The Periodic Table of the Stable Isotopes 1-83
George R. Briggs
Abstract: In MHCE8S theory the stable isotopes are of special interest. Data from Wikipedia. 1st duplication is for sulfur.

1 hydrogen	1, 2	duplications density	0.07
2 helium	3, 4	$\mathrm{g} / \mathrm{cm}^{\wedge} 3$	0.14
3 lithium	6, 7		0.53
4 berylium	5, 9		1.85
5 boron	10, 11		2.08
6 carbon	12, 13		2.27
7 nitrogen	14, 15		0.80
8 oxygen	16, 17, 18		1.14
9 fluorine	19	abundances	1.70
10 neon	20, 21, 22	90.4\%, 0.27, 9.25	1.21
11 sodium	23		0.96
12 magnesium	24, 25, 26	79.0\%, 10.0, 11.0,	1.73
13 aluminium	27		2.70
14 silicon	28, 29, 30	92.2\%, 4.7, 3.1	2.33
15 phosphorus	31		2.34
16 sulfur	32, 33, 34, 36	94.99\%, 0.75, 4.25, 0.01	1.84
17 chlorine	35, 37		1.56
18 argon	36, 38, 40	0.33\%, 0.06, 99.6	1.39
19 potassium	39,41		0.86
20 calcium 40,	,42,43,44,46 9	96.9\%,0.65,0.135,209,0.004	1.55
21 scandium	45		2.98
22 titanium 46,	, 47, 48, 49, 50	8.2\%, 7.4, 73.7, 5.4, 5.18	4.51
23 vanadium	51		6.11
24 chromium	50, 52, 53, 54	4.34\%, 83.7, 9.50, 2.36	7.19
25 manganese	55		7.21
26 iron	54, 56, 57,58	5.85\%, 91.75, 2.12, 0.28	7.87
27 cobalt	59		8.90

28 nickel 58, 60, 61,62, 64 68.08\%, 26.2,1.14,3.63,0.93 8.90
The first duplicated stable isotope is for sulfur - argon. Now sulfur has the most allotropes of any element (30) and our bodies contain several pounds of it. Argon gas $\mathbf{4 0}$ is a very useful refrigerant and a much - used display agent. Calcium 40 is abundant and important for growing plants and bones. Titanium 48 is a light but strong metal of growing importance. Chromium 52 is anti-corrosive and very handsome as metal plating. Iron 56 has long been one of modern (1000 years) mankind's most useful metals, largely replacing bronze. Nickel 58 is a handsome metal plating similar to chromium but less harmful to the environment to refine. Nickel 60 and 62 are also important as the two strongest binding nuclei known.

Take unduplicated stable isotopes, find sum for 28 nickel 50 tin: $(1 \times 8)+(2 \times 8)+(3 \times 4)+(5 \times 1)=8+8+4+1=\mathbf{2 1}$. Now 50 tin- 28 nickel periodic table entrants (22) include technetium which is very useful medically for its radioactive action (no gamma ray production) yet is considered to be stable. nature apparenly is alerting us to this fact- see page 3.
unduplicated stable isotopes

28 nickel	$\mathbf{5 8}, 60,61,62, \mathbf{6 4}$	3	8.90
29 copper	63,65	2	8.96
30 zinc	$\mathbf{6 4}, 66,67,68, \mathbf{7 0}$	3	7.14
31 gallium	$\mathbf{6 9}, 71$	2	5.91
32 germanium	$\mathbf{7 0}, 72,73, \mathbf{7 4}$	2	5.32
33 arsenic	75	1	5.72
34 selenium	$\mathbf{7 4}, 76,77,78, \mathbf{8 0}$	3	4.28
35 bromine	79,81	2	3.10
36 krpton	$\mathbf{8 0}, 82,83,84,86$	1	2.41
37 rubdium	$\mathbf{8 3}$		3.53
38 strontium	$\mathbf{8 4}, \mathbf{8 6}, 87.88$	2	2.64

39 yttrium	89	1	4.47
40 zirconium	$90,91,92,94$	2	6.52
41 niobium	93	1	8.57
42 molybdenum	$\mathbf{9 2 , 9 4}, 95,96,97,98$	2	10.28
43 technetium	count as stable		11
44 ruthenium	96, 98, $99,100,101,102,104$	3	12.45
45 rhodium	103	1	12.41
46 palladium	102, 104, 105, 106, 108, 110	1	12.02
47 silver	107,109	2	12.49
48 cadmium	$\mathbf{1 0 6}, \mathbf{1 0 8 , 1 1 0 , 1 1 1 , 1 1 2 , 1 1 4}$	1	8.65
49 indium	113	1	7.31

Take unduplcated stable isotopes 50 tin - 82 lead: $(16 \times 1)+(6 \times 2)+(4 \times 3)+(5 \times 4)+(1 \times 5)=16+6+4+5+1$ $=32$. Now lead $82-\operatorname{tin} 50=32$ also. Nature now evidently agrees that promethium is best considered as a stable element since it has no medically useful radioactivity and is very rare also.

65 terbium	159	18.23
66 dysprosium	m 156,158,160,161,162,163,164	28.54
67 holmium	165	18.79
68 erbium	162, 164, 166, 167, 168, 170	29.06
69 thulium	169	19.32
70 ytterbium	168, 170, 171, 172, 173, 174, 176	46.90
71 lutetium	175	19.84
72 hafnium	176, 177, 178, 179, 180	313.31
73 tantalum	180, 181	116.69
74 tungsten	182, 183, 184, 186	319.3
75 rhenium	185	121.02
76 osmium	184, 187, 188, 189, 190, 192	422.59
77 iridium	191, 193	222.56
78 platinum	192, 194, 195, 196, 198	221.45
79 gold	197	119.30
80 mercury 1	196,198,199,200,201,202,203,204	413.53
81 thallium	203, 205	111.85
82 lead	204, 206, 207, 208	311.31

83 bismuth $0\left(2 \times 10^{\wedge} 19 \mathrm{yr}\right)$ counts as stable but it is weakly radioactive
84 polonium 0 unstable without a doubt
Also stable isotopes not duplicated for atomic nos. 28-82= $50+4$. now 50 is also the atomic number of tin, so useful in forming the alloy bronze which led to the the rise of the civilization of greece. 4 also indicates the number of genome types every person carries and the number of cyclic universes which have ocurred and most importantly the number by which the critical value of Hubble's constant exceeds the actual value reached (see my ViXra \#96 1905.0606). Lastly, we wish to point out technetium's need for classifiction change is being signalled to us by its near-maximum density vs. $1 / 2$ that of osmium (similar action to that of 82 lead).

