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Abstract

In this paper, we discuss in brief the most common wave equations in quantum mechanics and some recent
development in wave mechanics. We also present two new quantum wave mechanics equations based on the
Compton momentum. We have good reasons to think that the standard momentum is a mathematical derivative
of the more fundamental Compton momentum. This will hopefully simplify interpretations of quantum mechanics
significantly, our new relativistic wave equations look promising, but need further investigations on what they
predict. Still, we feel it is important for the physics community to be aware of this way of looking at quantum
mechanics in new light. This is not in conflict with existing equations; instead this is in addition to the collection
of existing wave equations.
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1 Standard momentum and the de Broglie wave

The relativistic de Broglie wave [1, 2| is given by
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where h is the Planck constant, v = and v is the velocity of the mass. An important note is that the de
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Broglie wave is not mathematically defined for a rest-mass particle, as setting v = 0 means we are dividing by zero.

In addition, if we let v be close to zero, then the de Broglie wave converges towards infinity. Next we solve the de
Broglie relation with respect to momentum; this gives

p=muy =1 (2)
b
This means that the momentum is not defined for a rest-mass particle, since A, is not defined for a rest-mass
particle. This is somewhat new, as modern physics directly and indirectly assumes that the momentum is simply
zero when v = 0. For any v > 0, the formula gives the correct momentum, but again for a rest-mass particle, the
standard momentum is not defined.

It seems this has passed the discussion among physicists. We think the likely reason is that the standard
momentum was suggested long before the relativistic momentum and the de Broglie matter wave was conceived.
The idea that momentum is mass times velocity was suggested in 1721 by John Jennings [3]. Jennings said that
momentum is the quantity of matter multiplied by the velocity, which is the standard momentum: p = muv, which
holds when v << ¢. However, we will claim it is not valid for v = 0. The momentum suggested by Jennings came
long before the development of relativity theory. So, the relativistic momentum p = muv~y was probably derived first
by Einstein in 1905.

The de Broglie wave was a hypothesis set out by de Broglie in 1923/1924. As it had been shown that light has
a particle-wave duality, de Broglie then speculated that matter had the same characteristics, so he assumed the
matter wave was given by A\, = & = m}fw' That is, the de Broglie wave was derived from the momentum. The fact
that something was understood later does not mean that is less fundamental; on the contrary, since we live so far
from the quantum world in our everyday lives, physics has mostly developed from the top down. Therefore, we




have come up with rules and formulas for macroscopic objects and observations first, then later understood their
connection to the particle and the quantum worlds. So, once the quantum world is established, we can just as well
derive such things as momentum from there. The point is that the momentum, from a quantum perspective, must
be given by the formula 2 and we have shown that this means that neither the de Broglie wave nor the standard
momentum formula are valid when v = 0. As we will see, this is very important for quantum physics, as all the
quantum wave equations of modern physics will be impacted.

1.1 The Compton wave and the new Compton momentum

Around the same time as de Broglie introduced the hypothesis of his matter wave, Compton [4] calculated and

indirectly measured what today is known as the Compton wave. The relativistic Compton wave of an electron is
: 1

given by

h
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First of all, here we see there are no issues with v = 0, as this just means that v = —-L = = L = = 1. That is,
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the Compton wave, unlike the de Broglie wave, is mathematically well defined for any velocity of v < ¢. See also

how to derive the Compton wave for any mass without knowledge of h [7].
Next, if we follow a similar approach to the one we used for the de Broglie wave, we get

. h
p:mcf}/:x (4)

where A here is the Compton wavelength rather than the de Broglie wavelength as in standard momentum, when
derived /understood from the quantum entities.

This is what we will call the Compton momentum and it is a new type of momentum recently introduced by
Haug [5]. Unlike the standard momentum, this momentum is well defined for v = 0 as well, since the Compton
wavelength A is well defined for v = 0. Also it does not have strange properties, such as going towards infinity when
v is close to zero, see for example [8]. The Compton wave is always on the scale of the atomic quantum realm (very
short compared to anything microscopic).

Further, it is important to note that we can always find the de Broglie wave from the Compton wave; we have
Ay = AL, So, if we know the Compton wave, we can calculate the de Broglie wave. The same is true with the
standard momentum (the de Broglie momentum); it can always be calculated from the Compton momentum as
p=Dpe.

Wily should there be two wavelengths linked to matter? And why should we have two types of momentum?
We will suggest that the standard momentum and the de Broglie wave only are derivatives of the true matter wave
and the true and deeper physical momentum, namely what we call Compton momentum. If we should connect the
standard energy definition to the Compton momentum, we simply get

E =pc (5)

That is, the total energy is equal to the Compton momentum multiplied by the speed of light; this is a new
(additional) relativistic energy momentum relation and means we can also derive a new quantum mechanical wave
equation from this new relation, which will be the relation between energy and the Compton momentum.

It is worth mentioning that the standard momentum is never observed directly — it is a mathematical construct.
First, assume we have a brass ball; we can measure its relative weight relative to one kg and then find its mass
relative to one kg. Second, we can put this brass ball in motion. We can then measure its velocity, but we cannot
directly observe mwv. What we can observe is the impact from its kinetic energy. We can drop a brass ball, for
example, and measure its velocity just before it hit a brick of "soft” clay. Most of the kinetic energy will then be
used to make an indent in the clay. Gravesande [9] did this and confirmed that experimentally the kinetic energy
was a function of v? and not just of v. At that time, the question of whether the kinetic energy was a function of v
or v2 had been a debate among leading physicists for many years. And at least when v << ¢, the kinetic energy is a
function of v2. So, indeed we can measure the kinetic energy of a moving body, and the mass of a body easily when
it is at rest, and we can easily measure the velocity of a body, but we cannot measure muv; this is a mathematical
entity, that is, however, linked to real observable entities, so it can be very useful. What about our new Compton
momentum? Can it be observed more directly? It should be possible because, as we have explained here, we think
the standard momentum is a derivative of the true (more real) momentum.

T Actually this is a relativistic extension of Compton?s work, see [5, 6].



First, looking at our new Compton momentum: when v = 0, we get

p=mcy =mc (6)

In other words, we get a rest-mass momentum that is mec. This is not easy to observe, as it is an embedded mo-
mentum, a rest-mass momentum. This may sound strange, as we are not used to thinking of rest-mass momentum,
and some may even say that this is impossible, as momentum is related to something that is moving. However, that
is the standard momentum that indeed only is defined for something that is moving. This is nothing more strange
than rest-mass energy. If the rest-mass momentum is p,, = me, then we must also have what we can call a kinetic
momentum, and this must be

Pk =P — Pr = mey —me (7)

This formula holds for any v < ¢. It would require advanced laboratory equipment to test this when v is significantly
close to the speed of light ¢. However, when v << ¢ what do we expect to observe? When v << ¢, we can
approximate the formula above with the first term of a Taylor expansion, and we then get

- 1 0?2
Pr = im? (8)

That is, our Compton momentum is a function of v? and not of v, so it is kinetic energy divided by c¢. Our Compton
momentum is exactly the same function of v as kinetic energy, but it is simply our standard energy definition
divided by ¢, a significant finding. Our Compton momentum is observable through measurements of impacts, while
standard momentum is not, as it is a function of v and not v2. This supports our view that our newly defined
Compton momentum is the real momentum and that the standard momentum is a derivative of this momentum.
While the reader may not wish to take this for granted, it will be helpful to be open to the thought that there can
be a momentum (or another term could be chosen and defined) that is linked to the Compton wavelength, and next
we will look at the Relativistic Energy Momentum Relation in more detail.

2 Relativistic Energy Momentum Relation

The standard relativistic energy momentum of Einstein [10] is given by

E? = p?c? + m2ct (9)

the standard momentum and this relation have played a central role in developing the well-known quantum me-
chanical wave equations. If our analysis is correct and the standard momentum (de Broglie momentum) not is
valid for rest-mass particles and further, if it is a mathematical derivative of the Compton momentum, then any
quantum mechanical wave equation derived from it will be a wave equation linked to a derivative and all such
quantum mechanical wave equations will probably also not be valid for rest-mass particles.

Our new relativistic energy momentum relation is

E =pc (10)

When deriving a quantum mechanical wave equation consistent with this, the equation should also be valid for
rest-mass particles, and should also be more directly linked to the depth of the reality, and therefore will likely be
easier to interpret.

Next, we will shortly discuss a series of well-known quantum mechanical wave equations and also show a few
new quantum mechanical wave equations.

3 Two New Relativistic Wave Equations

We have that

E=pc (11)

This can be rewritten as

E = pc — mc® + me* = pyc + mc? (12)



mc
_v2

2

wave equation, using energy operator: ih%, and kinetic Compton momentum operator: —ihV, we get

where p;, = —mec, in other words, the kinetic Compton momentum. From this we get the following quantum

ihgr = (=iheV + me®) ¥ (13)
This we can rewrite as
oY . me>
ZE = (—’LCV + h) w
oY . c
ZE = (—ZCV + i) P (14)

This is relativistic quantum wave equation? consisting of a first order PDE where V is the operator linked to
the kinetic Compton momentum. It has nice properties, as time and spatial dimensions are on the same order (first
order), unlike the Schgdinger equation where the time and spatial dimension are on a different order in terms of
derivatives. It is well known that the Schodinger equation, therefore, is not Lorentz invariant. Our new relativistic
wave equation, which is fully rooted in the Compton wave, is, on the other hand, also mathematically Lorentz
invariant.

Our new relativistic quantum equation has quite a different plane wave solution than the Klein—Gordon and
Schrédinger equations, but at first glance it looks exactly the same:

UJ _ ei(kwfwt) (15)

But in our theory, we should have k = 27”, where ) is the relativistic Compton wavelength and not the de Broglie
wavelength, as in standard wave mechanics. We can rewrite write the plane wave solution as

ei<%I7%t) (16)

where py, is the total kinetic Compton momentum, as defined earlier. So, our quantum wave function is rooted
in the Compton wavelength instead of the de Broglie wavelength. For the formality of it, we look at the momentum
and energy operators and see that they are correctly specified

00 _ ik (% 0)
ox h
This means the momentum operator must be

(17)

pr = —ihV- (18)

and for energy we have

oY —iE i(Ba—2t)
- - 1
ot~ h ¢ (19)
and this gives us a time operator of
A 0
E =ih— 20
iho, (20)

The momentum and energy operators are the same as under standard quantum mechanics.

2We actually put out a rough working draft paper with this equation in December 28, 2018 [11], and also we did not look into it
much before we adjusted the working paper a few days later to center on a wave equation with focus on total Compton momentum
rather than kinetic, something we soon will return to later. The wave equation we put out at that time likely had a sign error due to
the fact that we had the wrong sign on the energy operator; the equation we presented then was —i%—f = (—icV + ) P
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3.1 Wave equation based on operator on total Compton momentum

We also get a relativistic quantum wave equation linked to the total momentum instead of the kinetic momentum,
this is because

E=pic+ mc? = Pc (21)
This gives

z‘h%‘f +iheV =0 (22)

which can be simplified to (see also [5] that basically gives the same wave equation, but we suspect with a sign
error.)
oy
— +cVy =0 23
5 TCVY (23)
That is, we have two new quantum mechanical wave equations. Also in this case it has quite a different plane
wave solution than the Klein—-Gordon and Schrédinger equations, but at first glance it looks exactly the same:

,17[} — ei(k‘szt) (24)
2m

However, here k = 57, where A is the relativistic Compton wavelength and not the de Broglie wavelength, as in
standard wave mechanics. We can rewrite the plane wave solution as

ci(fz—F1) (25)

where p is the total Compton momentum, as defined earlier. So, our quantum wave function is rooted in the
Compton wavelength instead of the de Broglie wavelength. For the formality of it, we look at the momentum and
energy operators and see that they are correctly specified

O WP i(2a—By)
% p— h e h h (26)

This means the momentum operator must be

p = —ihV- (27)
and for energy we have
W _ B (o)
v FL™ R 28
ot h (28)
and this gives us a time operator of
- 9]
E=ih— 29
iha (29)

That is, the momentum and energy operators are the same as are used in already established quantum mechanics.

4 The Klein—Gordon Equation

Another well-known relativistic quantum equation is the Klein—-Gordon equation, which is given by

E? = p2c? + m2c! (30)
where p is the relativistic (de Broglie) momentum. When replacing F and p with their energy, ih%7 and momentum
operator, ihV, we get the following wave equation

2
i“‘h“‘%% — 2R3V —mity = 0
82
—hQﬁ + AV —micty = 0
1 0%y m2c?



The last line is how the Klein—-Gordon equation is often presented. Since the reduced Compton wave is given

by A = %, we can replace m;‘"‘z in the equation above with 5\—12 and we get
1 0%y 1
2 —=0 32
c? Ot? v )\Qw (32)

The Klein—Gordon equation is indirectly liked to the de Broglie momentum (standard momentum), p = mv~y,
which we claim is a derivative of the real momentum, the Compton momentum. The Klein—-Gordon equation is
therefore unnecessarily complex. Yet, it cannot be simplified further if we want a relativistic wave equation from
the de Broglie momentum. The formula is likely not valid for a rest-mass particle, since it is derived from the de
Broglie momentum.

The Klein—Gordon equation is often written as

O+ ) =0 (33)
where O is the d’Alembert operator: [0 = C%g—; — V2 and p = o= 5\15 Do not let unfamiliar notation stop

you from exploring the mysteries of quantum mechanics.

The Klein—Gordon equation is only valid for spin zero particles, and the only particle detected it is valid for
is therefore the Higgs boson. The Klein-Gordon equation has unwanted properties such as it allows negative
probabilities, which is what motivated Dirac to come up with another relativistic wave equation.

5 The Schrodinger Equation

We have

E = Ep+md
E = mc*y—mc* +mc?

(34)
when v << ¢ we can approximate the kinetic energy from the first term of a Taylor series expansion with Ej, ~ %va,

this gives

E~122
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E zpfm + mc? (35)
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If we now use a momentum operator of —iAV and an energy operator of ih%, we can write this as a wave

equation, something giving us the Schédinger [12] equation

oy (—z’2h2

2 2
ihoy o \v —&—mc)w (36)

This we can rewrite further

52
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Note that when rewritten this way, there is no Planck constant in the Schrédinger equation in this rewritten
form. Also note that the imaginary number does not go away as it does in the Klein—-Gordon equation. More
important is that the Schrodinger equation does not treat the time (energy) on equal footing with the spatial



dimension (momentum). This is because we have first, versus second-order derivatives in the same equation. This
is unlike the Klein—Gordon equation, where everything is on second order, and also unlike the Dirac equation, where
all is first order. Our new wave equations are both first order and therefore time and the spatial dimension of the
same order.

6 Dirac Equation

The Klein—Gordon equation was not suitable to model the electron, as it only allows for zero spin, while electrons
are % spin fermions. Also, the fact that Klein—Gordon allows such things as negative probabilities pushed Dirac
[13] out to develop a new relativistic wave equation, that is given by

Oy > 2
) E— (Ciz;la’ern_ﬁmC)w:O (38)
this can be rewritten as
Oy e c
Za* <h;anpnﬂ5\>¢0 (39)

So, there is a Compton wave embedded in the Dirac equation, but the momentum operator is operating on the
standard momentum that is linked to the de Broglie wave.

7 Summary

Table 1 shows a summary of three well-known wave equations in quantum mechanics, as well as two new ones. The
three older equations are all rooted in standard momentum and therefore the de Broglie wavelength. In addition,
these equations contain the Compton wavelength embedded in their last term, but the momentum they are deriving
their equations from involve the de Broglie equivalent momentum. The standard momentum is not defined for v = 0,
that is to say, for rest-mass particles, so we suggest that these three traditional wave equations likely not are valid
for rest-mass particles. In addition, these three wave equations are, to a large degree, modeling mathematical
derivatives of reality rather than the deeper reality because the de Broglie momentum is a derivative of the more
fundamental Compton momentum. The two new wave equations are linked directly to the Compton momentum;
therefore, they are simpler and also hold for v = 0.

Wave equations: Momentum operator on : | Comments :
Klein—Gordon (Spin 0 ) 0%82712/; — V%) + m;f =0 de Broglie momentum Relativistic
deeper level %;f — AV + ;\—zw =0
Dirac (Spin 1/2) ih%—f - (c Zf’:n anp, — ﬁmcz) =0 de Broglie momentum Relativistic
deeper level i%—lé’ — (% Z?:n P, — ﬂ%) =0
Schrédinger i%—f ~ (ﬁVQ + mTCQ) P de Broglie momentum Non-relativistic
deeper level i%—f ~ (’265‘ V2 + %) P
Haug-1: (Spin ?) i%—f = <—icV + thQ) P Kinetic Compton momentum Relativistic
deeper level i%—f = (—icV + %) P
Haug-2: (Spin ?7) %% + V=0 Total Compton momentum Relativistic

Table 1: The table shows a summary of three well-known quantum mechanical wave equations derived from standard
momentum (de Broglie) momentum, and two new quantum mechanical wave equations derived from the Compton
momentum.

e The Schrédinger, Klein—Gordon, and Dirac equations all use a momentum operator on the standard momen-
tum. The standard momentum is, at a quantum level, actually directly linked to the de Broglie wave. The de
Broglie wave is not mathematically defined for a rest-mass particle. Second, the de Broglie wave and also the



standard momentum are just mathematical derivatives of the likely much more fundamental Compton wave
and what we call Compton momentum. In other words, in the traditional equations, we are taking partial
derivatives of mathematical functions of reality, not of the deepest entities. This makes the Schrodinger,
Klein—Gordon, and Dirac equations all very hard to interpret at a deeper level. Of course, they are “easy”
enough to interpret at the surface inside the exotic zoo of terminology that has evolved in physics and quantum
physics, as long as the analysis of modern physics does not go too deep. Lots of work over decades have gone
into analyzing these three equations, while we are just at the doorsteps of the two new relativistic quantum
equations rooted in the Compton wave.

e We have strong reasons to believe that our new quantum mechanical wave equations are better suited to
understanding certain aspects of the depth of reality. They are mathematically correct for v = 0, and they
are more directly linked to the depth of reality, as we are modeling from the Compton momentum directly
instead of the derivative of it, which is the de Broglie momentum and its corresponding de Broglie wave. Also,
our equations are both relativistic and always of first order. This could even help to answer such questions as
if quantum mechanics is consistent with Minkowski space-time, something that according to several leading
physicists not is clear, see for example [14].

e There is no Planck constant in the any of the wave equations except for the Dirac equation that we will soon
comment on separately. The apparent Planck constant in the Schrodinger and Klein—Gordon all cancel out
against a Planck constant that is hidden in the mass. What we obtain is the Compton wavelength in the
Schrédinger and Klein—Gordon equations, or more precisely, the Compton frequency is also embedded in these
equations. One might think that such a line of thought is wrong, if one believed that the Planck constant is
needed to find the Compton wavelength. However, this is not the case; even from the Compton 1923 paper it
is clear that one can find the Compton wavelength without any knowledge of the Planck constant. Actually,
one can find the Compton wave for any mass without any knowledge of any fundamental constant, see [7].
In the Dirac equation, the Planck constant will indirectly cancel out as well, as the momentum operator on
the wave function returns the momentum, and the momentum embedded contains the Planck constant in
the mass will then cancel out against the Planck constant we see here. In our new wave equation from the
Compton momentum, the Planck constant also cancels out.

8 Conclusion

We have introduced two new relativistic wave equations that seems fully valid. They are rooted in what
we can call the Compton momentum, which is linked to the Compton wavelength rather than the standard
momentum, which is linked to the de Broglie wavelength. We claim the standard momentum is not defined
for rest-mass particles, and also that it is likely just a derivative of the more physical Compton momentum.
This has likely made the interpretation of results from today?s wave mechanics extraordinarily difficult, and
we suspect one therefore has not yet reached the bottom of the quantum world. We have reasons to think
that our new relativistic wave equations can give us fresh and additional insights, but we leave this up to
further studies by ourselves and others to develop the ideas more fully. A series of tasks lie ahead to test this,
in order to determine for which particles these two relativistic wave equations are valid, and what can they
predict that we can test and check their validity against. Still, even if much work is left to do, at this stage we
feel it is important for the physics community to be aware of this additional and alternative path for deriving
quantum wave equations, as this may help to improve our understanding of the quantum world in the near
future.
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