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Abstract

For more than hundred years, it has been assumed that one needs to know the Newton gravitational constant
G, the Planck constant h̄, and the speed of light c to find the Planck length. Here we demonstrate that the Planck
length can be found without any knowledge of G, h̄, or c, simply by observing the change in the frequency of a
laser beam in a gravity field at two altitudes. When this is done, we also show that the speed of light (gravity)
easily can be extracted from any observable gravity phenomena. Further, we show that all observable gravity
phenomena can be predicted using just these two constants, in addition to one variable that is dependent on
the size of the gravity mass and the distance from the center of the gravity object. This lies in contrast to
the standard theory, which holds that we need the three constants Max Planck suggested were the important
universal constants, namely G, h̄, and c; in that formulation, we also need a variable for the mass size, and
the radius. Based on our new findings, we get both a reduction in the number of constants required and a
simplification of understanding gravity that is directly linked to the Planck scale.

We discuss how this has a number of important implications that could even constitute a breakthrough in
unifying quantum mechanics with gravity. Our analysis strongly indicates that standard physics uses two di↵erent
mass definitions without being actively aware of it. The standard kg mass is used in all non-gravitational physics.
Apparently, we are using the same mass in gravity, but we claim that the more complete mass is hidden in the
multiplication of G and M . Based on this view, we will see that only two universal constants are needed, namely
c and lp, to do all gravity predictions compared to the G, h, and c in the standard view of physics. In order to
unify gravity with quantum mechanics, we need to use this “embedded” mass definition from gravity, which also
impacts the rest of physics.

Since 1922, a series of physicists have thought that the Planck length would play a major role in making
progress in the understanding of gravity, particularly in the hope of unifying quantum mechanics with gravity.
Although there have been a series of attempts to incorporate the Planck length in quantum gravity, little
theoretical progress has been accomplished. However, with this recent discovery, we have reasons to think that
a piece of the puzzle has emerged. We will continue our analysis and welcome other researchers to scrutinize our
findings over time before drawing final conclusions.

Key Words: Planck length, Planck units, gravity, quantum gravity.

1 Introduction

The idea that fundamental units exist goes back at least to Stoney [1], who suggested in 1883 that there existed
some fundamental natural units, which he derived from elementary charge, together with the speed of light and
the Newton gravitational constant. These are known today as the Stoney units. It is fair to say that the Stoney
units were overtaken by the units that Max Planck [2, 3] introduced in 1899 and 1906. Max Planck assumed there
were three important universal constants, namely the Newton gravitational constant G, the Planck constant h̄, and
the speed of light c. Based on dimensional analysis, Planck calculated what he thought were a fundamental length

lp =
q

Gh̄

c3
, time tp =

q
Gh̄

c5
, mass mp =

q
h̄c

G
, and energy Ep =

q
h̄c5

G
(or Planck temperature EpkB , where kB is

the Boltzmann constant). Standard physics, therefore, assumes that one must know the three universal constants
G, h̄, and c to find or more precisely calculate the Planck units. We will strongly challenge that view here. We [4]
have recently shown that the Planck length can be found without any knowledge of G and h, and we go one step
forward and show that the Planck length can be found without any prior knowledge of G, h, and c. We will show
that this leads to an ability to extract the speed of light (gravity?) from any gravitational phenomena without any
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prior knowledge of G, h, and c. From the speed of gravity cgw and the Planck length alone, we can again predict
all observable gravity phenomena. This gives new insight about the interpretation of the Planck length and the
Planck scale in relation to gravity. We will claim that detecting any gravity phenomena is detecting the Planck
scale; this also contrasts with standard theory.

It is also useful to have a short historical background on the history of the Planck lengths relation to gravity
before we show how we can find it without G, h̄, and c. In 1916, Einstein suggested that to move forward in
the understanding of gravity, one had to develop a quantum gravity theory, but he did not link it to the Planck
length at that time. In 1922, Eddington1 [5] was likely the first to claim that the Planck length had to play an
important role in advancing our understanding of quantum gravity. Actually, the claims of Planck and Eddington
that the Planck length (and other Planck units) could play an important role in gaining deeper insights in physics
were ridiculed by other famous physicists at that time, Bridgman [6] is one example, but he was not alone in his
skepticism. For a long time, there was little interest in the Planck units in relation to gravity. In fact, several
decades after Einstein pointed out the necessity of a quantum-gravitational theory in 1916, there was not much
interest in exploring quantum gravity either, although one of the reasons for its neglect was because there were so
many other interesting areas for research at that time, see [7] for more about this period.

The consensus among physicists working on quantum gravity theory today is that there must be a connection to
the Planck length. There is also a generally accepted notion that the Planck length represents the shortest possible
length, see [8, 9], for example. In quantum gravity theory, one predicts that there are Lorentz symmetry violations
at the Planck scale. One of the challenges is that the Planck energy is very high, far above what can be achieved in
the Large Hadron Collider. However, several physicists have suggested that one could look for vague e↵ects from
the Planck scale that hypothetically also spillover at lower energies, but despite extensive search for evidence of this
occurring, there have been no findings so far [10]. In spite of the view that the Planck scale has not been detected
and may not be in the foreseeable future, we are still not even close to be able to build accelerators that give energy
scales close to the Planck scale. Some could claim the situation is similar to the ether theory of the past century; if
the ether cannot be detected, why not simply abandon the ether (as Einstein did in 1905). However, our findings in
this paper strongly support that the Planck length, and therefore the Planck scale are the very essence of gravity,
together with the speed of gravity that we can extract from gravity observations with no prior knowledge of h, G,
or c.

2 Mass and the Compton Wavelength

One important element for our work will be to understand the Compton wavelength in relation to all masses, not
only the electron. In 1923, Compton [11] introduced the Compton wave for a rest-mass; it is given by the following
formula

� =
h

mc
(1)

where h is the Planck constant, and c is the speed of light in vacuum; this is a well-tested formula in relation to
electrons. However, we will claim the formula is valid for any mass, and will discuss that in greater detail here.
Solving Formula 1 with respect to the mass, we get

m =
h

�

1

c
=

h̄

�̄

1

c
(2)

That is, any mass in terms of kg can be described by this formula if we know its Compton wavelength, the Planck
constant, and the speed of light. It is worth paying attention to the fact that only the Compton wavelength will
be di↵erent for di↵erent masses. When we are only interested in the mass in terms of kg, we are not concerned
about properties such as charge, but only about a way to describe the mass size. Some will likely protest here
and claim that only elementary particles can have a Compton wavelength and that the Compton formula therefore
cannot hold for any mass. We agree that likely only elementary particles such as electrons have a physical Compton
wavelength, but larger masses consist of many elementary particles, so there must be a way to add the Compton
waves from elementary particles in a composite mass such that it is consistent with other parts of physics. The
Compton wave from elementary particles making up a larger mass can be added the following way

� =
1

1
�1

+ 1
�2

+ 1
�3

+ · · ·+ 1
�N

(3)

1Who was the first to confirm the GR prediction of gravitational light bending experimentally.
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For many this may be unfamiliar territory, but it leads to the same standard aggregation rule of smaller masses
into a larger mass, m = m1 +m2 +m3. In other words, we have

m = m1 +m2 +m3 (4)

h̄

�

1

c
=

h̄

�̄1

1

c
+

h̄

�̄1

1

c
+

h̄

�̄1

1

c

h̄

1
1
�1

+ 1
�2

+ 1
�3

1

c
=

h̄

�̄1

1

c
+

h̄

�̄1

1

c
+

h̄

�̄1

1

c
(5)

This mean that the Compton wave from a large mass simply represents the aggregate of the Compton waves
from the masses making up the larger mass, and Formulas 1 and 2 are therefore valid for all masses. We are fully
aware that any mass larger than the Planck mass then will have a Compton wavelength shorter than the Planck
length. We will claim that no Compton wavelength that is shorter than the Planck length can exist, but there
is no conflict here, as the Compton wavelengths of larger objects are compositions of many Compton wavelengths
that follows the addition rule of formula 3. That is, elementary particles still cannot have a Compton wavelength
shorter than the Planck length, so this means masses larger than a Planck mass must consist of more than one
elementary particle. That a mass is smaller than a Planck mass naturally does not mean it only consists of one
elementary particle, as the proton, for example, is known to consist of several elementary particles, so our theory is
fully consistent with standard theory in this respect.

We can even find the Compton wave from a larger mass without knowing the Planck constant. In order to do
this, we will start by finding the Compton wavelength of an electron. This we can do from Compton scattering,
where one shoot photons at an electron and measures the wavelength of the electron before and after; based on
this, we can find the Compton wavelength of the electron

�1 � �2 =
h

mc
(1� cos ✓)

�1 � �2 =
h

h

�e

1
c
c
(1� cos ✓)

�1 � �2 = �e(1� cos ✓)

�e =
�1 � �2

1� cos ✓
(6)

That is, we need only knowledge of the photon’s wavelength before and after the electron hit to find the electron’s
Compton wavelength. We do not need to know the Planck constant, or the electron mass to find the electron’s
Compton wavelength. Next we can find the Compton wavelength of a proton without knowing its mass or knowing
the Planck constant by using a cyclotron. The angular cyclotron velocity is given by

! =
v

r
=

qB

m
(7)

Since electrons and protons have the same charge, the cyclotron ratio is equal to their mass ratio, we have

!P

!e

=
qB

mP

qB

me

=
me

mP

=
�P

�e

(8)

If we know the cyclotron frequency of the electron and the proton in addition to the Compton wavelength of the
electron, then iwe know Compton wavelength of the proton. The following papers [12, 13] used cyclotron resonance
experiments to find the proton to electron mass ratio, !P

!e
= �e

�P
= mP

me
; And they found it is about 1836.15247.

What is important to understand at this stage is that we can find the Compton wavelengths of electrons and
protons without any knowledge of the Planck constant. This also means that we can find the Compton wavelength
of any larger mass, as it must consist of many protons. So, if we can count the number of protons in a mass, then
we know its Compton wavelength without having to know its kg mass or the Planck constant. Most atoms also
consist of neutrons, but they have almost the same mass as a proton, so we can treat them as protons for simplicity.
The Compton wavelength of the large mass will be an aggregated Compton wavelength given by formula 3. The
important takeaway is that we can find the Compton wavelength of any mass without any knowledge of the Planck
constant. This will play a key role when we want to find the Planck length from red-shift.
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To find the Compton wavelength of the Earth, we could first find the Compton wavelength of an electron by
Compton scattering. Next we could find the Compton wavelength of a proton by a cyclotron. We could then count
the number of protons in the Earth. Theoretically, this is “easily” possible, but in practice it is impossible due
to the enormous resources it would require. Luckily, the Compton wavelength is also proportional to gravitational
acceleration. In a Cavendish [14] apparatus, we can find the gravitational acceleration between the small spheres
and the larger spheres through the following formula (see Appendix A for full derivation)

g =
L4⇡2

✓

T 2
(9)

where L is the distance between the small balls, ✓ is the measured angle, and T is the measured oscillation period.
Even a small Cavendish apparatus can do this accurately today. Unlike when, for example, we are using a Cavendish
apparatus to find G, we need no knowledge of the Planck constant here; why this is the case will become clear
later on. Picture 1 shows a modern Cavendish apparatus, where old invented mechanics are combined with fine
electronics to measure the angle and oscillation period very accurately; these are then feed directly into a computer
with a USB cable. The g we extract here is the gravitational acceleration from the large lead ball for the distance R
to the center of the small lead ball. Later in this article it will be shown that we are not even indirectly dependent
on G here. Further, the ratio of the reduced Compton wavelengths of di↵erent objects are proportional to their
gravitational acceleration fields in the following way

g1R
2
1

g2R
2
=

GM1

R
2
1
R

2
1

GM2

R
2
2
R

2
2

=
M1

M2
=

h̄

�̄1

1
c

h̄

�̄2

1
c

=
�̄2

�̄1
(10)

This means that to find the Compton wavelength of the Earth, we “only” need to count the number of protons
in the large lead ball, as we then will have the Compton wavelength of the large lead ball by aggregating the
Compton wavelengths of the protons, that we again obtained from the cyclotron, measuring the Compton wave
of the electron first. Now all we require for obtaining the Compton wavelength of the Earth is to measure the
gravitational acceleration field of the Earth. Naturally, it is a formidable task to count the number of atoms, even
in a half kg size lead ball or silicon crystal ball, but this is basically what one has worked on recently in silicon
crystal spheres, to get a more precise definition of the kilogram, and we understand this method is linked to counting
atoms in a very uniform medium2 [15, 16]. Even though it is challenging, it is not impossible. It is easy to think,
albeit mistakenly, that we need G here, as we normally have g = GM

r2
, but that is to predict g when one knows the

mass in kg as well as G. Here we simply measure g in a Cavendish apparatus, as well as from an object we drop
on the surface on the Earth: none of these methods require knowledge of G or M , and we will explain exactly why
later in this paper.

Normally, it is the de Broglie [17, 18] wave that has been linked to matter in theoretical work, and less so the
Compton wavelength. The de Broglie wave is �b =

h

mv�
, where � = 1/

p
1� v2/c2. It is not mathematically defined

for a rest-mass particle v = 0, as this would involve dividing by zero. However, one could try to argue that due to
Heisenberg’s [19, 20] uncertainty principle, a mass can never stand still; as we let v converge to 0 the de Broglie
wave converges to infinity. Several physicists have interpreted this as meaning that the de Broglie wavelength is
infinite when v = 0 (or v converge to zero), see, for example, [21]. To have a particle that has a matter wave that
spreads out infinitely sounds very strange. The Compton wavelength, on the other hand, is always well-defined for
rest-mass particles, and also for any mass that has length at what we can call subatomic length scales, while the
de Broglie wavelength easily has macroscopic and even close to infinite lengths at low velocities. Such waves have
never been observed, but are predicted from the de Broglie matter wave formulation. Interestingly, the de Broglie
wave can interpreted as simply a mathematical derivative of the Compton wave, where we always have �b = �

c

v
.

We will claim there is no need for two types of matter waves, and that the Compton wave is the more important of
the two, since it always is well-defined; this is discussed in greater detail by Haug [22]. What is important here is
that we can find the Compton wave from masses without knowing the Planck constant, as this is a key to not being
dependent on the Planck constant to later find the Planck length. One does not need to agree on our interpretation
of the de Broglie wave, but it is evident that one can express all rest-masses in kg from the Compton wave as
m = h̄

�̄

1
c
, if one does not accept this, we would be interested in seeing a counter-example to disprove our claims.

2We are not experts on silicon spheres and whether or not one is able to count the atoms within them without relying on the
Planck constant and the speed of light, but we mention this to illustrate the idea that counting atoms in macroscopic objects is indeed
something that several areas of physics are involved with currently.
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3 Measuring the Planck Length without Relying on Knowledge of Any
Constant

The standard gravitational red-shift is given by

Z =

q
1� rs

RLq
1� rs

Rh

� 1 =

q
1� 2gL

RLc2q
1� 2gh

Rhc
2

� 1 (11)

where rs is the Schwarzschild radius and Z is the observed gravitational red-shift from a laser beam sent from
radius Rh to radius RL. That is, RL and Rh are the distance from the center of the Earth from two altitudes
where the measurements take place (the sender frequency and receiver frequency), where RL < Rh. Further gh

and gL are the gravitational acceleration at these altitudes. Both the radiuses and the gravitational acceleration
fields we can measure with no knowledge of G, h, and c. Gravitational red-shift in a weak gravitational field (the
Earth) was confirmed by 1959 by the well-known Pound-Rebka [23] experiment, and have been repeated. In a weak
gravitational field where rs

Rh
<< 1, we can approximate this very well by using the first term of a Taylor series

expansion, this gives

Z ⇡
1� 1

2
gL

RLc2

1� 1
2

gh

Rhc
2

� 1 (12)

Solved with respect to c gives (see Appendix B for a detailed derivation)

c ⇡
r

gLRL + gLRLZ � ghRh

Z
(13)

Or the exact solution that also holds for a strong gravitational field is

c =

p
gLRLZ

2 + 2gLRLZ + gLRL � 2ghRhp
Z2 + 2Z

(14)

Further, from Newton theory we have that the orbital velocity is given by

vo =

r
µ

r
(15)

where µ = GM is the gravitational parameter. If we solve the Planck length formula,lp =
q

Gh̄

c3
with respect to

G we get G =
l
2
pc

3

h̄
. The mass in kg we have shown can be described as m = h̄

�̄

1
c
. This means we can rewrite the

gravitational parameter as

µ = GM =
l
2
p
c
3

h̄
⇥ h̄

�̄

1

c
= c

2 l
2
p

�̄
(16)

Inputing this in the orbital velocity formula, we get

vo =

s
c2l2

p

�̄R
= clp

r
1

�̄R
(17)

solved with respect to lp gives

lp =
vo

c

p
�̄R (18)

Next we replace the speed of light (gravity) with c =
p

gLRLZ2+2gLRLZ+gLRL�2ghRhp
Z2+2Z
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lp =
vop

gLRLZ2+2gLRLZ+gLRL�2ghRhp
Z2+2Z

p
RL�̄E

lp =

p
gLRL

p
Z2 + 2Zp

gLRLZ
2 + 2gLRLZ + gLRL � 2ghRh

p
RL�̄E

lp =

p
RL�̄E

p
Z2 + 2Zq

Z2 + 2Z + 1� 2 gh

gL

Rh
RL

lp =

p
RL�̄E(Z2 + 2Z)q

Z2 + 2Z + 1� 2RL
Rh

(19)

That is, the Planck length can be found from simply measuring the frequency of a laser beam at two altitudes,
as this gives Z, and also we need to know the reduced Compton wavelength of the Earth �̄E , that both can be
found without any knowledge of G or the Planck constant or c. We are, from a single beam of light in a gravity
field, finding both the speed of light and the Planck length, a rather remarkable feat. We will soon see that these
are the only two constants required to predict any observable gravity phenomena.

Since we can approximate the speed of light from c ⇡
q

gLRL+gLRLZ�ghRh

Z
as shown above; we can also make

a more compact approximation formula for the Planck length that still should be very accurate in a weak gravity
field, such as on the surface on the Earth. Then we get

lp =
RL

c

q
gL�̄

lp ⇡ RLq
gLRL+gLRLZ�ghRh

Z

q
gL�̄E

lp ⇡
p

RL�̄EZq
1 + Z � RL

Rh

(20)

Since we normally have Z <<
RL
Rh

, this can be simplified further to lp ⇡
p

RL�̄EZq
1�RL

Rh

. This means we can measure

the Planck length by observing the change in wavelength in a gravitational field and the Compton wave of the
gravitational object. This means we can measure the Planck length without any knowledge of G, h̄, or c. This is
in strong contrast to the assumptions in standard physics, where it is assumed we only can derive the Planck units
using dimensional analysis from G, c, and h̄.

Table 1 shows a series of ways in which we can find the Planck length without any prior knowledge of G, h̄, and
in some cases also without knowledge of c. Basically from any observable gravity phenomena, we can extract the
Planck length with no knowledge of G and h̄ if we know the speed of light (gravity?).

4 Are We Still Not Indirectly Dependent on G?

In several of the formulas in Table 1, we see that the Planck length is dependent on the gravitational acceleration
g. And the gravitational acceleration formula is known as g = GM

R2 , so does this not mean we simply are dependent
on G indirectly? First of all, we clearly do not need to know G to measure g. And as we will soon see, we also do
not even need to know G to predict g.

We have that the Planck length is given by lp =
q

Gh̄

c3
, as first described by Max Planck. There is nothing

wrong mathematically with solving this formula with respect to G; this gives G =
l
2
pc

3

h̄
. Haug [24] has suggested

that the Newton gravity constant is a universal composite constant of exactly this form. However, if one needs to
know G first to find the Planck length, this would just lead to a circular unsolvable problem, or more precisely then
it would be very clear that the Planck length is a function of G, and not the other way around. Nevertheless, we
have demonstrated that we can find the Planck length from red-shift with no prior knowledge o↵ G, h̄, and c.

If we look at the kg mass as m = h̄

�̄

1
c
(see section 2) then to know G and m, we need to know the following

constants, G, h̄, and c. And to know GM , we still need to know G, h̄, and c, in other words, the three constants
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Planck Length Prediction Easily applicable in practice?

From redshift lp =
p

RL�̄E(Z2+2Z)q
2+Z2+2Z�RL

Rh

No need G, c or h̄

From redshift lp ⇡
p

RL�̄EZq
1+Z�RL

Rh

⇡
p

RL�̄EZq
1�RL

Rh

No need G, c, or h̄

Weak field approximation

From time dilation lp =
p

RL�E(T 2
h�T

2
L)

q
2T 2

h�2T 2
L

RL
Rh

No need G, c or h̄

From time dilation lp ⇡
p

RL�E(Th�TL)q
Th�TL

RL
Rh

No need G, c or h̄

Weak field approximation

From gravitational light bending lp =
p
��̄R

4 No need G, c or h̄

From gravitational acceleration field lp = R

c

p
g�̄ No need G or h̄

From orbital velocity lp =
p
R�̄

c
vo No need G or h̄

From escape velocity lp =
p
R�̄

c

ve
2 No need for G or h̄

From From grandfather pendulum clock lp = Rf

c

p
2⇡L� No need for G or h̄

From Newton force spring lp = R

c

q
kx�

2⇡m = R

c

q
g�

2⇡ No need G or h̄

From two colliding elastic balls lp ⇡ R
vout
c

q
�̄

2H No need G or h̄

“Newton cradle” H is here hight of ball drop

Table 1: Ways to measure (extract) the Planck length from gravitational observations. We see that we never need to
know G or h̄ to find the Planck length. In the Newton cradle, vout is the velocity of the second ball after taking a hit
by a ball dropped from height h.

Max Planck assumed were the most important constants. However, if we are aware that the gravity constant is a
composite constant, then to know G and M , we still need to know three fundamental constants: lp, h̄, and c, so one
could suspect we only have replaced one constant with another one, simply by some change in how to express units.

But that is not the case, which is clear when we now look at GM . Since G =
l
2
pc

3

h̄
and the mass both contain the

Planck constant, one in the denominator and the other in the numerator, these will always cancel when we multiply

G with M . That is, to know GM =
l
2
pc

3

h̄
⇥ h̄

�̄

1
c
= c

2 l
2
p

�̄
, we only need to know two constants, namely c and lp, rather

than three constants, but only if we understand G is a composite constant and in addition, we are able to measure
lp without first knowing G, as we have demonstrated. Based on this view, we will claim that G likely contains the
Planck constant itself in order to get rid of the Planck constant in the mass, something we will get back to shortly.

Some will likely react here, as Newton was not aware of the Planck constant, the speed of light, or the Planck
length in his time. First of all, Newton never invented such a constant; his gravity force formula, that he only
stated in words in the Principia, was actually: F = Mm

R2 , and not the well-known “Newton” formula: F = G
Mm

R2 .
Further, the gravitational constant was not introduced by Cavendish in 1798, even though a Cavendish apparatus
can be used to find it when we use the kg mass definition.

The gravitational constant was actually first introduced in a footnote in a paper published in 1873 by Cornu
and Baille [25], not so long after the kg had become the new mass/weight definition. One can speculate on why it
was first introduced in a footnote. We actually suspect that the authors must have been aware that introducing a
gravitational constant would lead to a formula di↵erent from what Newton had stated originally, and that it was
therefore ”safer” to put it in a footnote. Who would have wanted to be the first to indicate the Newtonian formula
was incomplete, or lacked a constant? The gravitational constant first had the notation f , and was only called G in
1894 by Boys [26]. Planck [27] used the notation f for the gravity constant as late as in 1928, but the G notation
became the “standard” from the 1930s onward. What notation was used for the gravity constant is naturally not
of any real importance here, we just mention it to show the history of how we got to the formula that is known as
the Newton gravity formula today. What is important is that one needed a gravity constant with the dimensions
of G to calibrate the formula when using the kg mass definition. When using the kg definition of mass, one first
needs to calibrate the formula to one observation, for example in a Cavendish apparatus to find G. One can then
use the formula to derive and predict other gravity phenomena. The gravitational constant has also been carried
over to the general relativity theory of Einstein [28].

Newton was actually able to predict the relative mass size in a series of planets without any gravitational
constant, see [29], for example. We will show that the gravitational constant contains missing information that is
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needed to calibrate the Newton formula when one uses a kg mass definition. That is, the gravitational constant is
not unique, and perhaps not even that fundamental, as it is linked to the kg mass definition. That G came before
the Planck length and the Planck constant, and that the Planck length can be calculated from G (and two other
constants) does not mean it is more fundamental than the Planck length. There is nothing wrong with claiming
G is a universal composite constant and, as we have seen, the Planck constant embedded in G is needed to get
the Planck constant out of the mass, and the Planck length into the mass. But can this actually be correct? In
the Newton formula, we have GMm and not just GM , and even when assuming the gravitational constant is a

composite constant, the Planck constant does not cancel out for GMm =
l
2
pc

3

h̄
⇥ h̄

�̄1

1
c
⇥ h̄

�̄1

1
c
= h̄c

lp

�̄1

lp

�̄2
. However, we

will claim GMm is never used in predicting any observable gravity phenomena. The small mass in GMm always
cancels out when one derives observable gravity phenomena from the Newton formula; the Newton formula only
calculates the gravitational e↵ects from one mass and it is a one body problem formula. In a two-body formula,
the gravity parameter is changed from µ = GM to µ = G(M1 + GM2) = GM1 + GM2. So, when we are working
with gravitational e↵ects from two masses, we still have GM and not GMm. The second mass in the Newton
formula is only used for derivations where it actually always cancels out before we get a formula that can predict
any observable gravity phenomena, as is shown in Table 2.

Important insight:

Gravitational constant G =
l
2
pc

3

h̄
Need h̄, lp and c

Mass (kg definition) M = h̄

�̄

1
c

Need h̄ and c

Gravitational constant times mass GM = c
2 l

2
p

�̄
Only need lp and c

Non “observable” predictions: (contains GMm)

Gravity force F = G
Mm

R2 = h̄c

R2
lp

�̄M

lp

�̄m
(needs h̄, c and lp or G )

Observable predictions: (contains only GM)

Frequency Newton spring f = 1
2⇡

q
k

m
= 1

2⇡R

q
GM

x
= c

2⇡R

q
l2p

x�̄
Only need lp and c

Periodicity Pendulum (clock) T = 2⇡
q

L

g
= T = 2⇡R

q
L

GM
= T = 2⇡R

c

q
L�̄

l2p
Only need lp and c

Gravity acceleration g = GM

R2 = c
2

R2

l
2
p

�̄
Only need lp and c

Orbital velocity vo =
q

GM

R
= c

q
l2p

R�̄
Only need lp and c

Time dilation TR = Tf

r
1�

q
2GM

R

2

/c2 = Tf

q
1� 2l2p

R�̄
Only need lp

Gravitational red-shift z =

q
1� 2GM

R1c2q
1� 2GM

R2c2

� 1 =

r
1�

2l2p
R1�̄r

1�
2l2p
R2�̄

� 1 Only need lp

Gravitational red-shift z1(r) ⇡ GM

c2R
=

l
2
p

R�̄
Only need lp

Gravitational deflection � = 4GM

c2R
= 4

R

l
2
p

�̄
Only need lp

Advance of perihelion 6⇡GM

a(1�e2)c2 = 6⇡
a(1�e2)

l
2
p

�̄
Only need lp and c

Velocity ball Newton cradle vout =
p
2gH = clp

R

p
2H/�̄ Only need lp and c

Indirectly/“hypothetical” observable predictions: (contains only GM)

Escape velocity ve =
q

2GM

R
= c

q
2

l2p

R�̄
Only need lp and c

Schwarzschild radius rs =
2GM

c2
= 2

l
2
p

�̄
Only need lp and c

Table 2: The table shows that any gravity observations we can observe contain GM and not GMm; GM contains
and needs less information than is required to find G and M . The L in the line for pendulum clock is the length of the
pendulum, and H is the height of the ball drop in a two ball Newton cradle.

5 We can also extract the speed of light (gravity?) from any gravity
phenomena without knowledge of G and h

In this section, we will show that we can extract the speed of light from any observed gravity phenomena without
prior knowledge of the speed of light and also no knowledge of G or h̄. This is demonstrated in several cases simply
by using Newton gravitational mechanics. Table 3 shows a series of ways to extract the speed of light from gravity
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observations. From some observations, we need no knowledge of physical constants at all. In other observations,
we need to know the Planck length, but never do we need knowledge of G or h̄. We can extract both the speed of
light and the Planck length from gravity observations with no knowledge of G, c, or h.

From observation: Solved with respect to c Comment

constants needed etc.

Gravitational light bending c =
q

4gR
�

No constant needed

Red-shift c =

q
Z2+2Z+2�2

RL
Rhq

Z2
RLgL

+ 2Z
RLgL

No constant needed

Red-shift (weak field) c ⇡
q

1+Z�RL
Rhq

Z
RLgL

⇡
q

1�RL
Rhq

Z
RLgL

No constant needed

Grandfather pendulum clock c = Rf

lp

p
2⇡L�. Need lp

where: f : pendulum frequency, L length of pendulum.

Gravitational acceleration c =
q

g�̄R2

lp2 Need lp

Orbital velocity c = vo

q
�̄R

l2p
Need lp

Two colliding balls c ⇡ R

lp
vout

q
�̄

2H Need lp

(Newton ‘cradle’) h : hight of ball drop.
“Non”-observables

Escape velocity c = ve

q
�̄R

2l2p
Need lp

Table 3: Ways to measure (extract) the speed of light/gravity from gravitational observations. As we can see, we need
no knowledge of G or h̄ to find the speed of light, In a series of measurements, we do need to know the Planck length,
but the Planck length can, as we have shown, be extracted from red-shift with no knowledge of G, h̄, or c.

That we can extract the speed of light from any gravity phenomena without prior knowledge of G, h, or c

indicates that this could be described as the speed of gravity cgw, perhaps. It is also still a mystery in standard
theory why the speed of gravity is assumed to be the same of light. In 1890, Lévy [30] suggested that the speed of
gravity likely was equal to the speed of light. In 1904, Poincaré [31] argued that the speed of gravity could not be
larger than the speed of light (in a vacuum). In Einstein’s general relativity, it is assumed that the speed of gravity
is equal to the speed of light, see [32, 33], for example. However, there are still several gravity theories that try to
argue that the speed of gravity is faster than the speed of light, for example, [34, 35]. More research on the speed
of gravity is therefore of great importance to clarify this, and to develop a better understanding of gravity.

It has been assumed that one can only measure the speed of gravity by detecting the hypothetical gravitons,
although they have not been detected yet. An alternative method could entail measuring the speed of gravitational
waves. LIGO announced that it has detected gravitational waves, but there is still uncertainty concerning the
velocity of them; based on interpretation of LIGO measurements. For example, Cornish, Blas, and Nardini [36]
assert, based on LIGO data, that the speed of gravitational waves, with 90% certainty, must be in the interval
0.55c < cgw < 1.42c. However, other researchers [37] have recently, based on experiments, been able to constrain
the di↵erence between the speed of gravity and the speed of light to being between �3⇥10�15 and +7⇥10�16 times
the speed of light, something that supports our findings and view that the speed of gravity cg and the speed of light
c are the same, and also that they are closely connected. Unnikrishnan and Gillies have recently [38] shown that the
speed of gravity can be extracted from gravitational constants alone, that again are measured from simple gravity
observations. However, their approach requires the knowledge of G (that easily can be found using a Cavendish
apparatus) and also the knowledge of a new gravitational constant, which can be found from the gravitomagnetic
interaction between a gyroscope and the Earth. Still, we think their method strongly supports the idea that the
speed of gravity is embedded in simple gravity phenomena, with no need for prior knowledge of c. In other words,
no direct detection of gravitational waves or hypothetical gravitons is needed to find the speed of gravity, cg. Our
method has the strength that it needs no knowledge of any constants to measure the speed of gravity (light) from
gravitational red-shift alone, as can be seen in table 3.

Also, why should all observable gravity phenomena only need the Planck length, or the Planck length and the
speed of light, in addition to a variable that is dependent on mass size and the distance from the object if the speed
of light was not directly linked to gravity, see Table 2. And how can we extract the speed of light from any gravity
phenomena with no prior knowledge of G, h, or c? Some may argue that our derivations are trivial and obvious,
or that they give no new insight into gravity theory. However, to our knowledge, no one has shown that the speed
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of light can be extracted from any gravity phenomena without relying on knowledge of G, h, and c. Naturally, if
one has G, one can extract the speed of light from G, if one know the Planck length and the speed of light. But we
are extracting the speed of light from gravity observations with no knowledge of any of these constants, so this is
significant di↵erent, even if trivial mathematically.

One can naturally discuss if our formulas are extracting the speed of gravity or just the speed of light, and we
encourage further discussion. This is an extremely important question to settle. If we can fully confirm that the
speed of gravity is indirectly or directly linked to the speed of light, then we can exclude a series of alternative
gravitational theories claiming that the speed of gravity is faster than c. In addition, if we are able to measure
the speed of gravity accurately, then this can likely help us understand gravity even better, particularly around
whether or not there is a link between gravity and electromagnetism. In our view, to detect the speed of light or
the speed of gravity may actually be the same thing. The speed of light is embedded, not only in electromagnetism
through the speed of electromagnetic “waves”, but it is also embedded internally in any mass, because how else
could we describe the size of any kg mass with the formula m = h̄

�̄

1
c
, if it not the case that the speed of light plays

an important role in mass?
Also, one can ask why we can extract the speed of light (gravity?) from Newtonian gravity phenomena (and not

only GR phenomena), such as gravitational acceleration only by knowing one other constant3, which is the Planck
length. As we have demonstrated, we can extract the Planck length from gravity phenomena without knowledge of
any other constant. Gravity acceleration came long before Einstein’s general relativity theory; it is a formula we
get from Newton gravitational theory. Newton claimed that gravity was instantaneous, so most physicists today
claim that, embedded in Newton gravitational theory is the assumption of infinite gravity velocity, or that there
may be no assumptions about the velocity of gravity at all. We will challenge this view. We have shown the speed
of light is embedded in both the kg mass and in the gravitational constant. When we multiply G with M , which
is needed in all gravity phenomena, the hidden and embedded speed of light do not cancel out like the Planck

constant, GM =
l
2
pc

3

h̄
⇥ h̄

�̄

1
c
= c

2 l
2
p

�̄
. We will claim the speed of light is hidden and embedded even in the Newton

gravitational theory. We naturally do not in any way mean to suggest that Newton knew about this; after all, he
did not even invent or use the gravitational constant, and the speed of light was not known at that time. Yet, in
order to calibrate Newtons gravitational theory to gravity phenomena, one need to capture the essence of gravity;
if not, the model would likely fail to predict anything. And the essence of gravity seems to be linked to the Planck
length and the speed of light (gravity). It is impossible to predict observable gravity phenomena without them.
But this does not mean we need to know it to perform gravity predictions; we can do so without knowing it by
hiding them in constants that we calibrate to a gravity phenomenon and then use such constants to predict other
gravity phenomena. The fact that Newton said he thought gravity was instant, does not automatically mean this
is what is embedded in his theory.

We either have to embed the Planck length and the speed of light (gravity) in some other constant, such as G,
even without knowing we are doing so, since G is not calculated, but calibrated, or we have to work with the Planck
length and the speed of gravity more directly. The speed of light and the Planck length can also be embedded
directly in an alternative mass definition that we will look at soon. When we understand what the essence of gravity
is, then we can work with lp and c directly. We can use the formulas on the right in Table 2 to predict gravitational
phenomenon; we get a constant reduction, and a simpler theory that can predict the same as the standard theory.

6 Is Todays Mass Definition Incomplete?

Only the speed of light and the Planck length are needed to predict gravity phenomena, together with variables
such as the radius from the center of the gravity object, and the Compton wavelength of the mass. All masses are
a↵ected by and causes gravity. We cannot describe the standard kg mass using fundamental constants and quantum
variables without the Planck constant; this is supported by the fact that the kg recently has been redefined in terms
of the Planck constant using the Watt Balance, see [39–41]. So, if the kg and the Planck constant are part of the
very essence of mass, and at the same time we do not need the Planck constant to predict any observable gravity
phenomena, but actually indirectly get it out by multiplying G with M , then the Planck constant is possibly not
exactly what we think it is.

Any rest-mass in terms of kg is fully defined by m = h̄

�̄

1
c
. That is, the standard mass definition only contains

one of the two constants needed to describe and predict gravity phenomena, namely c. It also contains the Planck
constant h̄ that not is needed, and lacks the Planck length. However, when we multiply the gravitational constant

by the standard mass, we get Gm =
l
2
pc

3

h̄
⇥ h̄

�̄

1
c
= c

3 lp

c

lp

�̄
. This mass, like the standard mass, contains the Compton

3And naturally a variable dependent on the mass size, and the distance from the center of the gravity object R
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wave, but instead of the Planck constant, it has the Planck length. We will claim this is a mass multiplied by the
speed of light cubed, where c3 actually can be seen as a gravitational constant. The gravitational constant is needed
to turn the output from the kg mass divided by radius squared into acceleration, as GM/R

2 is the gravitational
acceleration. Haug has recently suggested that all masses should be redefined as

m̄ =
G

c3
m =

lp

c

lp

�̄
(21)

That is, we have gotten rid of the Planck constant and inserted the Planck length into the mass. The mass is now a
time dimension. Haug has called this mass definition collision-time. It is how long a mass is in a collision state per
Planck second. Haug [22] has suggested that this mass definition implicitly exists in both Newton (and likely also
Einstein) gravity, and must also be incorporated in other parts of physics to unify gravity with quantum mechanics.
The standard energy and mass definition is quantized through h̄ times a frequency, but the standard definition does
not take into account the spatial dimension of the ultimate building blocks of energy and matter, which is linked
to the Planck length. This is not important for electromagnetism, except at the Planck scale, but it is the very
essence of gravity. It is also not di�cult to understand that it is basically impossible to get theories using di↵erent
mass definitions to fit together in one theory. Naturally, standard physics appears to use the same mass definition
everywhere, but we encourage the physics community to look at this with new eyes, namely that Gm can be seen
as a way to convert a incomplete mass definition to a mass that also incorporates the spatial dimensions of the
ultimate building blocks of all matter, which we claim is linked to the Planck length. In fact, standard two-body
gravitational theory gives an indication of this, here the gravitational parameter is µ = G(m1+m2) = Gm1+Gm2;
in other words, all masses from which we calculate gravitational e↵ects must be multiplied by G, which corresponds
to looking at the mass as m̄ = lp

c

lp

�̄
multiplied with c

3 and divided by r
2 to get gravitational acceleration. When

switching to this mass definition, we can write the Newton gravity formula as

F = c
3 M̄m̄

R2
= c

3
g

M̄m̄

R2
(22)

Even if the gravitational force now gives di↵erent dimensional input than the modern version of the Newton
formula, it will still lead to exactly the same predictable output as standard Newton theory. From the quantum
perspective, this only contains two constants, namely c and lp, compared to the modern Newton formula that
embedded (and hidden) contains three constants, namely G, h̄, and c, or if we have a deeper understanding, lp, h̄,
and c.

The Gaussian law of gravity, rooted in Newtonian gravity, is often used as an argument that the speed of light
in Newton’s theory is instantaneous. The Newtonian field equation, rooted in the Gaussian law, is given by the
well-known formula (di↵erential form)

r2
� = 4⇡G⇢ (23)

where � is the gravitational scalar field, and ⇢ is the mass density. There is no speed of gravity in the formula, and
it seems that if the mass density changes, the gravitational field changes instantaneously when the mass density

changes. However, in our view, G contains cg, as G likely is a composite constant of the form G =
l
2
pc

3
g

h̄
. If we

re-derive the field equation based on our new mass definition m̄ = lp

c

lp

�̄
, then we get

r2
� = 4⇡c3

g
⇢c (24)

Now the speed of gravity is in the field equation, and ⇢c is the mass density of our new mass definition, ⇢c = M̄

V
.

Be aware that the output from this formula is identical to the standard Gaussian law of gravitation, except that it
gives us an important new insight into what the formula represents from a deeper perspective. That the speed of
light (gravity) is a central part of the equation can, in our view, be interpreted to mean that changes in the mass
density create changes in the gravitational field that are directly linked to the speed of gravity, that again is the
same as the speed of light. If the speed of gravity is infinite in Newton, then we should be able to set cg = 1,
which would give an infinitely strong gravity field, so this is not consistent with Newton or gravity observations.
If we set cg = 0, then the gravity field is zero, which is also not consistent with Newton or observations; only by
setting cg = c can we get the model consistent with gravity observations. In other words, Newton contains the
speed of gravity embedded within it. This is not seen from the standard gravity formula, as the speed of gravity is
embedded in the composite constant G. Newton did not invent or use a gravity constant; it was invented in 1873.
The gravity constant is simply a parameter that need to be calibrated to gravity observations to make the model
fit data. The gravity constant contains what is missing in the model, but it is indirectly found by calibrating the
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model to observations. However it is first when one are able to understand the gravity constant is a composite
constant that one really can understand gravity from a deeper perspective.

7 There Are Two Important Constants for Mass and Gravity

We will claim there are only two important constants for gravity and the understanding of mass, particularly in
relation to gravity. One is the speed of light (gravity), and the other is the Planck length. Both can be found from
gravity observations only, with no prior knowledge of G, h̄, or c. In a weak field, we have

cg = c ⇡

q
1 + Z � RL

Rhq
Z

RLgL

⇡

q
1� RL

Rhq
Z

RLgL

, lp ⇡
p
RL�̄EZq

1 + Z � RL
Rh

⇡
p
RL�̄EZq
1� RL

Rh

Further, we have

cg =
RL

p
�̄EgL

lp
, lp =

RL

p
�̄EgL

c

In other words, there are no need to know G, h̄, or the speed of light c to measure these two variables from
gravity phenomena. When we first have extracted the Planck length and the speed of light (gravity) from observable
gravity phenomena, we can predict all other gravity phenomena, still with no knowledge of G and h̄. And again we
are not simply hiding the G in g, as G is not needed to measure or even predict g.

8 Summary

We have shown that the Planck length and the speed of light (gravity) can be extracted from gravity observations
with no prior knowledge of G, h̄ and c. We have further shown that likely all observable gravity phenomena are
only dependent on these two constants, plus one variable dependent on the mass size of the gravity object and the
distance to the gravity object. In our view, the gravitational constant is a universal composite constant of the form

G =
l
2
pc

3

h̄
. However, the only reason it contains the Planck constant is to cancel out the Planck constant in the mass,

and to get the Planck length into the mass. This is naturally unknown to standard physics, but is, in our view,
what is hidden even in Newtonian gravity, as well as in Einstein gravity. The standard mass definition and energy
definition are lacking important information. Anything that is observable in gravity can only be predicted by GM ,
and we claim the multiplication with a gravity constant G is actually used to convert the incomplete mass definition

into a mass definition that accounts for gravity GM =
l
2
pc

3

h̄
⇥ h̄

�̄

1
c
= c

3 ⇥ lp

c

lp

�̄
. This means GM can be written as

c
3
M̄ instead of GM , where M̄ = 1

lp

lp

�̄
is our new mass definition. This is more than a cosmetic makeover, as it

relies on less physical constants; G and h̄ are basically replaced by the Planck length, and in addition we need c, as
also is needed in standard theory. Only when this new mass definition is implemented in non-gravity physics can
one unify quantum mechanics with gravity [22], something we have recently claimed to have done. Naturally, this
should be studied by a series of researchers before one draws any firm conclusions. Still, we think it is a promising
approach that is worth further study by the physics community.
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Appendix A

In 1798, Cavendish [14] was the first to use a so-called Cavendish apparatus to find the density of the Earth. He
actually did not use it to find the gravitational constant, as the gravitational constant first was suggested in 1873.
Here we will use a Cavendish apparatus to find the gravitational acceleration from the large lead ball acting on the
small ball in the apparatus. A Cavendish apparatus consists of two small balls and two larger balls, all made of
lead, for example. The torque (moment of force) is given by

✓ (25)

where  is the torsion coe�cient of the suspending wire. Further, ✓ is the deflection angle of the balance. Next we
have the following well-known relationship

✓ = LF (26)

where L is the length between the two small balls in the apparatus and F can be set equal to the gravitational
force given by

F = G
Mm

r2
(27)

This means we must have
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✓ = LG
Mm

r2
(28)

We also have that the natural resonant oscillation period of a torsion balance is given by

T = 2⇡

r
I


(29)

Further, the moment of inertia I of the balance is given by

I = m

✓
L

2

◆2

+m

✓
L

2

◆2

=
mL

2

2
(30)

from this we have

T = 2⇡

r
mL2

2
(31)

next we solve this with respect to  and get

T
2

22⇡2
=

mL
2

2

 =
mL

2

2 T 2

22⇡2

 =
mL

22⇡2

T 2
(32)

Then in equation 28, we are replacing  with this expression, and solving with respect to g = GM

r2
, this gives

mL
22⇡2

✓

T 2
= LG

Mm

r2

L
22⇡2

✓

T 2
= LG

M

r2

L
2
⇡
2
✓

T 2
= G

M

r2

g =
L
2
⇡
2
✓

T 2

(33)

G =
L
2
⇡
2
r
2
✓

T 2M

(34)

So to find G you need indirectly to know h̄, because you need to know the kg mass of the large ball in the cavendish
apparatus.

Appendix B

Here we show in detail how to derive the speed of light from gravitational red-shift. From Einstein’s general
relativity theory, we have

Z =

q
1� 2gL

RLc2q
1� 2gh

Rhc
2

� 1 (35)
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when 2gL
RLc2

<< 1, as it is in a weak gravitational field, we can approximate
q

1� 2gL
RLc2

with the first term of a

Taylor series expansion
q
1� 2gL

RLc2
⇡= 1� gL

RLc2
, and this gives the well-known

Z ⇡
1� gL

RLc2

1� gh

Rhc
2

� 1 (36)

Solved with respect to c, this gives

Z ⇡ c
2 � ghRh

c2 � gLRL

� 1

Z(c2 � gLRL) ⇡ c
2 � ghrh � (c2 � gLRL)

c ⇡
r

gLRL + gLRLZ � ghRh

Z
(37)


