mathrm{w}_{00}\right)$, $\left(\mathrm{w}_{01}\right)$ and ($\left.\mathrm{w}_{10}\right)$ within IFS are applied again and again on $\left\langle(\mathrm{u} . \mathrm{v})=0 . \mathrm{a}_{1} \mathrm{a}_{2} \ldots, \mathrm{~b}_{1} \mathrm{~b}_{2} \ldots\right\rangle$ with arbitrary $\left(\mathrm{a}_{e \rightarrow \infty}\right)$ and $\left(\mathrm{b}_{e \rightarrow \infty}\right)$, points are obtained with coordinates, whose leading binary decimals will more and more satisfy the condition $\left(a_{e}+b_{e} \leq 1\right)$. Starting from $\left(A_{0}=Q\right)$ and running the IFS, one will generate the sequence:

- $\mathrm{A}_{x}=\mathrm{w}_{00}\left(\mathrm{~A}_{x-1}\right) \bigcup \mathrm{w}_{01}\left(\mathrm{~A}_{x-1}\right) \bigcup \mathrm{w}_{10}\left(\mathrm{~A}_{x-1}\right)$,
where the coordinates (\varkappa) of a point (A_{x}) satisfies $\left(\mathrm{a}_{x}+\mathrm{b}_{x} \leq 1\right)$ in the leading ($火$) binary decimals. Furthermore the sequence will tend towards the SIERPINSKI-gasket $\left(S=A_{\infty}\right)$. The first steps are shown in the next figure:

One will observe, that this exactly matches with Figures (2.1^2.[a./b.]) with a step-3 Figure (2.1^2.c.) in addition:

if the coordinates used in Figures (2.1^2.[a./b./c.]) are preceded by a decimal point. In this case the patterns found on the (2 by 2$)-,(4$ by 4$)-$ and (8 by 8)-grid would exactly match the steps $\left(\mathrm{A}_{x}\right)$ of the IFS. But introducing a decimal point in Figures (2.1^2.[a./b./c.]) means looking on a rescaled version of the PASCALtriangle.

2.2. PASCAL-Triangle.

The PASCAL-triangle is an arithmetic triangle, an triangular array of numbers composed of the coefficients obtained by expansion of the polynomial $(1+z)^{\kappa}$:

- $(1+z)^{0}=1$
$(1+z)^{1}=1+z$
$(1+z)^{2}=1+2 z+z^{2}$
$(1+z)^{3}=1+3 z+3 z^{2}+z^{3}$
.........
The Figure (2.2^1.a.) contains the coefficients for the (8) expansion-steps organized in the following triangularscheme:

The computation of the numbers in Figure (2.2^1.a) used the fact, that the entries in each row are determined by the entries of the previous row as demonstrated by Figure (2.2^1.b.).

- $(1+z)^{x}=a_{0}+a_{1} z+\ldots+a_{x} z^{x}$

$$
\begin{aligned}
(1+z)^{\varkappa+1} & =b_{0}+b_{1} z+\ldots+b_{\varkappa+1} z^{\varkappa+1}=(1+z)^{\chi}(1+z)=a_{0}+a_{1} z+\ldots+a_{\varkappa} z^{\varkappa}+a_{0} z+a_{1} z^{2}+\ldots+a_{\varkappa} z^{\varkappa+1} \\
& =a_{0}+\left(a_{0}+a_{1}\right) z+\ldots+\left(a_{\varkappa-1}+a_{\varkappa}\right) z^{\kappa}+a_{\varkappa} z^{\varkappa+1} \Rightarrow \\
{\left[b_{0}=a_{0}\right] } & \wedge\left[b_{1}=\left(a_{0}+a_{1}\right)\right] \wedge \ldots \wedge\left[b_{\varkappa}=\left(a_{0}+a_{1}\right)\right] \wedge\left[b_{\varkappa+1}=a_{\varkappa}\right]
\end{aligned}
$$

The major question is now, how one can find out whether or not the coefficients are divisible by a prime (p) in a direct non-recursive computation. A solution for the problem was found by E. E. KUMMER in 1852. In order to follow KUMMER's idea, it will be more convenient to transpose the PASCAL-triangle into a new coordinatesystem (n, k):

In the new coordinate-system at position (n, k) is now located a binomial coefficient with a value of:

- $\quad(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}=(\mathrm{n}+\mathrm{k})!/(\mathrm{n}!\cdot \mathrm{k}!)$.

In Figure (2.2^2.) entries of the triangle are coloured white or black depending on the fact whether or not the appropriate binomial coefficients are divisible by (2). In order to find a pattern-formation for a divisibility of the binomial coefficients with regard to any other prime, it is useful to start with the prime-factorization for an arbitrary integer (r):
2.2^1. $\mathrm{r}={ }_{(e=1)} \Pi^{(e=s)}\left[\mathrm{p}^{\tau_{e}}\right]$.

Herein primes (p_{e}) are different from each other and exponents (τ_{e}) are natural numbers. Subsequently one will take into consideration a set the following form:

- $\mathrm{P}(\mathrm{r})=\left\{(\mathrm{n}, \mathrm{k}) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is not divisible by r$\}$.

In order to understand the pattern-formation according to a certain (r), it is sufficient to consider a sub-set of the appropriate prime-power from Equation (2.2^1.):
$2.2^{\wedge} 2$. $\mathrm{P}\left(\mathrm{p}^{\top}\right)=\left\{(\mathrm{n}, \mathrm{k}) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is not divisible by $\left.\mathrm{p}^{\mathrm{T}}\right\}$.
KUMMER realized that the solution for the set is encoded in the addition of (n) and (k) in their p -adic representation. A p-adic representation of an integer (q) looks like:

- $q=a_{0}+a_{1} p+a_{2} p^{2}+\ldots+a_{m} p^{m} \Rightarrow q=\left(a_{m} a_{m-1} \ldots a_{1} a_{0}\right)_{p}$.

KUMMER observed now that the numbers of carries $c_{p}(n, k)$ in the just mentioned addition of (n) and (k) is decisive for a solution of Equation (2.2^2.). He formulated the following statement:

- If $\tau=c_{p}(n, k)=$ number of carries in p-adic addition of (n) and (k),
then one will obtain:
- $P\left(p^{\tau}\right)=\left\{(n, k)_{p} \wedge\left(\tau=c_{p}(\mathrm{n}, \mathrm{k})\right) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is divisible by prime-power p^{τ} but not by $\left.\mathrm{p}^{\tau+1}\right\}$.

2.3. Divisibility of Binomial-Coefficients by Primes.

The global pattern-formation in:

- $P(p)=\left\{(n, k) \mid(n+k)^{\wedge} k\right.$ is not divisible by $\left.p\right\}$
shall subsequently be formally described.
At first an appropriate IFS is to be constructed by considering the unit-square (Q) and subdividing it into (p^{2}) congruent sub-squares:
- $\mathrm{Q}_{\mathrm{a}, \mathrm{b}}$ with $\mathrm{a}, \mathrm{b} \in\{0,1,2, \ldots, \mathrm{p}-1\}$,
which are obtained by introducing corresponding contractions:
- $\left\langle\mathrm{Q}_{\mathrm{ab}}=\mathrm{w}_{\mathrm{ab}}(\mathrm{Q})\right\rangle \leftarrow\left\langle\mathrm{w}_{\mathrm{a}, \mathrm{b}}(\mathrm{u}, \mathrm{v})=([\mathrm{u}+\mathrm{a}] / \mathrm{p} \wedge[\mathrm{v}+\mathrm{b}] / \mathrm{p})\right\rangle$.

This is to be considered as a generalization of what had already been specified for the case ($\mathrm{p}=2$) in Figures (2.1^1.[a/b.]). A set of admissible transformations will be defined next by imposing the restriction:

- $\quad \mathrm{a}+\mathrm{b} \leq \mathrm{p}-1$.

This yields a total number of $\left(N=p(p+1)\right.$ contractions, each with a contraction-factor $\left(p^{-1}\right)$.
Additionally may be introduced:

- $\mathrm{W}_{\mathrm{p}}(\mathrm{A})={ }_{(\mathrm{a}+\mathrm{b} \leq \mathrm{p}-1)} \bigcup_{\mathrm{wab}}(\mathrm{A})$
corresponding to the (N) contractions, where (A) is any sub-set of the plane. With the initial set $\left(A_{n}=Q\right)$ one may start the iteration:
- $\left\langle\mathrm{A}_{x}=\mathrm{W}_{\mathrm{p}}\left(\mathrm{A}_{x-1}\right)\right\rangle \leftarrow\langle\varkappa=1,2, \ldots\rangle$
and Figure (2.3^1.) shows the first (2) steps for the choice $(p=3)$:

In order to keep track of the iteration, each of the $\left(p^{2}\right)$ sub-squares of (Q) is subdivided into (p^{2}) even smaller ones, and so on repeatedly. Having indexed the first subdivision of (Q) by $\left(Q_{a b}\right)$, one continues to label the subsquares of the second subdivision by $\left(\mathrm{Q}_{\mathrm{ab}, \mathrm{cd}}\right)$ and so on. For the example of ($\mathrm{p}=3$) from Figure (2.3^1.), the square $\mathrm{Q}_{10,12}$ is identified in the following way:

- The pair $(1,1)$, made from the leading digits in the index of $\mathrm{O}_{10,12}$ determine the centre-square in the first subdivision and the pair $(0,2)$ determines the upper left corner-square therein.

In a similar way the square $\left(\mathrm{Q}_{\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{0}}\right)$ is to be understood as a square of the $x-$ th generation, where the double p-adic addresses are given by the pair ($\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{0}$). This natural addressing-system helps to keep track of all iterations of W_{p}, e.g.:

- $\left\langle\mathrm{Q}_{\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{n}}=\mathrm{w}_{\mathrm{a}_{x-1} \ldots \mathrm{a}_{n}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{n}}(\mathrm{Q})\right\rangle \leftarrow\left\langle\mathrm{a}_{e}+\mathrm{b}_{e} \leq \mathrm{p}-1\right\rangle$.

In other words can be said, (A_{x}) is the collection of all those squares of the x-the subdivision of (Q) into ($\mathrm{p}^{2 \varkappa}$) sub-squares, whose addresses $\left(\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{0}\right)$ satisfy the condition $\left(\mathrm{a}_{e}+\mathrm{b}_{e} \leq \mathrm{p}-1\right)$, i.e.:
2.3^1. $\mathrm{A}_{x}={ }_{\left(\mathrm{a}_{e}+\mathrm{b}_{e} \leq \mathrm{p}-1\right)} \cup \mathrm{Q}_{\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{n}}$.

2.4. Rescaling the PASCAL-Triangle appropriatelv.

Now the sub-squares $\left(\mathrm{Q}_{\mathrm{a}_{x-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{x-1} \ldots \mathrm{~b}_{0}}\right)$ will be related to the entries of the PASCAL-triangle. In order to enable this, one has to generate first a geometric model of divisibility-pattern in the PASCAL-triangle. For this reason the first quadrant of the plane is equipped with a square-lattice in such a way, that each square of the lattice has side-length (1). Thus each square is indexed by the index-pair (n, k) and is called ($R_{n, k}$):

- $\mathrm{R}_{\mathrm{n}, \mathrm{k}}=\{(\mathrm{u}, \mathrm{v}) \mid[\mathrm{n} \leq \mathrm{u} \leq \mathrm{n}+1] \wedge[\mathrm{k} \leq \mathrm{v} \leq \mathrm{k}+1]\}$.

The geometrical model of $[P(p)]$ will be obtained by selecting all squares $\left(R_{n, k}\right)$ for which (p) does not divide $\left[(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right]$:

- $P(p)=\left\{R_{n, k} \mid(n+k)^{\wedge} k\right.$ is not divisible $\left.p\right\}$.

This infinite pattern will be related to the evolutions of Sections (2.1./2./3.), i.e. to the sequence of the patterns $\left(\mathrm{A}_{x}\right)$, each with a length of $\left(\mathrm{p}^{-x}\right)$ and whose union will finally result in (Q). In order to recognize the relation between $\left(\mathrm{A}_{x}\right)$ and $[\mathrm{P}(\mathrm{p})]$, the latter will be considered though a sequence of filters $\left(\left[0, \mathrm{p}^{x}\right] \times\left[0, \mathrm{p}^{x}\right]\right)$ of length $\left(\mathrm{p}^{x}\right)$. For $(e=1,2, \ldots)$ that part from the geometrical model $[\mathrm{P}(\mathrm{p})]$ is picked-up which falls in the corresponding filter:

- $\quad \mathrm{P}_{e}(\mathrm{p})=\mathrm{P}(\mathrm{p}) \cap\left(\left[0, \mathrm{p}^{e}\right] \times\left[0, \mathrm{p}^{e}\right]\right)$.

The next Figure (2.4~1.) display the filters $\left\langle P_{1}(p=3) \wedge P_{2}(p=3)\right\rangle$:

If one compares $\left[\mathrm{P}_{1}(\mathrm{p})\right]$ and $\left[\mathrm{P}_{2}(\mathrm{p})\right]$ from Figure (2.4^1.) with the patterns (A_{1}) and (A_{2}) from Figure (2.3^1.) one will find them to be identical, although $\left(\mathrm{A}_{1}\right)$ and $\left(\mathrm{A}_{2}\right)$ are in the unit-square (Q) while $\left[\mathrm{P}_{1}(\mathrm{p})\right]$ fit into a square of side-length (p) and $\left[\mathrm{P}_{2}(\mathrm{p})\right]$ into a square of side-length $\left(\mathrm{p}^{2}\right)$. In other words, during rescaling the pattern $\left[\mathrm{P}_{e}(\mathrm{p})\right]$ by a factor $\left(\mathrm{p}^{-e}\right)$ one will obtain an object $\left(\mathrm{S}_{e}\right)$, which is identical with $\left(\mathrm{A}_{e}\right)$:

- $\mathrm{A}_{e} \equiv \mathrm{~S}_{e}=\mathrm{p}^{-e} \cdot \mathrm{P}_{e}(\mathrm{p})$.

From IFS in Section (2.3.) it is known, that (A_{e}) is the collection of all those squares from e-th* subdivision of (Q) into ($\mathrm{p}^{2 e}$) sub-squares, whose addresses ($\mathrm{a}_{e-1} \ldots \mathrm{a}_{0}, \mathrm{~b}_{e-1} \ldots \mathrm{~b}_{0}$) satisfy the condition ($\mathrm{a}_{e}+\mathrm{b}_{e} \leq \mathrm{p}-1$). This collection for ($e \rightarrow \infty$) will converge to the attractor of the IFS and in the rescaled geometric models (S_{e}) under the same condition $(e \rightarrow \infty)$ will do the same. Therefore it became obvious, that the rescaled geometric models have a limitset, which represents the rescaled geometric model of PASCAL-triangle-pattern modulo (p), called $\mathrm{P}(\mathrm{p})$.

2.5. Pattern-Formations and fractal Dimensions of the grometric Models $P(p)$.

In Figure (2.5^1.) the geometric models $S(p)$ are shown, which result from running the IFS corresponding to $\mathrm{P}(\mathrm{p} \in\{2,3,5\})$:

The geometrical model S(p) in Figure (2.5^1.) are self-similar fractals with self-similarity-dimensions of:

	Self-Similarity Dimension
$\mathrm{S}(2)$	$\log \{3\} / \log \{2\} \approx 1.585$
$\mathrm{~S}(3)$	$\log \{6\} / \log \{3\} \approx 1.631$
$\mathrm{~S}(5)$	$\log \{15\} / \log \{5\} \approx 1.683$.

The black-pixel-patterns of $\mathrm{S}(\mathrm{p})$ are built according to the conditions:

	Black Pixels according to:
$\mathrm{S}(2)$	$\left\{(\mathrm{n}, \mathrm{k}) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is not divisible by 2$\}$
$\mathrm{S}(3)$	$\left\{(\mathrm{n}, \mathrm{k}) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is not divisible by 3$\}$
$\mathrm{S}(5)$	$\left\{(\mathrm{n}, \mathrm{k}) \mid(\mathrm{n}+\mathrm{k})^{\wedge} \mathrm{k}\right.$ is not divisible by 5$\}$

3. Conclusion.

All patterns of the geometric model are in line with (1^1.). This becomes obvious in case of a specific example (can be modified by certain details in order to confirm the previous statement in general):

- Considering the symmetry among binomial coefficients $\left[(n+k)^{\wedge} k\right]$ of $\left(k_{0} z^{0}+k_{1} z^{1}+\ldots+k_{n-1} z^{n-1}+k_{n} z^{n}\right)$ \langle from locations (n, k) in square-lattice ($n, k)\rangle$ under condition $P(p)=\left\{(n, k) \mid(n+k)^{\wedge} k\right.$ is not divisible by prime $=p\}$, one will notice, that the pixel-regularity realized in pattern of step ($n=j$), most often differs in some confusing way from regularities of other steps $(\mathrm{n} \neq \mathrm{j})$. The reason for this is, the situation resembles glances into space only. Only if all these single patterns - for $(\mathrm{n} \in \mathbb{N})$ - are put together into one common, all steps including pattern (similar to a look into space-time), the symmetry mentioned above will become obvious.

The following can be said about the geometric model in relation with ($\left.1^{\wedge} 2.\right)$:

- The symmetries of the patterns are completely determined by the divisibility $[(n+k) \wedge k]$ at locations (n, k) in square-lattice (n, k) relative to a prime p .
- A symmetry-break occurs only if the divisibility-condition changes. Thus stability of a pattern as its fractal dimension as well is only guaranteed by a certain divisibility-condition.

Looking all over the contents of chapter (1.) one will notice further characteristics of the geometric model:

- Local similarities exist, in Figure (2,5^1.) e.g. between $\bmod (3)$ and $\bmod (5)$, but they are not capable to neither determine nor destroy the overall-symmetries of the patterns. They are overruled by the large-scale relations in form of overall divisibility-conditions. The latter are decisive and responsible alone for the stabilities of the patterns. The divisibility expressed in a pattern is too resistant for being disturbed by weaker local regularities.
- No preference exists among patterns of the geometric model. The patterns are not subjected to any further kind of overriding principles (like highest/lowest energy-level, highest/lowest order-level,...).

These characteristics of the geometric model may let it become suitable as an appropriate mathematical picture corresponding to the contents of chapter (1.).

4. References.

[1] F. Wilczek: Quantensysteme Zeitkristalle, Spektrum der Wissenschaft, 6.2020.
[2] H. O. Pleitgen, Chaos and Fractals, New Frontiers of Science, Springer 1992.
H. Jurgens, D. Saupe:
[2] U.E. Steinemann:
Phase-Transition means: Fractal invariant in Renormalizations mediates Transitions between Manifolds of different Topologies., http://vixra.org/2001.0569.

