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A. Abstruct

F. WILCZEK has published an article on the concept of time*crystals (please look into [1]). This article is tr: be
understood as an attempt to drawn a picture mathematically, which approaches the contents of WILCZEK's
article.
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7. Introduction.

The concept of a crystal is mainly connected with two mayor properties:

o Symmetry and

o Spontaneous break of symmetry.

With regard to symmetry a certain class of transformations is essential:

o Transpositions are highlighted by individual increments of steps.

An idealized crystal linearly transposed bv a multiple of the distance between its elements will preserve its layout
beyond the transposition; but under this condition only. According to transpositions crystals are characterized as
afflicterl with reduced degrees of symmetry (in cornparison with the symmetry of a continuum). The situation is
similar to rotation-symmetry of square and cycle. In this respect the crystal's symmetry also is called broken in
relation to that of continua. Because the degree of crystal-symmetry normally changes abruptlv due to critical
external influences (like temperature e.g.), the break is also called spontaneous.

r Spontaneous symmetry-breaks are decisive for crystals.

A symmetry-break occurs e.g. when a fluid or gas cools down and finally enters the crystal-state by a so-called
phase-transition. Within this process the crystal will obtain a lower degree of symmetry as allowed by physical
laws before this situation.

Crystals can be divided into two classes:

r Spatial crystals keep their symmetric properties in spatial transpositions and preserve them independently on
elapsed time as long as this is compatible with the physical conditions.

o Time-crystals show their essential symmetric properties in space-time transpositions only.

In spatial crystals a spontaneous symmetry-break will occur, if from an energy point of view the new
crystallization becomes more preferable. During a phase-transition energy will not be preserved. If the state of a
lower energy-level breaks the symmetry of a crystal and a new crystallization has been settied, energy is again
maintained and the captured state will exist as long as the actual situation does allow. This explains stability of a
spatial crystal after a phase-transition. But this is still no longer valid for time-crystals. Here energy is
preserved even in spontaneous symmetry-breaks and therefore an energy related measure to explain this kind of
breaks is no longer suitable.
But there exists a more general conception appropriate to deal with spontaneous symmetry-breaks, which is also
applicable for time-crystals.

o The reason why extended networks (connections of many parts) most often are tempted to resist a
reorganisation and tries to keep its actual stability, based on the fact that most disordering influences act
locally and long-range forces will them overrule.

o But material-states will not last forever, thus finally (sooner or later) a symmetry-break will occur and a new
order will be established.

A network of parts may be identified irs a time-crystal, if the following characteristics become apparent:

1^1. The network's symmetry will only be realized in space-time, regularities considered in space alone may
change fluently by observations at different moments in time.

1^2. Most properties of the network are directly bounded to its regularities.

This is mainly extracted from the article of F. WILCZEK published in [1]. The following is to be understood as
an attempt to approach the conceptual characteristics (1^1./2.) of time-crystals by a picture mathematically
drawn.
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2. A Fusion of SIERPINSKI-Gushq| and PASCAL-Trisnele.

The following conception mainly based on a fusion of an IFS-developed SIERPINSKI-gasket and patterns
according to divisibility of numbers in a PASCAL-triangle relative to primes. Both basic objects (gasket and
triangle-pa,tterns) will be merged to form a geometrical model, which is to be understood as a mathematical
picture comparable with WILCZEK conception.

2. 1. SIE kPINSKI-Gusket.

Unit-square (Q) in a (u,v)-plane maybe specified by:

2.1^1. q= {(u,v)l [0 <u<1] 
^ 

[0 <v<1]].

If contractions:

2.L^2. w*"bo = (([u+a.]/z) n(lv+bul/z) n (a.,b. € [0,1]) A (e € [0,1])»

are iteratively applied on (Q), one will obtain the following congruent sub-squares of (Q):

' ([Qu,6" = w.nrn(Q)] + [Q = anunUQanrn])

' ([Qa1a6b1bn=wa,b,(Qan6n)] + [Qu"t, =a,b,LJQu,anb,bn] =+ [Q =rnbnLJ(a,b,UQu,u.nt,bn)])

This will lead to the following pictures:
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If (u) and (v) from Equation (2.1^1.) are expressed in binary extension by:

2.t^3. (u = i,=r;rfi=*)1a,2-ii1 A (v = 6:ryr(i=-)1b,2*jl) A (a,,b, e {0,1i)

and Eqrration (2.1^2.) becomes restricted in the following way:

. w."b" = (([u+ar]12) n (lv+b"ll2) n (a",b. e {0,1}) A (e €{0,U) n (a"+b" < 1),

all sub-squares from set {Qu,raobruo} in Figures (2.1^1.[a/b]) are excluded, where the addition of (a.) and (bu)
cause at least one carry (KIJMMER's carry condition). One will get instead of Figures (2.1^1.[a/b]):
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Figure 2.7^2.a. Fisure 2.L^2.b.
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These are the first (2) steps of an Iterated Function System (IFS) appropriate to create finally a 2-adic stmcture
of SIERPINSKI-gasket. Subsequently the patterns will be considered from more generai point of view.

With unit-square (Q) in (u,v)-plane in Equation (2.1^1.) and a binary expansion in Equation (2.1^3.) one can
provide a number-theoretical description of the SIERPINSKI-gasket (S):

. 5={(u,v) CQI lexpansions([u=(0.a6ar,..)o=rlA [v=(0.bsb1...)r=J) <-([a.*bs S 1] - [e e {0,1,2....}])}.

This can be expressed in IFS-fbrm:

2.1^4. S={.Uw."r,,(S)l *([ru,b. € {0,1}]n [a"+b. j 1- € € {0,1}]}.

The binary representation allows one to pursue, how the iteration of Equation (2.1^4.), applied to an arbitrary
point in the square (Q), yields a sequence of points that tends closer and closer to the SIERPINSKI-gasket. If the
maps (w66), (wsi) and (wis) within IFS are applied again and again on ((u.v) = 0.a1a2...,b1b2...) with arbitrary
(."**) and (b"**), points are obtained with coordinates, whose leading binary decimals will more and more
satisfy the condition (a.+b. < 1). Starting from (Ao = Q) and running the IFS, one will generate the sequence:

r Ar:woo(Ar-r)U-ot(Ar-t)Uwro(Ar-r),

where the coordinates (:<) of a point (Ar) satisfies (ar*b, < 1) in the leading (z) binary decimals. Furthermore
the sequence will tend towards the SIERPINSKi-gasket (S = A-). The first steps are shown in the next figure:
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One will observe, that this exactly matches with Figures (2.1^2.1a. /b.]) with a step-3 Figure (2.1^2.c.) in
addition:
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Figure 2.1^2.c.

if the coordinates used in Figures (2.1^2.1a./b./c.l) are preceded by a decimal point. In this case the patterns
found on the (2by 2)-, (aby a)- and (8 by 8)-grid would exactly match the steps (Ar) of the IFS. But
introducing a decimal point in Figures (2.1^2.la.lb./c.]) means looking on a rescaled version of the PASCAL-
triangle.
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2.2. PASCAL-Triansle.

The PASCAL-triangle is an arithmetic triangle, an triangular array of numbers composed of the coefficients

obtained by expansion of the polynomial (I+z)x:

o (1+z)o = 1

(l+z)t = 1*z
(t+z)z = I+22+zz
(1+z)3 = L+3,1322+23

The Figure (2.2^1.a.) contains the coefficients for the (8) expansion-steps organized in the following triangular-
scheme:
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FiEure 2.2^L.a. Figure 2.2^L.b.

The computation of the numbers in Figure (2.2^1.a) used the fact, that the entries in each row are determined by
the entries of the previous row as demonstrated by Figure (2.2^1.b.).

o (L+z)" = ao+atz+...*q-zn
(1+z)"+r = bo*brz*.. .*bu*rz'*r = (L+z)"(\+z) = ao+aü*...* u^zn+aoz +a122+...+uur'*'

= ao*(ao*a )z+...+(a r*r+au)2" +arz'*l +
lbo =ao] A [b1 = (as+ar)] A ... A [b,= (as+ar)] n [b,n*, = sr1.

The major question is now, how one can find out whether or not the coefficients are divisible by a prime (p) in a
direct non-recursive computation. A solution for the problern was found by E, E. KUMMER in 1852. In order to
follow KUMMER's idea, it will be more convenient to transpose the PASCAL-triangle into a new coordinate-
system (n,k):

;o123456

2.2^2.

In the new coordinate-system at position (n,k) is now located a binomial coefficient with a value of:

o (n+k)^k = (n+k)!/(n!.k!).
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In Figure (2.2^2.) entries of the triangle are coloured white or black depending on the fact whether or not the
appropriate binomial coefficients are divisible by (2). In order to find a pattern-forrnation for a divisibility of the
binomial coefficients with regard to any other prime, it is useful to start with the prime-factorization for an
arbitrary integer (r):

Z.Z^L. r = 1u=r;f-f(":')[p""{.

Herein primes (p.) are different from each other and exponents (r.) are natural numbers. Subsequently one will
take into consideration a set the following forrn:

. P(r) = {(n,k)l(n+k)^k is not divisible by r}.

In order to understand the pattern-formation according to a certain (r), it is sufficient to consider a sub-set of
the appropriate prime-power from Equation (2.2^1.):

2.2^2. P(p') = {(",k)l (n+k)^k is not divisible by p"}.

KUMMER realized that the solution for the set is encoded in the addition of (n) and (k) in their p-adic
representation. A p*adic representation of an integer (q) iooks like:

a q = a0+a1p+a2p2+..,+a-p* =+ g = (a*a--r.., arao)p .

KIIMMER observed now that the numbers of carries co(n,k) in the just mentioned addition of (n) and (k) is
decisive for a solution of Equation (2.2^2.).I{e formulated the following statement:

. If r = co(n,k) = number of carries in p-adic addition of (n) and (k),

then one will obtain:

o P(p') = {(n,k)p A (r = co(n,k))l(n+k)^k is divisible by prime-power p'but no! by p'*t}.

2.3. Divisibilitv of Binomial-Coefficients bv Primes.

The global pattern-formation in:

o P(p) = {(n,k)l(n+k)^k is not divisible by p}

shall subsequently be formally described.
At first an appropriate IFS is to be constructed by considering the unit-square (Q) and subdividing it into (p2)

congruent sub-squares:

a Qa,b with a,b € {0,1,2,...,p-1},

which are obtained by introducing corresponding contractions:

o (Qor, = w.r,(Q)) *- (w.,s(u,v; = ([u+a]/t n [v+b]/p) ).

This is to be considered as a generalization of what had already been specified for the case (p = 2) in Figures
(2.1^l.falb.l). A set of admissible transformations will be defined next by imposing the restriction:

. a+b < p-1.

This yields a total number of (N = p(p+1) contractions, each with a contraction-factor (p-1).
Additionally may be introduced:

. wp(A) = (a+r<p-r;L-Jw.r,(A)

corresponding to the (N) contractions, where (A) is any sub-set of the plane. With the initial set (A" - Q) one
may start the iteration:
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and Figure (2.3^ 1.) shows the first (2) steps for the choice (p - a),

In order to keep track of the iteration, each of the (p2) sub-squares of (Q) is subdivided into (p2) even smaller
ones, and so on repeatedly. Having indexed the first subdivision of (Q) by (Q.r,), one continues to label the sub-
squares of the second subdivision by (Q^r,,"a) and so on. For the example of (p :31 from Figure (2.3^1.), the square

Qro,rz is identified in the following way:

. The pair (1,1), made from the leading digits in the index of Oro,r, determine the centre -square in the first
subdivision and the pair (0,2) determines the upper left corner-square therein.

In a similar way the square (Qr,_r...",,b,_r...bo) is to be understood as a square of the z-th generation, where the
double p-adic addresses are given by the pair (a,-1...ae,br-1...bs). This natural addressing-system helps to keep
track of all iterations of Wo , e.g.:

' 
(Q.,.-,...an,b.,.-i.,.bo = w.,*,....n,b.-,...bn(Q)) <- (aufb. < p-1)'

In other words can be said, (Ar) is the collection of all those squares of the x-the subdivision of (Q) into (p2*)
sub-squares, whose addresses (ar-1...as,br-r...bo) satisfy the condition (a.*b" < p-1), i.e.:

2.3^1. 
^r= ia"+b"< p-rlUQ*."-,...ao,b..-r...b0.

i.e;_Ss.ä§.gq#gf §.gr:"{:&ä§_fl,:ÄJ.;-&tl_rc#s jg.*#Hq:q.}?Jiujg{:-dJ,

Now the sub-square" (Qu,_r....0,b*_1...b0) will be related to the entries of the PASCAL-triangle. In order to enable
this, one has to generate first a geometric model of divisibiiity-pattern in the PASCAl-triangle. For this reason
the first quadrant of the pla,ne is equipped with a square-lattice in such a way, that each square of the lattice has
side-length (1). Thus each square is indexed by the index*pair (n,k) and is called (R".u)t

I Rn.r= {(u,v)l[n<u<n+1] A [k<v<k+1]].

The geometrical model of [P(p)] will be obtained by selecting all squares (Rn.u) for which (p) does not divide
[(n+k)^k]:

. P(p) ={R".r.l(n+k)^k is not divisible p}.

This infinite pattern will be related to the evolutions of Sections (2.1.12. /3.), i.e. to the sequence of the patterns
(Ar), each with a length of (p-") and whose union will finally result i" (Q). In order to recognize the relation
between (Ar) and [P(p)], the latter will be considered though a sequence of filters ([0, p"]x[0, p"]) of length (p").
For (e :7,2,...) that part from the geometrical model [P(p)] is picked*up which falls in the corresponding filter:
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. P"(p) = P(p)[l([O, p']x[0, p']).

The next Figure (2.4^L.) display the filters (Pr(p = 3) A P2(p = 3)):

2'.)

20

12

11

10

02

0l

00

00 01 02 10 11 12 2A 21 22

Figure (2.4^L-

If one compares [Pi(p)] and [P2(p)] from Figure (2.4^L.) with the patterns (A1) and (A2) from Figure (2.3^1.) one

will find them to be identical, although (A1) and (A2) are in the unit-square (Q) while [Pr(p) ]fit into a square of
side-length (p) and [Pz(p) ] into a square of side-length (p'). In other words, during rescaling the pattern [P.(p)]
by a factor (p-') one will obtairr an object (Su), which is identical with (A"):

. A. = S" = p-'.pe(p).

From IFS in Section (2.3.) it is known, that (A.) is the collection of all those squares from e-th subdivision of (Q)
into (p2') sub-squares, whose addresses (a.-1...a6,b.-r...bo) satisfy the condition (ao+b" < p-1). This collection
for (e -+m) will converge to the attractor of the IFS and in the rescaled geometric models (Su) under the same
condition (e*m) will do the same. Therefore it became obvious, that the rescaled geometric models have a limit-
set, which represents the rescaled geometric model of PASCAl-triangle-pattern modulo (p), called P(p).

2.5. Pattern-Formations and fractal Dimensions of the srometric Models P(d.

In Figure (2.5^1,) the geometric models S(p) are shown, which result from running the IFS corresponding to
P(p € {2,3,5}):

The geometrical model S(p) in Figure (2.5^1.) are self-similar fractals with self-similarity-dimensions of:
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Self-Similarity Dimension
§r 2\ log' 3 /los 2) p 1.585
§r 3) log 6 /los 3) * 1.631
S( 5) log 151/1oe{5} = 1.683.

The black-pixel*patterns of S(p) are truilt according to the conditions:

Black Pixels according to:
s(2) {(n,k)l (n+k}^k is not divisible by 2}
s(3) {(n,k)l (n+k)^k is not divisitrle by 3}
s(5) {(n,k)l (n+k)^k is not divisible by 5}
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3. Conclusion.

All patterns of the geometric model are in line with ( 1^ 1. ) . This becomes obvious in case of a specific example (can
be modified by certain details in order to confirm the previous statement in general):

' Considering the symmetry among binomial coefficients t(n+k)^k] of (koz0+ krzl+...+k,,-rz"-1+k,2")
(from locations (n,k) in square-lattice (n,k)) under condition P(p) = {(n,k)l(n+k)^k is not divisible by
prime - p), one will notice, that the pixel-regula.rity realized in pattern of step (n = j), most often differs in
some confusing way from regularities of other steps (" * j). The reason for this is, the situation resembles
glances into space only. Onlv if all these single patterns - for (n € N) - are put together into one common, all
steps including pattern (similar to a look into sprrce-time), the symmetry mentioned above will become
obvious.

The following can be said about the geometric model in relation with (1^2.):

o The symmetries of the patterns are completely determined by the divisibility [(n+k)^k] at locations (n,k) in
square-lattice (n,k) relative to a prime p.

r A syrnmetry-break occurs only if the divisibility-condition changes. Thus stability of a pattern as its fractal
dimension as well is only guaranteed by a certain divisibility-condition.

Looking all over the contents of chapter (1.) one will notice further clnracteristics of the geometric model:

o Local similarities exist, in Figure (2,5^1.) e.g. between mod(3 ) and mod(5), but they are not capable to
neither determine nor destroy the overall-symmetries of the patterns. They are overruled by the large-scale
relations in form of overall divisibility-conditions. The latter are decisive and responsible alone for the
stabilities of the patterns. The divisibility expressed in a pattern is too resistant for being disturbed by weaker
local regularities.

o No preference exists among patterns of the geometric model. The patterns are not subjected to any further
kind of overriding principles (like highest/lowest energy-level, highest/lowest order-level,...).

These characteristics of the geometric model may let it become suitable as an appropriate mathema,tical picture
corresponding to the contents of chapter (1.).

I
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