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Abstract

In this paper some properties and the chain rule for the hessian tensor
for combined vector functions are derived. We will derive expressions for
H(T +L), H(aT ), and H(T ◦L) (chain rule for hessian tensors) and show
some speci�c examples of the chain rule in certain types of composite
maps.

1 Introduction

Let f : Rn −→ R. This function takes as input a vector x ∈ Rn and outputs a
scalar f(x) ∈ R. let:

x =

 x1
...
xn


Then the hessian matrix of this function is de�ned as:

H(f) =

 ∂x1x1
f · · · ∂x1xn

f
...

. . .
...

∂xnx1f · · · ∂xnxnf


We can �nd the value of each entry of the matrix by the following formula:

Hij = ∂xixj
f

We can generalize this concept for any map between two vector spaces:
Let V and W be two vector spaces, and let T : V −→ W Xbe a function

between them. Let:

T (x) =

 g1(x)
...

gm(x)
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Then we de�ne the hessian of this function as:

H =
(
H(g1) · · · H(gm)

)
So this is a third-order tensor. We can denote each component of the tensor

as:

Hγij = ∂xixjgγ

We will explore some properties of this tensor when there is composition of
vector functions.

2 Content

2.1 Linearity

Proposition 1. Let V and W be two vector spaces over a �eld F, and let
T : V −→ W X , L : V −→ W Xbe 2 functions between those 2 vector spaces.
Then we have that:

H(T + L) = H(T ) +H(L) (1)

H(αT ) = αH(T ), α ∈ F (2)

Proof 1.

(1) Let V and W be two vector spaces over a �eld F, and let T : V −→
W X,L : V −→W Xbe 2 functions between those 2 vector spaces. Let's say that:

T (x) =

 t1(x)
...

tm(x)

 and L(x) =

 l1(x)
...

lm(x)


we have that:

(T + L)(x) =

 t1(x) + l1(x)
...

tm(x) + lm(x)


So the components of the hessian tensor for the sum of those functions will

be:

Hγij(T + L) = ∂xixj
(tγ + lγ) =

∂xixj
tγ + ∂xixj

lγ = Hγij(T ) +Hγij(L)

Thus, H(T + L) = H(T ) +H(L).
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(2) Let V and W be two vector spaces over a �eld F, α ∈ F, and let
T : V −→W be a function between those 2 vector spaces with:

T (x) =

 t1(x)
...

tm(x)


then, we have that:

(αT )(x) =

 αt1(x)
...

αtm(x)


The components of the hessian tensor will be:

Hγij(αT ) = ∂xixj
(αtγ) =

α∂xixj
(tγ) = αHγij(T )

Thus, H(αT ) = αH(T ).

2.2 Composition of functions

We will now deduce a formula for the Hessian tensor of composite functions.
Let V,W,K be vector spaces such that dimV = v,dimW = w and dimK =

k. And let T and L be two functions L : V −→ W and T : W −→ K, Such
that:

T (x) =

 t1(x)
...

tk(x)

 , x ∈W

L(x) =

 t1(x)
...

tw(x)

 , x ∈ V

Then we have that T ◦ L : V −→ K such that:

(T ◦ L)(x) =

 t1(L(x))
...

tk(L(x))

 , x ∈ V

because we have that L(x) =

 l1(x)
...

lw(x)

 we can write an expression for

every component of the vector (T ◦ L)(x):

3



[(T ◦ L)(x)]γ = tγ

 l1(x)
...

lw(x)


Now we can compute the components for the Hessian tensor:

Hγij(T ◦ L) = ∂xixj
tγ

 l1(x)
...

lw(x)

 =

∂xj

∂xitγ

 l1(x)
...

lw(x)




Let's �rst evaluate the derivative with respect to xi. We can use the chain
rule to do that. We have:

So we have that:

∂xi
tγ

 l1(x)
...

lw(x)

 =
∑
w

∂lw tγ(L)∂xi
lw(x)

This gives us:

∂xj

∂xi
tγ

 l1(x)
...

lw(x)


 = ∂xj

[∑
w

∂lw tγ(L)∂xi
lw(x)

]

We can use the fact the the partial derivative is linear:

∂xj

[∑
w

∂lw tγ(L)∂xi
lw(x)

]
=
∑
w

∂xj
(∂lw tγ(L)∂xi

lw(x))

Using the product rule for partial derivatives we have:
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∑
w

∂xj
(∂lw tγ(L)∂xi

lw(x)) =
∑
w

(
∂xj

[∂lw tγ(L)] ∂xi
lw(x) + ∂lw tγ(L)∂xixj

lw(x)
)
=

∑
w

∂xj
[∂lw tγ(L)] ∂xi

lw(x) +
∑
w

∂lw tγ(L)∂xixj
lw(x)

note that ∂xixj
lw is the component Hwij of the hessian tensor of L. So we

can rewrite this as:∑
w

∂xj
[∂lw tγ(L)] ∂xi

lw(x) +
∑
w

∂lw tγ(L)Hwij(L)

So we get:

Hγij(T ◦ L) =
∑
w

∂xj [∂lw tγ(L)] ∂xi lw(x) +
∑
w

∂lw tγ(L)Hwij(L) (3)

2.2.1 Speci�c cases

Let's now look at some speci�c cases and see how formula (3) transform under
those certain speci�c circumstances.

(1) Let's assume the same things we assumed in 2.2, but this time let's assume
that L : V −→W is linear. He have that:

Hγij(T ◦ L) =
∑
w

∂xj [∂lw tγ(L)] ∂xi lw(x) +
∑
w

∂lw tγ(L)Hwij(L)

Because L is linear we have that H(L) = 0 [1], so Hγij(L) = 0. Because of
this

∑
w ∂lw tγ(L)Hwij(L) = 0.

Hγij(T ◦ L) =
∑
w

∂xj [∂lw tγ(L)] ∂xi lw(x)

L can also be written in terms of a matrix because it is linear:

L(x) =

 A11 · · · A1v

...
. . .

...
Aw1 · · · Awv


 x1

...
xv

 =


∑
v A1vxv
...∑

v Awvxv
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so, for any γ:

lγ(x) =
∑
v

Aγvxv

If we plug this in the previous equation we get:

Hγij(T ◦ L) =
∑
w

∂xj
[∂lw tγ(L)] ∂xi

∑
v

Awvxv =

∑
w

∂xj [∂lw tγ(L)]
∑
v

Awv∂xixv =

∑
w

∂xj
[∂lw tγ(L)]

∑
v

Awvδiv

Where δivis the Kronecker delta.∑
v

Awvδiv = Awiδii +
∑
v 6=i

Awvδiv = Awi

We can now plug this back in your equation giving us:∑
w

∂xj
[∂lw tγ(L)]

∑
v

Awvδiv =
∑
w

Awi∂xj
[∂lw tγ(L)]

So, if L is a linear map, then:

Hγij(T ◦ L) =
∑
w

Awi∂xj
[∂lw tγ(L)] (4)

(2) Now let's show, unsing formula (4), that H(T ◦ Id) = H(T ). Let V be a
vector space such that dimV = v. Let T : V −→ V and Id : V −→ V . Because
Id is linear we have:

Hγij(T ◦ Id) =
∑
v

Ivi∂xj
[∂lv tγ(Id)]

Where I is the v×v identity matrix, and where Id(x) =

 l1(x)
...

lv(x)

. Because

the de�ning property of Id is that Id(x) = x then lγ = xγ , If we make this
substitution on the equation we get:

Hγij(T ◦ Id) =
∑
v

Ivi∂xj
[∂xv

tγ(x)] =

∑
v

δvi∂xjxv tγ
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Where δvi is the Kronecker delta.∑
v

δvi∂xjxv
tγ = δii∂xjxi

tγ +
∑
v 6=i

δvi∂xjxv
tγ = ∂xixj

tγ

This gives us:

Hγij(T ◦ Id) = ∂xixj
tγ = Hγij(T )

(3) If we let f, g : R −→ R, then, because the Hessian matrix and the hes-
sian tensor is a generalization of the second derivative, the formula (3) used to
calculate H(f ◦ g) will give us an expression for the second derivative of (f ◦ g).

Formula (3) gives us:

Hγij(T ◦ L) =
∑
w

∂xj
[∂lw tγ(L)] ∂xi

lw(x) +
∑
w

∂lw tγ(L)Hwij(L)

If f, g: R −→ R,then the hessian tensor will have conly one component,
making it a constant. so we can get rid of all those indices relative to the
speci�c component of the tensor we are calculating. The equation will simplify
to:

H(f ◦ g) =
∑
w

∂x [∂gwf(g)] ∂xgw(x) +
∑
w

∂gwf(g)H(g)

Because this are functions are single variable functions we can change the
partial derivatives to normal ones, and we can get rid of the slums because
w ∈ {1}. The equation simpli�es further to:

H(f ◦ g) = d

dx

[
d

dg
f(g)

]
d

dx
g(x) +

d

dg
f(g)H(g)

The Hessian of g is simply the second derivative of g:

H(f ◦ g) = d

dx

[
d

dg
f(g)

]
d

dx
g(x) +

d

dg
f(g)g′′ =

d

dx
[f ′(g)] g′ + g′′f ′(g) = [g′]

2
f ′′(g) + g′′f ′(g)

Thus giving us: H(f ◦ g) = [g′]
2
f ′′(g) + g′′f ′(g). Because the hessian of a

single variable function is the second derivative of that function we get:

(f ◦ g)′′ = [g′]
2
f ′′(g) + g′′f ′(g)

It's easy to show that this is true using the chain rule for single variable
functions.
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