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Summary

In this paper we consider general multivector elements of Clifford algebras Cl(p, q),
p+q < 3, and studymultivector factorization into products of exponentials and idem-
potents, where the exponents are blades of grades zero (scalar) to n (pseudoscalar).
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1 INTRODUCTION

The polar representation of complex numbers and of quaternions are widely known. They employ exponential functions with
imaginary and pure vector arguments, respectively. We therefore generalize this approach here and look for analogous factoriza-
tions of real Clifford algebra multivectors in Cl(p, q), p+ q < 3, where whenever possible each factor is given by an exponential
function with scalar argument (amplitude of the multivector), vector argument (the vector may have zero, negative or positive
square), or with a bivector argument (the bivector may have negative or positive square). We find that in some cases idempotent
factors (which are not invertible) occur, and in the final result up to eight case distinctions may be required, that are inherited
from hyperbolic planes. In each case we specify whether a multivector is invertible or not. If it is invertible we also specify the
factorization of the inverse as a form of corollary to the original factorization of the multivector itself. We use Clifford geomet-
ric algebras as defined in2,5,14,8. Factorization in terms of exponential functions is naturally related to logarithms in geometric
algebra1. An alternative treatment of multivector elements in terms of tensor products of quaternions can be found in4.
As summarized in the conclusions (Section 8) the computational approach taken in this work and the results obtained may be

relevant in special relativity (one-dimensional space, one-dimensional time), for the construction and geometric understanding
of kernels of integral transformations, in the study of versors, pinors and spinors, polar decomposition of multivectors, roots of
multivectors, in physics, signal- and image processing, neural network computations, computer algebra, encryption, robotics,
computer vision, etc. The results that will be obtained will also be of immediate use in higher dimensional Clifford algebras,
whenever the low-dimensional algebras we consider here appear as subalgebras. A promising route to further extend our results
may be the quaternion type classification scheme of Clifford algebras developed in18.
The paper is structured as follows. Because of its importance in the main part of the paper, we first treat hyperbolic numbers

in hyperbolic planes in Section 2. This directly leads to the factorization of multivectors in Cl(1, 0) of Section 3, followed
by the factorization of multivectors in Cl(0, 1) of Section 4, isomorphic to complex numbers. Then we treat the multivector
factorization in Cl(2, 0) in Section 5, the most interesting case of Cl(1, 1) in Section 6, and factorization in Cl(0, 2) in Section
7, the latter being isomorphic to quaternions. The paper ends with conclusions (including a table summarizing the results and
remarks on possible applications) in Section 8, followed by references.

0Soli Deo Gloria. Dedicated to Rev. Ralph A. Smith (Mitaka, Tokyo, Japan) on the occasion of his 70th birthday and to Prof. K. Gürlebeck (Weimar, Germany) on
the occasion of his 60th birthday. The use of this paper is subject to the Creative Peace License 6.



2

2 HYPERBOLIC PLANES

An element u ≠ 1 that squares to u2 = +1 generates a hyperbolic plane {b+au}, a, b ∈ ℝ with basis {1, u}. An alternative basis
{id−, id+} is given by two idempotents

id+ = 1 + u
2

, id− = 1 − u
2

, id+ + id− = 1, id+ − id− = u,

id2+ = id+, id2− = id−, id+id− = id−id+ = 0. (2.1)

Adopting the definitions

x0 = 1, 0! = 1, ex =
k=∞
∑

k=0

xk

k!
, (2.2)

for powers of a general element x and its exponential, we obtain for a ∈ ℝ

ea id± = 1 + (ea − 1)id±, eau = cosh a + u sinh a. (2.3)

Remark 2.1. In this paper we do not make further use of ea id± . But we note that even though id± is not invertible, ea id± has
inverse e−a id± , similar to null-vectors not being invertible, but their exponential functions have a multiplicative inverse.

General nonzero elementsm = b+au of the hyperbolic plane can be classified by whether |a| = |b|, or |a| ≠ |b|. For |a| = |b|
we have the four subcases

b = a > 0, m = 2b id+,
b = a < 0, m = 2b id+ = −2|b| id+,
b = −a > 0, m = 2b id−,
b = −a < 0, m = 2b id− = −2|b| id−.

(2.4)

Examples are for each line of (2.4): 1 + u = 2(1 + u)∕2 = 2id+,−2 − 2u = −4(1 + u)∕2 = 4(−id+), 3 − 3u = 6(1 − u)∕2 =
6id−,−4 + 4u = −8(1 − u)∕2 = 8(−id−). Thus for |a| = |b| ≠ 0 we can always represent m as

m = 2|b|ℎid(u), ℎid(u) = ±id+ or ℎid(u) = ±id−, (2.5)

and therefore as
m = e�0ℎid(u), �0 = ln(2|b|). (2.6)

Note that ℎid(u)2 = id±. The four values of ℎid(u) specify four bisector directions, one in each quadrant of the hyperbolic plane.
Because idempotents id± are not invertible, hyperbolic numbers with |a| = |b| cannot be inverted.
For general (evidently nonzero) elements m = b + au with |a| ≠ |b| we also have four subcases

b > |a| ≥ 0, m = b + au,
a > |b| ≥ 0, m = (a + bu)u,
b < −|a| ≤ 0, m = −(b + au),
a < −|b| ≤ 0, m = −(a + bu)u.

(2.7)

Examples for (2.7) are line by line: 4 ± u,±1 + 4u = (4 ± u)u,−4 ∓ u = −(4 ± u),∓1 − 4u = −(4 ± u)u. Thus for |a| ≠ |b| we
can always represent any m as

m = (� + �u)ℎ(u), ℎ(u) = ±1, or ℎ(u) = ±u, (2.8)
such that � > |�| ≥ 0, and therefore m can be factored as

m = e�0m′ = e�0e�uuℎ(u), �0 =
1
2
ln(�2 − �2), �u = atanh(�∕�). (2.9)

In the examples for (2.7) we have � = ±1, � = 4, �0 ≈ 1.35, �u ≈ ±0.255. Note that ℎ(u)2 = 1 and therefore ℎ(u)−1 = ℎ(u). The
four possible values of ℎ(u) specify the four quadrants in the hyperbolic plane, delimited by two straight lines (bisectors) with
directions id±. The inverse of hyperbolic numbers with |a| ≠ |b| can always be computed as

m−1 = e−�0e−�uuℎ(u). (2.10)

In summary, any m = b + au ≠ 0 in the hyperbolic plane can be factorized as

m = E(m) = E(a, b, u) = e�0
{

ℎid(u) for |a| = |b|,
e�uuℎ(u) for |a| ≠ |b|.

(2.11)

Note that we introduce the new notationE(m) = E(a, b, u) to indicate the factorization (2.11) in terms of one or two exponential
functions and eight possible values. The computation of the factorization (2.11) is based on (2.4) to (2.6) for the first four cases
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involving idempotents, i.e. ℎid(u) ∈ {+id+,−id+,+id−,−idi}, and on (2.7) to (2.9) for the remaining four cases involving the
hyperbolic exponential factor and ℎ(u) ∈ {+1,−1,+u,−u}. The hyperbolic number m is only invertible for |a| ≠ |b|.

3 FACTORIZATION IN CL(1, 0)

The algebra Cl(1, 0) is isomorphic to hyperbolic numbers. A general element m ∈ Cl(1, 0) is given by

m = m0 + m1e1, e21 = 1, m0, m1 ∈ ℝ. (3.1)

We simply use the representation of the hyperbolic plane discussed previously setting u = e1, b = m0, a = m1, and �1 = �u to
obtain from (2.11) the factorization

m = E(m) = E(m1, m0, e1). (3.2)
The element m ∈ Cl(1, 0) can only be inverted for |m1| ≠ |m0|, where m is obviously non-zero for |m1| ≠ |m0|.

4 FACTORIZATION IN CL(0, 1)

The algebra Cl(0, 1) is isomorphic to complex numbers ℂ. A general element m ∈ Cl(0, 1) is given by

m = m0 + m1e1, e21 = −1, m0, m1 ∈ ℝ. (4.1)

If m is non-zero it can therefore be represented in the polar form of complex numbers

m = e�0m′ = e�0e�1e1 , � = 1
2
ln(m2

0 + m
2
1), �1 = atan2(m1, m0), (4.2)

where atan2 selects an angle between 0 and 2� taking the signs of m1 and m0 into account. In particular for positive m1 and m0
we simply have atan2(m1, m0) = atan(m1∕m0), etc. The inverse of any non-zero m ∈ Cl(0, 1) is given by

m−1 = e−�0e−�1e1 . (4.3)

5 FACTORIZATION IN CL(2, 0)

A general nonzero element m ∈ Cl(2, 0) can be represented as

m = m0 + m1e1 + m2e2 + m12e12, m0, m1, m2, m12 ∈ ℝ, (5.1)

with
e21 = e22 = −e212 = 1, e1e12 = −e12e1, e2e12 = −e12e2. (5.2)

We can rewrite m as

m = m1e1 + m2e2 + m0 + m12e12 = au′ + bR,

a =
√

m2
1 + m

2
2, b =

√

m2
0 + m

2
12,

u′ = (m1e1 + m2e2)∕a, R = (m0 + m12e12)∕b, u′2 = RR̃ = 1. (5.3)

If m1e1 + m2e2 = 0 or m0 + m12e12 = 0, then the factorization is already complete in the form

m = bR = e�0e�2e12 , �0 = ln(b), �2 = atan2(m12, m0),

R = e�2e12 , R−1 = e−�2e12 = R̃, m−1 = e−�0e−�2e12 , (5.4)

or

m = au′ = e�
′
0u′, �′0 = ln(a), m̃ = m, m−1 = e−�

′
0u′, (5.5)
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respectively. The operation R → R̃ specifies the reversion anti-involution of Clifford geometric algebra5. We therefore assume
from now on that both m1e1 + m2e2 ≠ 0 and m0e2 + m12e1 ≠ 0, and compute

m = au′ + bR = (au′R−1 + b)R = (au + b)R,

u = u′R−1 = Ru′, u2 = uu = ũu = u′R̃Ru′ = 1. (5.6)

We can therefore always rewrite m ∈ Cl(2, 0) as

m = E(b + au)R = E(a, b, u)R, (5.7)

where E(a, b, u) is given by (2.11). This leads to the general factorization (with R from (5.3))

m = E(a, b, u)e�2e12 , �2 = atan2(m12, m0), R = e�2e12 . (5.8)

The inverse of m ∈ Cl(2, 0) exists only iff a ≠ b, where a, b are defined in (5.3)

m−1 = R−1(E(a, b, u)
)−1 = R̃

(

E(a, b, u)
)−1, (5.9)

where
(

E(a, b, u)
)−1 is defined as m−1 in (2.10). We further note that the factor ℎ(u) in E(a, b, u) of (5.8) can now be restricted

to four (instead of eight) values ℎ(u) ∈ {1, e12, id−, id+}, because a negative sign can always be absorbed in the factor e�2e12 by
changing the angle �2 → �2 + �.

6 FACTORIZING CL(1, 1)

A general (non-zero) multivector in Cl(1, 1) is given as

m = m0 + m1e1 + m2e2 + m12e12, (6.1)

with
e21 = −e22 = e212 = 1, e1e12 = −e12e1, e2e12 = −e12e2, (6.2)

where at least one of the four real coefficients m0, m1, m2, m12 is taken to be different from zero. In two-dimensional special
relativity e1 can specify the space direction and e2 the time direction (or vice versa).
If the vector part should equal zero, then the factorization simply becomes

m = E(m12, m0, e12), (6.3)

applying equation (2.11). In this case m is invertible using (2.10), iff |m0| ≠ |m12|.
If the even part m0 + m12e12 should be zero, then the factorization only applies to the vector part m1e1 + m2e2 and its two

cases discussed below in detail.
We consider in the next two subsections the case that the vector part of m is not zero, but squares to zero (light like, no inverse

exists):
(m1e1 + m2e2)2 = m2

1 − m
2
2 = 0 ⇔ |m1| = |m2| ≠ 0, (6.4)

or the non-zero square case (implying that the vector part of m is not zero and is invertible) that has either positive square (space
like)

(m1e1 + m2e2)2 > 0 ⇔ |m1| > |m2|, (6.5)
or negative square (time like)

(m1e1 + m2e2)2 < 0 ⇔ |m1| < |m2|. (6.6)

6.1 Light like vector part in Cl(1, 1)
In this subsection we assume that the vector partm1e1+m2e2 ofm is not zero, but squares to zero, and therefore |m1| = |m2| ≠ 0.
We define two more zero vectorsN,N ′ by rescaling and component sign change as

m1e1 + m2e2 = AN, A =
√

2|m1|, (6.7)

N = 1
√

2
(
m1

|m1|
e1 +

m2

|m1|
e2), N ′ = 1

√

2
(
m1

|m1|
e1 −

m2

|m1|
e2), (6.8)
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such that

N ⋅N ′ = 1
2
(
m1

|m1|
e1 +

m2

|m1|
e2) ⋅ (

m1

|m1|
e1 −

m2

|m1|
e2) =

1
2
(
m2

1

|m1|
2
e21 −

m2
2

|m1|
2
e2)

|m1|=|m2|= 1
2
(1 − (−1)) = 1. (6.9)

Remark 6.1. The pair of null-vectors N,N ′ also famously appears in conformal geometric algebra Cl(4, 1) or its extensions
to quadrics and higher order curves and surfaces, as representations for the origin and the point at infinity, compare e.g. equ. (1)
in13.

If the even part m0 + m12e12 should equal zero, then the final factorization is

m = e�0N, �0 = ln(A) = ln(
√

2|m1|). (6.10)

In this case m cannot be inverted, becauseN has no inverse.
If the even part m0 + m12e12 does not equal zero, we distinguish under the light like vector part assumption between the

subcases |m0| ≠ |m12| and |m0| = |m12|.

6.1.1 Assuming |m0| ≠ |m12|

Now the even part m0 + m12e12 is a hyperbolic number with b = m0, a = m12 and u = e12. We can therefore apply (2.7) to (2.9)
for the factorization of a hyperbolic number, that is not proportional to an idempotent:

m0 + m12e12 = e�0e�12e12ℎ(e12). (6.11)

And therefore
m = AN + e�0e�12e12ℎ(e12), (6.12)

which we rewrite as

m = [ANe−�0e−�12e12ℎ(e12) + 1]e�0e�12e12ℎ(e12)
= [Z + 1]e�0e�12e12ℎ(e12), (6.13)

with vector
Z = ANe−�0e−�12e12ℎ(e12). (6.14)

We remind ourselves that
ℎ(e12)2 = 1, ℎ(e12)−1 = ℎ(e12). (6.15)

That Z is indeed a vector follows immediately from the multiplication table of Cl(1, 1), where a vector times a scalar gives a
rescaled vector and a vector times a bivector gives a rotated vector, because e−�12e12ℎ(e12) is a sum of scalar plus bivector parts.
Furthermore, the vector Z is also light like:

Z2 = ANe−�0e−�12e12ℎ(e12)ANe−�0e−�12e12ℎ(e12)
= A2e−2�0Ne−�12e12ℎ(e12)Ne−�12e12ℎ(e12)
= A2e−2�0Ne−�12e12e+�12e12ℎ(e12)Nℎ(e12)
= A2e−2�0Nℎ(e12)Nℎ(e12) = ±A2e−2�0NN = 0, (6.16)

where we used that vectors and e12 anticommute, that vectors and ℎ(e12) either commute or anticommute depending on whether
ℎ(e12) = ±1 or ℎ(e12) = ±e12, and thatN2 = 0.
Because Z = Z1e1 +Z2e2 squares to zero, we must have |Z1| = |Z2|. This motivates us to rescale Z to

Z =
√

2|Z1|z = �1z, �1 =
√

2|Z1|, z = 1
�1
Z, z2 = 0. (6.17)

With this in mind, we can rewrite m as

m = (1 +Z)e�0e�12e12ℎ(e12) = (1 + �1z)e�0e�12e12ℎ(e12)
= e�1ze�0e�12e12ℎ(e12) = e�0e�1ze�12e12ℎ(e12), (6.18)



6

the final factorization with the help of three exponential functions, where the exponents are a scalar, a zero vector and a bivector,
respectively. This result also shows that in this case m is invertible with

m−1 = e−�12e12ℎ(e12)e−�1ze−�0 = e−�0e−�1z′e−�12e12ℎ(e12),
z′ = e−�12e12ℎ(e12) z e�12e12ℎ(e12), z′2 = 0. (6.19)

6.1.2 Assuming |m0| = |m12| ≠ 0
Now we have |m1| = |m2| ≠ 0, and |m0| = |m12| ≠ 0, and therefore we rewrite m as

m = m1e1 + m2e2 + m0 + m12e12
= 2m1

1
2
(e1 +

m2

m1
e2) + 2m0

1
2
(1 +

m12

m0
e12)

= 2m1e1
1
2
(1 +

m2

m1
e12) + 2m0

1
2
(1 +

m12

m0
e12). (6.20)

Because m2

m1
= ±1 and m12

m0
= ±1we know that the two expressions in round brackets will equal the idempotents id± = 1

2
(1±e12).

That gives us four combinations, depending on the relative signs of the coefficients {m1, m2, m0, m12}:

m =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

2m1e1id+ + 2m0 id+, for m1 = m2, m0 = m12,
2m1e1id− + 2m0 id+, for m1 = −m2, m0 = m12,
2m1e1id+ + 2m0 id−, for m1 = m2, m0 = −m12,
2m1e1id− + 2m0 id−, for m1 = −m2, m0 = −m12.

(6.21)

Examples for multivectors with this property (line by line in (6.21)) are: 2e1 +2e2 +3+3e12 = 4e1(1 + e12)∕2+ 6(1+ e12)∕2 =
4e1id++6id+, 2e1−2e2+3+3e12 = 4e1id−+6id+, 2e1+2e2+3−3e12 = 4e1id++6id−, 2e1−2e2+3−3e12 = 4e1id−+6id−.
Note that a linear combination of idempotents in the hyperbolic plane normally is not an idempotent, since the idempotents
in the hyperbolic plane are an alternative basis, such that all elements of the hyperbolic plane can be represented in this way,
compare (2.1) with u = e12. But the first coefficient 2m1e1 is not a scalar, and has the following commutation property

e1e12 = −e12e1 ⇔ e1id± = id∓e1, (6.22)

we will therefore compute the square of m in each case. We indicate the specific combination of idempotents with two sign
indexes

m2
++ = (2m1e1id+ + 2m0 id+)2 = 4(m1e1id+ + m0 id+)(m1e1id+ + m0 id+)

= 4(m2
1e1id+e1id+ + m1m0(e1id+ id+ + id+e1id+) + m2

0 id+ id+)
= 4(m2

1e
2
1id−id+ + m1m0e1(id+ id+ + id− id+) + m2

0 id+)
= 4(0 + m1m0e1(id+ + 0) + m2

0 id+) = 4m0(m1e1id+ + m0id+)
= 2m0m++. (6.23)

Exchanging in (6.23) all id+ ↔ id− we similarly obtain

m2
−− = (2m1e1id− + 2m0 id−)2 = 2m0m−−. (6.24)

Next we compute

m2
+− = (2m1e1id+ + 2m0 id−)2 = 4(m1e1id+ + m0 id−)(m1e1id+ + m0 id−)

= 4(m2
1e1id+e1id+ + m1m0(e1id+ id− + id−e1id+) + m2

0 id− id−)
= 4(m2

1e
2
1id−id+ + m1m0e1(id+ id− + id+ id+) + m2

0 id−)
= 4(0 + m1m0e1(0 + id+) + m2

0 id−) = 4m0(m1e1id+ + m0id−)
= 2m0m+−. (6.25)

Exchanging in (6.25) all id+ ↔ id− we similarly obtain

m2
−+ = (2m1e1id− + 2m0 id+)2 = 2m0m−+. (6.26)
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TABLE 1 Multiplication table of idempotents m′
++, m

′
+−, m

′
−+, and m

′
−−. First column: left factors, first row: right factors.

m′
++(�1) m′

+−(�2) m′
−+(�3) m′

−−(�4)

m′
++(�1) m′

++(�1) 0

m′
++(�1)

+�3(�1 + e1)id− �4(�1 + e1)id−
= �1id−(�3 + e1)

+m′
−+(�3)

m′
+−(�2) (�1 + �2)e1id+ m′

+−(�2) �2id−(�3 + e1) (1 + �4�2)id−
m′

−+(�3) (1 + �1�3)id+ �3id+(�2 + e1) m′
−+(�3) (�4 + �3)e1id−

m′
−−(�4)

m′
−−(�4)

0 m′
−−(�4)

�1(�4 + e1)id+ +�2(�4 + e1)id+
= �4id+(�2 + e1)

+m′
+−(�2)

We can therefore summarize the uniform result of m2 for |m1| = |m2| ≠ 0, and |m0| = |m12| ≠ 0 as

m2 = 2m0m, (6.27)

which means that
m′ = m

2m0
=
m1

m0
e1id± + id±, (6.28)

where all four sign combinations are meant to be included, is also an idempotent in Cl(1, 1)

m′m′ = m2

4m2
0

=
2m0m
4m2

0

= m
2m0

= m′. (6.29)

Depending on the positive or negative sign of m0 we have the following factorization

m = 2m0m
′ = ±e�0m′, �0 = ln(2|m0|), (6.30)

in terms of a sign, a scalar exponential and an idempotent. Because idempotents cannot be inverted, multivectors m ∈ Cl(1, 1)
with |m1| = |m2| ≠ 0, and |m0| = |m12| ≠ 0 can in full generality not be inverted.
Equation (6.28) in principle represents four one-parameter (� = m1

m0
) families of idempotents:

m′
++ = �e1id+ + id+ = (1 + �e1)id+, (6.31)

m′
+− = �e1id+ + id− = id−�e1 + id− = id−(1 + �e1), (6.32)

m′
−+ = �e1id− + id+ = id+�e1 + id+ = id+(1 + �e1), (6.33)

m′
−− = �e1id− + id− = (1 + �e1)id−. (6.34)

In the examples for (6.21) above we simply have 2m0 = 6, �0 ≈ 1.79, � = m1∕m0 = 2∕3. It may be of interest to know more
about these idempotents. They all are the sum of id± plus a null vector e1id± or id±e1, since

(e1id±)2 = e1id±e1id± = e1e1id∓id± = 0, (6.35)

and similarly
(id±e1)2 = 0. (6.36)

To learn more about them, we computed the full multiplication table Table 1 using instead of a single parameter � ∈ ℝ ⧵ {0}
the parameters �k and �k, k = 1, 2, 3, 4. All computations can be done easily based on (2.1) and (6.22). Note that with the choice
�1 = 1∕�4 = −1∕�3 = −�2 (assuming �4 ≠ 0, �3 ≠ 0) we would obtain four more zeros in the table, see Table 2 .

6.2 Space like or time like vector part in Cl(1, 1), |m1| ≠ |m2|

We now study for m ∈ Cl(1, 1) the case that the vector part m1e1 + m2e2 does not square to zero. We subdivide this case into
the even grade part m0 + m12e12 not proportional to an idempotent (|m0| ≠ |m12|), and the even part being proportional to an
idempotent (|m0| = |m12|).
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TABLE 2 Multiplication table of idempotents m′
++, m

′
+−, m

′
−+, and m

′
−−, choosing �1 = 1∕�4 = −1∕�3 = −�2. First column:

left factors, first row: right factors.

m′
++(�1) m′

+−(�2) m′
−+(�3) m′

−−(�4)

m′
++(�1) m′

++(�1) 0

m′
++(�1)

+�3(�1 + e1)id− �4(�1 + e1)id−
= �1id−(�3 + e1)

+m′
−+(�3)

m′
+−(�2) 0 m′

+−(�2) �2id−(�3 + e1) 0
m′

−+(�3) 0 �3id+(�2 + e1) m′
−+(�3) 0

m′
−−(�4)

m′
−−(�4)

0 m′
−−(�4)

�1(�4 + e1)id+ +�2(�4 + e1)id+
= �4id+(�2 + e1)

+m′
+−(�2)

6.2.1 Space like or time like vector part in Cl(1, 1) and the even part of m not proportional to an
idempotent
Now we start with |m1| ≠ |m2| and |m0| ≠ |m12|. That means that both the vector part and the even grade part cannot be zero.
Following equations (2.7) to (2.9) and setting b = m0, a = m12, u = e12 and �12 = �u we can represent the (invertible) even part
m0 + m12e12 as

m0 + m12e12 = e�
′
0e�12e12ℎ(e12), (6.37)

and insert this in m as

m = m1e1 + m2e2 + e�
′
0e�12e12ℎ(e12)

= [(m1e1 + m2e2)e−�
′
0e−�12e12ℎ(e12) + 1]e�′0e�12e12ℎ(e12)

= [V + 1]e�′0e�12e12ℎ(e12), (6.38)

where the vector V will have a positive or negative square. We compute the square of V as

V 2 = (m1e1 + m2e2)e−�
′
0e−�12e12ℎ(e12)(m1e1 + m2e2)e−�

′
0e−�12ℎ(e12)

= (m1e1 + m2e2)e−2�
′
0e−�12e12e�12e12ℎ(e12)(m1e1 + m2e2)ℎ(e12)

= (m1e1 + m2e2)ℎ(e12)(m1e1 + m2e2)ℎ(e12)

= e−2�
′
0

{

(m1e1 + m2e2)2 for ℎ(e12) = ±1,
−(m1e1 + m2e2)2 for ℎ(e12) = ±e12

= e−2�
′
0

{

m2
1 − m

2
2 for ℎ(e12) = ±1,

m2
2 − m

2
1 for ℎ(e12) = ±e12

, (6.39)

because e12 anticommutes with all vectors. We now divide the vector V by its magnitude

m = [1 + V ]e�′0e�12e12ℎ(e12) = [1 + av]e�′0e�12e12ℎ(e12), a =
√

|V 2
|. (6.40)

Depending on the sign of the square of V in (6.39), the square of v will be ±1.
For v2 = −1, which occurs for |m1| < |m2| and ℎ(e12) = ±1 or for |m1| > |m2| and ℎ(e12) = ±e12, we can factorize m as

m = e�0e�1ve�12e12ℎ(e12),

e�
′′
0 =

√

1 + a2, �′′0 = 1
2
ln(1 + a2), �0 = �′0 + �

′′
0 , �1 = atan(a). (6.41)

This result is invertible

m−1 = e−�12e12ℎ(e12)e−�1ve−�0 = e−�0e−�1v′e−�12e12ℎ(e12),
v′ = e−�12e12ℎ(e12) v e�12e12ℎ(e12), v′2 = v2 = −1. (6.42)
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Next we look at v2 = +1, which occurs for |m1| > |m2| and ℎ(e12) = ±1 or for |m1| < |m2| and ℎ(e12) = ±e12. We distinguish
between a ≠ 1 and a = 1.
Assuming a ≠ 1 we obtain, with the help of (2.7) to (2.9) and setting b = 1, u = v, the factorization

1 + av = e�
′′
0 e�1vℎ(v), �′′0 = 1

2
ln(�2 − �2), �1 = atan(�∕�), (6.43)

and hence in this case

m = [1 + av]e�′0e�12e12ℎ(e12) = e�0e�1vℎ(v)e�12e12ℎ(e12),
�0 = �′0 + �

′′
0 , (6.44)

where m is invertible

m−1 = e−�12e12ℎ(e12)e−�1vℎ(v)e−�0 = e−�0e−�1v′′ℎ(v′′)e−�12e12ℎ(e12),
v′′ = e−�12e12ℎ(e12) v e�12e12ℎ(e12), v′′2 = v2 = −1. (6.45)

Assuming instead a = 1 we obtain

1 + av = 1 + v = 21
2
(1 + v) = eln(2) 1

2
(1 + v) (6.46)

with idempotent 1
2
(1 + v). Hence, in this case we get

m = [1 + av]e�′0e�12e12ℎ(e12) = e�0 1
2
(1 + v)e�12e12ℎ(e12),

�0 = ln(2) + �′0, (6.47)

and because of the idempotent factor 1
2
(1 + v) the multivector m will in this case not be invertible.

Finally, we summarize the result for |m1| ≠ |m2| and |m0| ≠ |m12| as

m =

⎧

⎪

⎨

⎪

⎩

e�0e�1ve�12e12ℎ(e12) for v2 = −1,
e�0e�1vℎ(v)e�12e12ℎ(e12) for v2 = 1, a ≠ 1,
e�0 1

2
(1 + v)e�12e12ℎ(e12) for v2 = 1, a = 1.

(6.48)

The inverse (in two of three cases) can be summarized as

m−1 =

⎧

⎪

⎨

⎪

⎩

e−�0e−�12e12ℎ(e12)e−�1v for v2 = −1,
e−�0e−�12e12ℎ(e12)e−�1vℎ(v) for v2 = 1, a ≠ 1,
none for v2 = 1, a = 1.

(6.49)

Line by line examples for (6.48) are:

• 6 − 4e1 + 6e2 + 4e12 = 2(1 + e2)(3 + 2e12) ≈ e1.84e
�
4
e2e0.805e12 , with �0 = ln(2

√

2
√

32 − 22) ≈ 1.84, �1 = �∕4, v =
e2, ℎ(v) = 1, �12 = atanh(2∕3) ≈ 0.805, ℎ(e12) = 1,

• 24 + 30e1 + 20e2 + 16e12 = 2(5 + 4e1)e1(3 + 2e12) ≈ e2.60e1.10e1e1e0.805e12 , with �0 = ln(2
√

52 − 42
√

32 − 22) = ln(2 ∗
3
√

5) ≈ 2.60, �1 = atanh(4∕5) ≈ 1.10, v = e1, ℎ(v) = e1, �12 = atanh(2∕3) ≈ 0.805, ℎ(e12) = 1,

• 4 + 4e1 − 6e2 − 6e12 = 2(1 + e1)(2 − 3e12) = 2 ∗ 2 1+e1
2

(3 − 2e12)(−e12) ≈ e2.19 1+e1
2
e−0.805e12(−e12), with �0 = ln(2 ∗

2
√

32 − 22) ≈ 2.19, v = e1, a = 1, �12 = atanh(−2∕3) ≈ −0.805, ℎ(e12) = −e12.

We note that for v2 = 1, a = 1 the multivector m is not invertible, otherwise it is invertible, compare (6.49). For the first line of
(6.48) with v2 = −1 we note that ℎ(e12) can now be restricted to two values ℎ(e12) ∈ {1, e12}, instead of four values, because
a minus sign can always be absorbed in the factor e�1v by changing the angle �1 → �1 + �. For the second line of (6.48) we
further note that ℎ(e12) can now also be restricted to two values ℎ(e12) ∈ {1, e12}, instead of four values, because a minus sign
can always absorbed by the proper choice of sign for ℎ(v) ∈ {±1,±v}. Vice versa, we could also restrict ℎ(v) ∈ {1, v} and
accommodate a possible minus sign in the choice of ℎ(e12) ∈ {±1,±e12}.
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6.2.2 Space like or time like vector part in Cl(1, 1) and the even part of m zero or proportional to
an idempotent
Now we start with |m1| ≠ |m2| and |m0| = |m12|. If |m0| = |m12| = 0, then we can simply factorize the non-zero vector part as

m = m1e1 + m2e2 = e�0v, �0 =
1
2
ln(|m2

1 − m
2
2|),

v = me−�0 , v2 = ±1, (6.50)

where u is time like (space like), iffm is time like (space like). Obviously,mwith |m1| ≠ |m2| and |m0| = |m12| = 0 is invertible

m−1 = e−�0v−1, v−1 = v
v2
. (6.51)

If |m0| = |m12| ≠ 0, we can write m as
m = e�0v + 2m0

1
2
(1 +

m12

m0
e12), (6.52)

with m12∕m0 = ±1. Therefore
1
2
(1 +

m12

m0
e12) =

1
2
(1 ± e12) = id±, (6.53)

simply setting u = e12 in the idempotent definition (2.1). Thus

m = e�0v + 2m0id± = e�0v(1 + e−�0v−12m0id±). (6.54)

The vectorN = v−1id± must be a null-vector, because the vector v−1 anticommutes with e12
N2 = (v−1id±)2 = v−1id±v

−1id± = v−1v−1id∓id± = 0. (6.55)

We define n parallel toN as
n =

√

2N, (6.56)
and finally factorize m as

m = e�0v(1 + e−�0m0

√

2
√

2v−1id±) = e�0v(1 + e−�0m0

√

2 n)
= e�0v(1 + �1n) = e�0ve�1n = e�0e�1n′v (6.57)

with
�1 =

√

2e−�0m0, n′ = vnv−1. (6.58)
Obviously, for |m1| ≠ |m2| and |m0| = |m12| ≠ 0 we can always invert m ∈ Cl(1, 1) using

m−1 = e−�0e−�1nv−1 = e−�0v−1e−�1n′ . (6.59)

Note that (6.57) includes (6.50) as special case setting �1 = 0 in (6.57). Similarly, for �1 = 0 (6.59) includes (6.51) as special
case.

6.3 Alternative factorization for Cl(1, 1) using Cl(2, 0) ≅ Cl(1, 1)
The isomorphism Cl(2, 0) ≅ Cl(1, 1) with

1 = 1, E1 = e1, E2 = e12, E12 = e2, (6.60)

where {e1, e2} is the orthonormal basis of ℝ2, and {E1, E2} is the orthonormal basis of ℝ1,1, allows to factorize m ∈ Cl(1, 1)
by first isomorphically mapping it to Cl(2, 0), factorizing it there (as shown above in Section 5), and map the factorized result
back to Cl(1, 1).
We get

m = m0 + m1E1 + m2E2 + m12E12
(6.60)
= m0 + m1e1 + m2e12 + m12e2. (6.61)

To factorize this multivectorm0+m1e1+m2e12+m12e2 inCl(2, 0), we simply exchange the places ofm2 andm12 in (5.1) to (5.8).
And finally we map the factorization obtained back to Cl(1, 1) with (6.60). The inverse will be with m = e�0m′ : m−1 = e�0m′.
Viewed strictly in Cl(1, 1), the exponential corresponding to e�1u will no longer have a single grade one vector as argument, but
a sum of vector plus bivector.
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7 FACTORIZATION OF CL(0, 2)

We now have
e21 = e22 = e212 = −1, e1e12 = −e12e1, e2e12 = −e12e2. (7.1)

We assume a general m ≠ 0. Because of the isomorphism to quaternions Cl(0, 2) ≅ ℍ one factorization result is straight
forward (see e.g. the introduction of11)

m = m0 + m1e1 + m2e2 + m12e12 = |m|e�
′
2i

′ = e�0e�
′
2i

′ ,
|m|2 = mm = m2

0 + m
2
1 + m

2
2 + m

2
12, �0 = ln(|m|),

i′ =
m1e1 + m2e2 + m12e12
√

m2
1 + m

2
2 + m

2
12

,

�′2 = atan2(
√

m2
1 + m

2
2 + m

2
12∕|m|, m0∕|m|),

m−1 = m∕|m| = e−�0e−�
′
2i

′ . (7.2)

Note that the overbar in m indicates Clifford conjugation with 1 = 1, e1 = −e1, e2 = −e2, e12 = −e12, which is the analogue of
quaternion conjugation. Indeed any factorization known for quaternions ℍ can be realized via the isomorphism Cl(0, 2) ≅ ℍ in
Cl(0, 2) as well.
Furthermore, we can factorize m ∈ Cl(0, 2) into exponentials specified by grade. We observe that

m = m1e1 + m2e2 + m0 + m12e12 = m⃗ + meven,
m⃗ = m1e1 + m2e2, meven = m0 + m12e12, (7.3)

can be expressed as the sum of its vector part m⃗ and its even grade part meven.
The vector part m⃗ can always be factorized as

m⃗ = mvv = e�0v, m⃗2 = −m2
1 − m

2
2, mv =

√

|m⃗2
|,

�0 = ln(mv) =
1
2
ln(m2

1 + m
2
2), v = m⃗

mv
, v2 = m⃗2

m2
v
= −1. (7.4)

If the even grade part should be zero, this would already be the final result, and its inverse is

m⃗−1 = −e−�0v. (7.5)

The even grade part meven can always be factorized as

meven = mee
�12e12 = e�0e�12e12 , m2

e = m̃evenmeven = m2
0 + m

2
12,

me =
√

m2
0 + m

2
12, �0 = ln(me), �12 = atan2(m12, m0). (7.6)

If the vector part should be zero, this would already be the final result, and its inverse is

m−1
even = e−�0e−�12e12 . (7.7)

We can therefore now treat the remaining case, that both vector part m⃗ and even grade part meven do not equal zero. Using the
individual factorizations (7.4) and (7.6) we can write a general multivector with non-zero vector and even grade parts as

m = m⃗ + meven = mvv + mee�12e12 = (mvve−�12e12 + me)e�12e12

= (mvx + me)e�12e12 , x = ve−�12e12 , (7.8)

where the square of vector x computes to

x2 = ve−�12e12ve−�12e12 = ve−�12e12e�12e12v = v2 = −1. (7.9)

We can therefore complete the factorization of m with

m = e�0e�1xe�12e12 , �0 =
1
2
ln(m2

e + m
2
v), �1 = atan(

mv
me

), (7.10)
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which factorizesm into a product of three exponential factors with scalar, vector and bivector exponents, respectively. This result
subsumes the factorizations of vectors (7.4) or �12 = 0, and of pure even grade parts (7.6) for �1 = 0, respectively. We know
that Cl(0, 2) is isomorphic to quaternions, a division algebra. We can therefore always represent the inverse of m simply by

m−1 = e−�12e12e−�1xe−�0 (7.11)

or by
m−1 = e−�0e−�1x′e−�12e12 , x′ = e−�12e12xe�12e12 , x′2 = −1. (7.12)

8 CONCLUSION

In this work we studied the factorization of multivectors in Clifford geometric algebras Cl(1, 0) (isomorphic to hyperbolic
numbers), Cl(0, 1) (isomorphic to complex numbers), Cl(2, 0) (geometric algebra of the two-dimensional Euclidean plane),
Cl(1, 1) and Cl(0, 2) (isomorphic to quaternions). The case of mixed signature Cl(1, 1) turned out to be most interesting, and
is relevant to applications of Clifford algebra in special relativity of two dimensions (one time and one space dimension). The
invertibility of multivectors12 was also specified, and if it existed, the factorization of the inverse was also given in an analogous
form using exponential factors. We summarize our results in Table 3 , specifying the algebra and conditions on the multivector
coefficients, the section where to find the respective treatment in this paper, the equation number for the factorization result and
equation for the inverse (replaced by none, if the multivector is not invertible). It may be possible in the future to extend this
approach to even higher dimensional Clifford algebras.
The polar form of complex numbers and quaternions are widely applied in many sciences. One important application being

the kernels of complex and quaternionic Fourier transforms. Possibly the factorizations that we present here may also find
future applications in a number of sciences, including many branches of physics, signal- and image processing, neural network
computations, computer algebra, encryption, robotics, computer vision, etc. The present work can further be applied in the study
of Lipschitz versors, see e.g. E.4.2 in19 and14, pinor and spinor groups, etc. The factors we expose are expected to be related to
the factors of polar decomposition of multivectors17, but we will study this in a later work. Our results may also help with the
computation of roots of multivectors15,1,7,10,9. All computations in this paper can be tested with computer algebra software, e.g.
with the Clifford Multivector Toolbox (for MATLAB)16.
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