
Bayesian Updating Quaternion ProbabilityI

Yige Xue, Yong Deng∗

Institute of Fundamental and Frontier Science, University of Electronic Science and
Technology of China, Chengdu, 610054, China

Abstract

The quaternion is an effective tool to evaluate uncertainty, and it has been stud-
ied widely. However, what is the quaternion probability still an open question.
This paper has proposed the quaternion probability, which is the extent of classi-
cal probability and plural probability with the aid of quaternion. The quaternion
probability can apply classical probability theory to the four-dimensional space.
Based on the quaternion probability, the quaternion probability multiplication
has been proposed, which is a method of multiplication conforming to the law of
quaternion multiplication. Under the bayesian environment, the quaternion full
joint probability and the quaternion conditional probability is proposed, which
can apply the quaternion probability to address the issues of quantum decision
making. Numerical examples are applied to prove the efficiency of the proposed
model. The experimental results show that the proposed model can apply the
quaternion theory to the bayesian updating effectively and successfully.

Keywords: Quaternion probability, Bayesian updating, Quantum decision
making

1. Introduction

There are a lot of uncertainties in the real world [1, 2, 3]. In order to
deal with the uncertainties, many mathematical theories are proposed [4, 5, 6],
such as quantum theory [7, 8, 9], intuitionistic fuzzy sets [10, 11], orthopair
fuzzy sets [12, 13], complex networks [14, 15], Dempster-Shafer evidence the-
ory [16, 17, 18], entropy [19, 20, 21], belief entropy [22, 23, 24], game theo-
ry [25, 26] and von neumann entropy [27, 28]. Among these theories and models,
the bayesian updating model have high efficiency in dealing with the uncertain-
ty [29, 30, 31]. The so-called bayesian updating model based on bayesian law,
which means that when the analysis sample is large enough to be close to the
population number, the probability of the occurrence of events in the sample will
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be close to the probability of the occurrence of events in the population [32, 33].
The bayesian updating model is one of the most effective theoretical models
in uncertain knowledge expression and reasoning [34]. It has become a hot re-
search topic in recent years [35, 36]. Relying on the association between nodes,
the bayesian updating model can accurately grasp the overall information of the
logic networks, which means that it can evaluate objects more comprehensive-
ly [37, 38]. Relying on the advantages on representing uncertainty, the related
bayesian methods and concepts have been widely studied by scholars at home
and abroad [39, 40].

Quaternions are mathematical concepts invented by Irish mathematician
William Rowan Hamilton [41], which has great promise for discovery [42, 43,
44]. The multiplication of quaternions does not conform to the commutative
law [45, 46]. If the set of quaternions is considered as a multidimensional re-
al number space, a quaternion represents a four-dimensional space, which is a
two-dimensional space relative to a plural numbers [47, 48]. According to the
superiority of quaternions in the representation of four-dimensional spatial in-
formation, the quaternions have been applied in many fields [49, 50]. However,
how to apply quaternions to bayesian updating is still an open issue.

This paper proposes the bayesian updating quaternion probability, which
apply the quaternion theory to the bayesian updating. The quaternion proba-
bility is the extent of classical probability and plural probability, which can apply
probability theory to the four-dimensional space. The quaternion probability
multiplication is a method of multiplication conforming to the law of quater-
nion multiplication, which means that the quaternion probability multiplication
doesn’t conform to the commutative law of multiplication. However, in special
case, the quaternion probability multiplication conforms to the commutative
law of multiplication. With the aid of quaternion probability multiplication
and quaternion probability, the quaternion full joint probability and the quater-
nion conditional probability can apply the quaternion probability theory to deal
with the issues of quantum decision making effectively.

The remain of this paper is structured as follows. Section 2 introduces the
preliminary. Section 3 presents the bayesian updating quaternion probabili-
ty. Section 4 illustrates the flexibility and accuracy of the bayesian updating
quaternion probability. Section 5 summarizes the whole paper.

2. Preliminaries

In this section, bayesian formula [51], quaternion [52, 53, 54] are briefly
introduced.

2.1. Bayesian Formula

Definition 2.1. (The Full Probability Bayesian Formula) [51]

Pr(X1, X2, . . . , Xn) =

n∏
i=1

Pr(Xi|Parents(Xi)) (1)
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Where X is the variables list and Parents(Xi) represents the nodes in the
bayesian network, which are pointing to Xi.

Definition 2.2. (The Conditional Probability Bayesian Formula) [51]

Pr(X|e) = α[Σy∈Y Pr(X, e, y)] (2)

Where α = 1
Σx∈XPr(X,e)

. e is the list of observed variables nodes and y is

the remaining unobserved variables nodes in the bayesian network, the α is the
normalization factor for the distribution Pr(X|e).

2.2. Quaternion

Quaternions are a four dimensional hypercomplex numbers system, which
are an extension of complex numbers to four-dimensional space [55, 56, 57]. The
definition of quaternions as follow:

Definition 2.3. (Quaternion) [41]

q = a+ bi+ cj + dk (3)

Given two quaternions, q1 = a+ bi+ cj + dk and q2 = e+ fi+ gj + hk, the
definition of quaternions multiplication as follow:

Definition 2.4. (Quaternion Multiplication) [41]

q1q2 =(ae− (bf + cg + dh))+

(be+ af + ch− dg)i+

(ce+ ag + df − bh)j+

(de+ ah+ bg − cf)k

(4)

3. The proposed method

In order to extend the bayesian updating to four-dimensional space, this
paper proposes bayesian updating quaternion probability, which includes several
models.

Given a probability distribution P , the definition of quaternion probability
distribution as follow:

Definition 3.1. (Quaternion Probability)

PQ(A) = P (A)euθ (5)

Where, P (A) =
√
a2 + b2 + c2 + d2 is based on a quaternion q = a + bi +

cj + dk =
√
a2 + b2 + c2 + d2euθ. u = uxi + uyj + uzk is unit vector. θ =

arccos( a√
a2+b2+c2+d2

).

In this way, we define the probability of occurrence of event A is P (A)|euθ|.
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Given two quaternion probabilities, PQ(A) =
√
a2 + b2 + c2 + d2eu1θ1 and

PQ(B) =
√
e2 + f2 + g2 + h2eu2θ2 with two unit vector u = u1xi + u1yj +

u1zk and u = u2xi + u2yj + u2zk respectively, the definition of quaternions
multiplication as follow:

Definition 3.2. (Quaternion Probability Multiplication)

PQ(A)PQ(B) = P (A)P (B)eu1θ1eu2θ2 (6)

In this way, we define the probability of occurrence of events A and B is√
a2 + b2 + c2 + d2

√
e2 + f2 + g2 + h2|eu1θ1eu2θ2 |.

Theorem 3.1. If the three imaginary values of the base spaces of quaternions,
u1 = u1xi + u1yj + u1zk and u2 = u2xi + u2yj + u2zk, are proportional, which
mean that u1x

u2x
=

u1y

u2y
= u1z

u2z
, then the quaternion probability distribution satisfies

commutative law of multiplication as follow:

PQ(A)PQ(B) = PQ(B)PQ(A)

Proof 3.1. Relying on the equation of Eq.(3.1), we have equations as follows:

PQ(A) = P (A)eu1θ1 =
√
a2 + b2 + c2 + d2eu1θ1

PQ(B) = P (B)eu2θ2 =
√
e2 + f2 + g2 + h2eu2θ2

Where θ1 = arccos( a√
a2+b2+c2+d2

) and θ2 = arccos( e√
e2+f2+g2+h2

).

Since, we have that u1 = u1xi + u1yj + u1zk and u2 = u2xi + u2yj + u2zk.
Then, we can obtain the equations as follow:

PQ(A) =
√
a2 + b2 + c2 + d2(cos(θ1) + sin(θ1)(u1xi+ u1yj + u1zk))

PQ(B) =
√
e2 + f2 + g2 + h2(cos(θ2) + sin(θ2)(u2xi+ u2yj + u2zk))

Then, we can get the law of multiplication of PQ(A)PQ(B) as follow:

PQ(A)PQ(B) =
√
a2 + b2 + c2 + d2

√
e2 + f2 + g2 + h2(

(cos(θ1)cos(θ2)− (sin(θ1)u1xsin(θ2)u2x + sin(θ1)u1ysin(θ2)u2y + sin(θ1)u1zsin(θ2)u2z))+

(sin(θ1)u1xcos(θ2) + cos(θ1)sin(θ2)u2x + sin(θ1)u1ysin(θ2)u2z − sin(θ1)u1zsin(θ2)u2y)i+

(sin(θ1)u1ycos(θ2) + cos(θ1)sin(θ2)u2y + sin(θ1)u1zsin(θ2)u2x − sin(θ1)u1xsin(θ2)u2z)j+

(sin(θ1)u1zcos(θ2) + cos(θ1)sin(θ2)u2z + sin(θ1)u1xsin(θ2)u2y − sin(θ1)u1ysin(θ2)u2x)k)

Then, we can get the law of multiplication of PQ(B)PQ(A) as follow:
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PQ(B)PQ(A) =
√
e2 + f2 + g2 + h2

√
a2 + b2 + c2 + d2(

(cos(θ2)cos(θ1)− (sin(θ2)u2xsin(θ1)u1x + sin(θ2)u2ysin(θ1)u1y + sin(θ2)u2zsin(θ1)u1z))+

(sin(θ2)u2xcos(θ1) + cos(θ2)sin(θ1)u1x + sin(θ2)u2ysin(θ1)u1z − sin(θ2)u2zsin(θ1)u1y)i+

(sin(θ2)u2ycos(θ1) + cos(θ2)sin(θ1)u1y + sin(θ2)u2zsin(θ1)u1x − sin(θ2)u2xsin(θ1)u1z)j+

(sin(θ2)u2zcos(θ1) + cos(θ2)sin(θ1)u1z + sin(θ2)u2xsin(θ1)u1y − sin(θ2)u2ysin(θ1)u1x)k)

If we want to get PQ(A)PQ(B) = PQ(B)PQ(A), then the condition such
that u1x

u2x
=

u1y

u2y
= u1z

u2z
should be satisfied.

Then, we get the conclusion that if the three imaginary values of the base
spaces of quaternions are proportional, then the quaternion probability distribu-
tion satisfies commutative law of multiplication.

�

Example 3.1. Supposing that there is a quaternion probability distribution PQ
in the space Ω = {A,B} as follows:

PQ(A) =
√
a2 + b2 + c2 + d2euθ1 =

√
a2 + b2 + c2 + d2e

u arccos( a√
a2+b2+c2+d2

)

PQ(B) =
√
e2 + f2 + g2 + h2euθ2 =

√
e2 + f2 + g2 + h2e

u arccos( e√
e2+f2+g2+h2

)

Relying on the definition of quaternion probability, we can find that as fol-
lows:

If b = c = d = f = g = h = 0, a = e = 1
2 , then PQ(A) = aeu arccos(1) and

PQ(B) = eeu arccos(1).
Since eu arccos(1) = 1, then we can obtain that PQ(A) = a and PQ(B) =

e. Now, we can find if the quaternion degenerates into real number, then the
quaternion probability distribution will degenerate into the classical probability
distribution.

Hence, we can obtain the equation as follow:

PQ(A)PQ(B) = P (B)P (A) = ae

Now, the quaternion probability distribution is satisfies the commutative law
of multiplication as follow:

PQ(A)PQ(B) = PQ(B)PQ(A)

Example 3.2. Supposing that there is a quaternion probability distribution PQ
in the space Ω = {A,B} as follows:
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PQ(A) =
√
a2 + b2 + c2 + d2euθ1 =

√
a2 + b2 + c2 + d2e

u arccos( a√
a2+b2+c2+d2

)

PQ(B) =
√
e2 + f2 + g2 + h2euθ2 =

√
e2 + f2 + g2 + h2e

u arccos( e√
e2+f2+g2+h2

)

Where, u = uxi+ uyj + uzk is unit vector.
If c = d = g = h = 0, a = b = e = −f = 1

2 , then we can obtain

PQ(A) =
√
a2 + b2e

u arccos( a√
a2+b2

)

PQ(B) =
√
e2 + f2e

u arccos( e√
e2+f2

)

Since c = d = g = h = 0, so the quaternion probability distribution degener-
ates into the plural probability distribution.

Then we can obtain as follows:

PQ(A) =
√
a2 + b2(

a√
a2 + b2

+
bi√

a2 + b2
) = a+ bi

PQ(B) =
√
e2 + f2(

e√
e2 + f2

+
fi√
e2 + f2

) = e+ fi

Now, we can find if the quaternion degenerates into the plural, then the
quaternion probability distribution will degenerate into the plural probability dis-
tribution.

Hence, we can obtain the equation as follow:

PQ(A)PQ(B) = PQ(B)PQ(A) = ae− bf + (be+ af)i

Now, the quaternion probability distribution is satisfies the commutative law
of multiplication as follow:

PQ(A)PQ(B) = PQ(B)PQ(A)

Example 3.3. Supposing that there is a quaternion probability distribution PQ
in the space Ω = {A,B,C} as follows:
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PQ(A) =
√
a2 + b2 + c2 + d2euθ1 =

√
a2 + b2 + c2 + d2e

u arccos( a√
a2+b2+c2+d2

)

PQ(B) =
√
e2 + f2 + g2 + h2euθ2 =

√
e2 + f2 + g2 + h2e

u arccos( e√
e2+f2+g2+h2

)

PQ(C) =
1

2

Where, u = uxi+ uyj + uzk is unit vector.
If a = b = c = d = e = 1

4 , f = g = h = −1
4 , then we can obtain

PQ(A) = eu arccos( 1
2 ) , PQ(B) = eu arccos(−1

2 )

Relying on the quaternion multiplication formula, we can get that

PQ(A)PQ(B) = eu arccos( 1
2 )eu arccos(−1

2 )

= (
1

4
+
i

4
+
j

4
+
k

4
)(

1

4
− i

4
− j

4
− k

4
)

=
−1

4
+

1

4
(i+ j + k)

Then, we can get the probability of PQ(A)PQ(B), |PQ(A)PQ(B)| = 1
2 .

Relying on the quaternion multiplication formula, we can get that

PQ(B)PQ(A) = eu arccos(−1
2 )eu arccos( 1

2 )

= (
1

4
− i

4
− j

4
− k

4
)(

1

4
+
i

4
+
j

4
+
k

4
)

=
−1

4
+

1

4
(i+ j + k)

Then, we can get the probability of PQ(B)PQ(A), |PQ(B)PQ(A)| = 1
2 .

Hence, we can get the conclusion that |PQ(A)PQ(B)| = |PQ(B)PQ(A)|.
Since the quaternion multiplication indicates the rotation of the four dimen-

sional space, so the quaternion doesn’t conform to the commutative law of mul-
tiplication. However, relying on the quaternion multiplication formula, we can
find the conclusion as follow. If the three imaginary values of the base spaces
of quaternions, u1 = u1xi + u1yj + u1zk and u2 = u2xi + u2yj + u2zk, is pro-
portional, which is means that u1x

u2x
=

u1y

u2y
= u1z

u2z
, then the quaternion probability

satisfies commutative law of multiplication.
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Definition 3.3. (The Quaternion Full Joint Probability)

PQ(X1, X2, . . . , Xn) =

n∏
i=1

PQ(Xi|Ps(Xi)) (7)

Where X is the variables list and Ps(Xi) represents the nodes, which are
pointing to Xi.

Definition 3.4. (The Quaternion Conditional Probability)

PQ(X|Q) = β[Σy∈Y PQ(X,Q, y)] (8)

Where β = 1
Σx∈XPQ(X,Q) . Q is the list of observed variables nodes and y

is the remaining unobserved variables nodes in the logic network, the β is the
normalization factor for the distribution PQ(X|Q).

4. Quantum Decision Making

An quantum application is the categorization decision-making experiment
paradigm [58]. It was proposed be Townsend [59], which studies the interac-
tions between categorization and decision making. The experiment involved two
models, which are categorization decision-making(C-D) condition and decision
alone(D alone). In categorization decision-making condition, participants were
shown pictures of faces. Then, participants were asked to categorize the face as
”bad”(B) guy or ”good”(G) guy or a and make a decision to ”attack”(A) or to
”withdraw”(W). In decision alone condition, participants were asked to catego-
rize the face as ”bad”(B) guy or ”good”(G) guy or a and make a decision to
”attack”(A) or to ”withdraw”(W) directly. The experiment results are shown
as Tab. 1:

Table 1: The results of the C-D condition and D alone condition

Facetype P (G) P (A|G) P (B) P (A|B) PT P (A)

Wide 0.84 0.35 0.16 0.52 0.37 0.39

Narrow 0.17 0.41 0.83 0.63 0.59 0.69

In this paper, ten experts were invited to update the probability in Tab. 1
to quaternion probability as Tab. 2.

Table 2: The quaternion probability of C-D condition and D alone condition

Facetype P (G) P (A|G) P (B) P (A|B)

Wide 0.84eu1θ1 0.35eu2θ2 0.16eu3θ3 0.52eu4θ4

Narrow 0.17eu5θ5 0.41eu6θ6 0.83eu7θ7 0.63eu8θ8
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Now, relying on the equation as follow:

P (A) = P (G)P (A|G) + P (B)P (A|B) (9)

In categorization decision-making condition, we can obtain the equation as
follow:

P (A) = 0.84eu1θ1 ∗ 0.35eu2θ2 + 0.16eu3θ3 ∗ 0.52eu4θ4

= 0.294eu2θ
′
1 + 0.0832eu2θ

′
2

(10)

Where, θ1 + θ2 = θ
′

1 and θ3 + θ4 = θ
′

2.
According to the experts, |θ′1 − θ

′

2| = 27.122807498323960042421609926546
and u1 = u2 = u3 = u4 = i

3 + 2j
3 + 2k

3 .
Then, we can get that p(A) = 0.37.
In decision alone condition, we can obtain the equation as follow:

P (A) = 0.17eu5θ5 ∗ 0.41eu6θ6 + 0.83eu7θ7 ∗ 0.63eu8θ8

= 0.0697eu2θ
′
3 + 0.5229eu2θ

′
4

(11)

Where, θ5 + θ6 = θ
′

3 and θ7 + θ8 = θ
′

4.
According to the experts, |θ′3 − θ

′

4| = 16.700947305146110026626992621484
and u5 = u6 = u7 = u8 = 2i

3 + 2j
3 + k

3 .
Then, we can get that p(A) = 0.59.
Now the quaternion probability is as as Tab. 3.

Table 3: The quaternion results of the C-D condition and D alone condition

Facetype P (G) P (A|G) P (B) P (A|B) PT P (A)

Wide 0.84eu1θ1 0.35eu2θ2 0.16eu3θ3 0.52eu4θ4 0.37 0.37

Narrow 0.17eu5θ5 0.41eu6θ6 0.83eu7θ7 0.63eu8θ8 0.59 0.59

In this case, the P (A) is equal to PT , either in the case of categoriza-
tion decision-making condition or in the case of decision alone condition. The
bayesian updating quaternion probability is under four-dimensional space, which
has strong spatial and information description ability, so it can accurately get
the desired result in this experiment.

5. Conclusion

This paper proposes bayesian updating quaternion probability, which is the
extent of classical bayesian updating with the aid of the quaternion theory. This
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paper proposes quatenion probability, which is based on the quaternion theory
and classical probability theory. With the definition of quaternion probability,
the quaternion probability multiplication has been proposed, which satisfies the
commutative law of multiplication under some special cases. The quaternion
full joint probability and the quaternion are proposed, which means that the
quaternion theory can be applied to the bayesian updating. Numerical examples
are applied to verify the validity of the bayesian updating quaternion probability.
The experimental results demonstrate that the proposed model can address
the probability issues of bayesian updating with the aid of quaternion theory
effectively.

Acknowledgements

Funding: The work is partially supported by National Natural Science Foun-
dation of China (Grant No. 61973332).

Compliance with Ethical Standards

All the authors certify that there is no conflict of interest with any individual
or organization for the present work. This article does not contain any studies
with human participants or animals performed by any of the authors.

[1] J. Shi, X. Li, F. Khan, Y. Chang, Y. Zhu, G. Chen, Artificial bee colony
based bayesian regularization artificial neural network approach to model
transient flammable cloud dispersion in congested area, Process Safety and
Environmental Protection 128 (2019) 121–127.

[2] I. Dzitac, F. G. Filip, M.-J. Manolescu, Fuzzy logic is not fuzzy: World-
renowned computer scientist lotfi a. zadeh, International Journal of Com-
puters Communications & Control 12 (6) (2017) 748–789.

[3] S. Boulkaboul, D. Djenouri, Dfiot: Data fusion for internet of
things, Journal of Network and Systems Managementdoi:10.1007/
s10922-020-09519-y.

[4] C. Chen, L. Zhang, R. L. K. Tiong, A novel learning cloud bayesian network
for risk measurement, Applied Soft Computing 87 (2020) 105947.

[5] M. Jiang, J. Lu, Z. Yang, J. Li, Risk analysis of maritime accidents along
the main route of the maritime silk road: a bayesian network approach,
Maritime Policy & Management (2020) 1–18.

[6] S. Romagnoli, A vague multidimensional dependency structure: Condi-
tional versus unconditional fuzzy copula models, Information Sciences 512
(2019) 1202–1213.

10

http://dx.doi.org/10.1007/s10922-020-09519-y
http://dx.doi.org/10.1007/s10922-020-09519-y


[7] J. R. Busemeyer, Z. Wang, A. Lambert-Mogiliansky, Empirical comparison
of markov and quantum models of decision making, Journal of Mathemat-
ical Psychology 53 (5) (2009) 423–433.

[8] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Ca-
landra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., Ad-
vanced capabilities for materials modelling with quantum espresso, Journal
of Physics: Condensed Matter 29 (46) (2017) 465901.

[9] Z. Huang, L. Yang, W. Jiang, Uncertainty measurement with belief entropy
on the interference effect in the quantum-like bayesian networks, Applied
Mathematics and Computation 347 (2019) 417–428.

[10] M. Goyal, C. Gupta, Intuitionistic fuzzy decision making towards efficien-
t team selection in global software development, Journal of Information
Technology Research (JITR) 13 (2) (2020) 75–93.

[11] A. Arya, S. Yadav, A new approach to rank the decision making units in
presence of infeasibility in intuitionistic fuzzy environment, Iranian Journal
of Fuzzy Systems 17 (2) (2020) 183–199.

[12] J. Wang, G. Wei, R. Wang, F. E. Alsaadi, T. Hayat, C. Wei, Y. Zhang,
J. Wu, Some q-rung interval-valued orthopair fuzzy maclaurin symmetric
mean operators and their applications to multiple attribute group decision
making, International Journal of Intelligent Systems 34 (11) (2019) 2769–
2806.

[13] P. Liu, W. Liu, Multiple-attribute group decision-making method of lin-
guistic q-rung orthopair fuzzy power muirhead mean operators based on
entropy weight, International Journal of Intelligent Systems 34 (8) (2019)
1755–1794.

[14] T. Wen, Y. Deng, Identification of influencers in complex networks by local
information dimensionality, Information Sciences 512 (2020) 549–562.

[15] T. Wen, D. Pelusi, Y. Deng, Vital spreaders identification in complex
networks with multi-local dimension, Knowledge-Based Systems (2020)
10.1016/j.knosys.2020.105717.

[16] N. Khan, S. Anwar, Time-domain data fusion using weighted evidence and
dempster–shafer combination rule: Application in object classification, Sen-
sors 19 (23) (2019) 5187.

[17] H. Seiti, A. Hafezalkotob, Developing pessimistic–optimistic risk-based
methods for multi-sensor fusion: An interval-valued evidence theory ap-
proach, Applied Soft Computing 72 (2018) 609–623.

[18] A. D. Jaunzemis, M. J. Holzinger, M. W. Chan, P. P. Shenoy, Evidence
gathering for hypothesis resolution using judicial evidential reasoning, In-
formation Fusion 49 (2019) 26–45.

11



[19] I.-M. Dragan, A. Isaic-Maniu, An innovative model of reliabilitythe pseudo-
entropic model, Entropy 21 (9) (2019) 846.

[20] T. Wen, Y. Deng, The vulnerability of communities in complex networks:
An entropy approach, Reliability Engineering & System Safety 196 (2020)
106782. doi:10.1016/j.ress.2019.106782.

[21] A. T. . Tams Sndor Bir, Zoltn Nda, Entropic divergence and en-
tropy related to nonlinear master equations, Entropy 21 (10) (2019)
doi:10.3390/e21100993.

[22] X. Gao, Y. Deng, The pseudo-pascal triangle of maximum deng entropy, In-
ternational Journal of Computers Communications & Control 15 (1) (2020)
1006. doi:10.15837/3735/ijccc.2020.1.3735.

[23] M. Li, H. Xu, Y. Deng, Evidential Decision Tree Based on Belief Entropy,
Entropy 21 (9) (2019) 897. doi:{10.3390/e21090897}.

[24] F. Liu, X. Gao, J. Zhao, Y. Deng, Generalized belief entropy and its appli-
cation in identifying conflict evidence, IEEE Access 7 (1) (2019) 126625–
126633.

[25] L. Wang, S.-Q. Ye, K. H. Cheong, W. Bao, N.-g. Xie, The role of emotions
in spatial prisoner dilemma game with voluntary participation, Physica A:
Statistical Mechanics and its Applications 490 (2018) 1396–1407.

[26] J. M. Koh, K. H. Cheong, New doubly-anomalous parrondo games suggest
emergent sustainability and inequality, Nonlinear Dynamics 96 (1) (2019)
257–266.

[27] L. Wei, Skewness of von neumann entanglement entropy, Journal of Physics
A: Mathematical and Theoretical 53 (7) (2020) 075302.

[28] R. Longo, F. Xu, Von neumann entropy in qft, Communications in Math-
ematical Physics (2020) 1–24.

[29] A. Firouzi, M. Khayyati, Bayesian updating of copula-based probabilistic
project-duration model, Journal of Construction Engineering and Manage-
ment 146 (5) (2020) 04020046.

[30] K. Guo, X. Zhang, X. Kuai, Z. Wu, Y. Chen, Y. Liu, A spatial bayesian-
network approach as a decision-making tool for ecological-risk prevention
in land ecosystems, Ecological Modelling 419 (2020) 108929.

[31] L. Ierimonti, I. Venanzi, N. Cavalagli, F. Comodini, F. Ubertini, An in-
novative continuous bayesian model updating method for base-isolated rc
buildings using vibration monitoring data, Mechanical Systems and Signal
Processing 139 (2020) 106600.

12

http://dx.doi.org/10.1016/j.ress.2019.106782
http://dx.doi.org/10.15837/3735/ijccc.2020.1.3735
http://dx.doi.org/{10.3390/e21090897}
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