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Abstract

Under the neutrino CMB correspondence, low energy observables are
analysed using quantum computation. Starting from the observed µ-τ
symmetry, we discuss constraints on all neutrino masses and mixing pa-
rameters.

1 The neutrino CMB correspondence

There are many reasons [1] for thinking that quantum gravity employs the
mathematics of quantum computation, rather than traditional Lagrangian tech-
niques. In particular, neutrino rest masses are both local and non local, and
neutrino oscillation models require physics beyond the Standard Model. In 2010,
led by clues from quantum computation, we considered a triplet of right handed
neutrino masses, which differed slightly from the active mass triplet [2]. Dung-
worth [3] immediately pointed out that the central mass in this triplet matched
the present day temperature of the CMB under Wien’s law. Since neutrino
masses introduce a new infrared scale, it was natural to think of this neutrino
CMB correspondence as a fundamental feature of quantum gravity [4], in which
CMB temperature is the proper measure of cosmic time.

Combining the UV Planck scale and IR neutrino scale at 0.01 eV, we consid-
ered an inverse see-saw [5][6] rulemH =

√
mνmpl for the electroweak Higgs scale,

under S duality. The introduction of a new IR scale is considered in condensate
pictures for gravity with fermions [7][8][9], using two different Chern-Simons
theories: one for neutrino gravity and one for QCD. For us, the Chern-Simons
theories are about the knots and links that lie at the heart of ribbon categories
in quantum computation.

Standard Model states are initially ribbon diagrams [10]. The quark SU(3)
color symmetry is given by three ribbon strands, and the twist in the strands
determines the U(1) electric charge. These symmetries are exact. An SU(2)L
continuous symmetry emerges from the discrete braid group B3, which is uni-
versal for qubit computation. Since a holographic principle [4] extends the 2+1
dimensional theories to four dimensions, we expect mass splittings and mixings
to exhibit a 2 + 1 dimensional basis. In particular, the tribimaximal mixing
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is known to approximate the PMNS mixing matrix, just as the identity approx-
imates the CKM matrix for quarks.

An effective sterile neutrino at 1.29 eV was also derived [4][11] from the
neutrino CMB correspondence, using the phases that appear below. The next
section introduces the µ-τ symmetry for neutrino mixing, and section 3 defines
the related rest mass triplets. The approximate separation of µ-τ from the νe
flavor state is associated with the selection of a single time coordinate in the
localisation to low energy atomic matter in a (3, 1) spacetime in motivic gravity.
Section 4 introduces our motivic sterile neutrino, as an explanation for short
baseline anomalies in oscillation experiments.

2 The µ-τ approximate symmetry

Within the quantum information paradigm, a simple mass matrix is a com-
plex Hermitian circulant, which diagonalises under the discrete 3 × 3 Fourier
transform to three rest mass eigenvalues. In the standard phenomenology of
neutrino masses and mixing, this is not a primary consideration, but observa-
tion indicates the existence of an approximate symmetry between the νµ and
ντ parameters [12], which we consider here from the circulant framework.

The µ-τ symmetry conditions are

θ23 =
π

4
, δCP = ±π

2
, (2)

which arise naturally as follows. We let the PMNS matrix [14][15]

U =

Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3

 (3)

be approximated by three complex rotation factors in the form [4][13],

U =
1

N

a i 0
i a 0
0 0 a+ i

b 0 i
0 b+ i 0
i 0 b

c+ i 0 0
0 c i
0 i c

 , (4)

where N = N(a, b, c) is the normalisation and a, b and c are real. Such a
matrix automatically has a maximal CP phase of δCP = −π/2, derived from
the observed Euler angles from a, b and c. Each factor is both a SU(2)× U(1)
matrix and also an element of the finite group algebra for S3, the permutation
group on three letters.

The value θ23 = π/4 is a feature of the tribimaximal mixing matrix (1)
[16], which has parameters (a, b, c) = (

√
2, 1, 0). This θ23 remains consistent
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with global fits to oscillation data. Whatever the theoretical reason for the
deformation to θ13 6= 0, we consider a mass matrix of the form [12]

Mν =

Mee Meµ Meτ

Mµe Mµµ Mµτ

Mτe Mτµ Mττ

 = UDνU
T , (5)

whose eigenvalues are the neutrino rest masses. Under the exact µ-τ interchange,
for which the µ and τ rows of U are equal, a circulant form for Mν is tightly
constrained to

Mν =

X Y Y
Y X Y
Y Y X

 , (6)

where we assume that X and Y are real. The degenerate eigenvalues of this
matrix are

m1 = m3 = X − Y, m2 = X + 2Y. (7)

This is still roughly consistent with oscillation data, because the two small
masses in the normal hierarchy have little effect on ∆m2 parameters. Moreover,
it follows that tan 2θ12 = 2

√
2, so that θ12 = 35.26◦, which is also consistent

with observation [17].
As in [13], we view θ13 ∼ 9◦ as a perturbation to a three dimensional theory,

from some degenerate but exact theory in two dimensions, for which tribimax-
imal mixing holds. In the 3 × 3 mass circulants of the next section, the phase
parameter θ is expected to be related to θ13 [13]. In particular, a triality ac-
tion on θ = 2/9 radians in the Jordan algebra gives a phase 4/27 ∼ 8.5◦ as a
candidate for θ13.

3 Circulant mass and mixing matrices

Allowing for CPT violation in the neutrino sector, Wolfenstein’s [5] Dirac mass
matrix for one generation takes the circulant form

M

(
νLνR νLνR
νLνR νLνR

)
=

(
c d
d c

)
, (8)

and is diagonalised by the 2× 2 Fourier matrix. The CPT theorem is recovered
at c = 0. For a democratic mass matrix, with c = d, the sterile mass satifies
ms � ma ∼ 0.

Within the active triplet, we start with 3 × 3 circulants, which are diago-
nalised by the Fourier transform

F3 =
1√
3

1 1 1
1 ω ω
1 ω ω

 , (9)

where ω is the cubed root of unity. This F3 is the unitary version of democratic
mixing, for which all transition probabilities are equal. It’s relation to (1) is
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given below. A 2× 2 democratic mixing circulant is given by (c, d) = (1, i)/
√

2,
which diagonalises as the transform(

m1 0
0 m2

)
=

(
c d
d c

)(
m1c

2 −m2d
2 (m1 −m2)cd

−(m1 −m2)cd m2c
2 −m1d

2

)(
c −d
−d c

)
. (10)

For m1 � m2, this mass operator is the circulant m1(c, d).
In the 1980s, Koide [18][19] found a simple constraint on the charged lepton

rest mass triplet, which accurately predicted the τ mass. In 2006, Brannen [20]
realised that the neutrinos could obey a similar relation, if one worked with the
square root of the mass matrix. When we formulate these relations using a 3×3
circulant, the neutrino phases differ from the charged lepton phase by ±π/12,
which is a fundamental arithmetic phase for modular geometry.

Let us start with the basic qutrit density matrices, which are the idempotents

B =
1

3

1 ω ω
ω 1 ω
ω ω 1

 , C =
1

3

1 ω ω
ω 1 ω
ω ω 1

 , A =
1

3

1 1 1
1 1 1
1 1 1

 , (11)

so that a Hermitian operator is a combination of idempotents, as in
√
M = aA+ bB + cC (12)

for a, b, c real. Our masses are the squares of the three eigenvalues of
√
M .

Without loss of generality, fix a mass scale by the rule (a + b + c)2 = 1. The
Koide rule follows from the eigenvalues of the complex charged lepton matrix

√
M =

√
µ
√

2

√2 θ θ

θ
√

2 θ

θ θ
√

2

 , (13)

where the scale µ = 4/3 follows from (a + b + c) = 1. For the charged lepton
triplet, experimentally, the 4 in µ represents the mass of the proton mp. In
analogy to (10), a 3×3 circulant transform uses a basis that is mutually unbiased
with respect to F3, giving a non circulant Hermitian mass matrix with µ on the
diagonal.

The
√

2 diagonal parameter corresponds to (X,Y ) = (
√

2, 1) in (6), giving
the tribimaximal Euler parameters. Thus the complex phase θ is interpreted
as the deformation parameter into the third dimension. As noted above, the
observed value of θ for charged leptons is close to 2/9. The eigenvalues λi of
(13) are expressed in terms of the tribimaximal coefficients in (1), in the form
[13]

λ1 = − 1√
3
−
√

2√
3

cos θ + 0, (14)

λ2 =
1√
3
− 1√

6
cos θ − 1√

2
sin θ,

λ3 =
1√
3
− 1√

6
cos θ +

1√
2

sin θ.

4



Table 1: Neutrino masses (eV)
νL 0.0507 0.0089 0.0004
νR 0.0582 0.00117 0.0006

In the full µ-τ symmetry [12] the tribimaximal form also determines the mixing
angle θ′12 = tan−1

√
2, which is complementary to θ12 = 35.26◦ about π/4. We

obtain the eigenvalues λi from the row sums of

√
2√
3

1 cos 0 sin 0
1 cosω sinω
1 cosω sinω

1/
√

2 0 0
0 cos θ 0
0 0 sin θ

 , (15)

making explicit the connection to the Fourier transform of (9).

4 The effective sterile neutrino

Fix the neutrino scale at µ = 0.01 eV, so that the rest mass triplet in the
top row of Table 1 matches the ∆m2 parameters for oscillation experiments.
Whereas the active neutrinos use the phase θ + π/12, the second mass triplet
[1][11][21] uses the complementary θ− π/12. This right handed triplet includes
the present day CMB temperature at 0.00117 eV, because CMB photons are
directly associated to the neutrino mass gap in a condensate mechanism for
gravity.

Mavromatos [22] considers a direct decoherence argument for evading the
apparent CPT violation, while we ignore CPT in the neutrino sector, which
looks at degrees of freedom that exist prior to Lorentz symmetry. Here the
SU(2) component of compactified Minkowski space emerges from the discrete
braid group B3 that characterises neutrino states in the ribbon particle scheme.

Under the crude empirical hypothesis [11] that the CMB creation time is
given by a ΛCDM redshift of z = 1100, the early universe CMB mass is 1.29
eV, in good agreement with sterile neutrino fits to anomalous data in short
baseline (SBL) experiments [23]. In the SBL approximation, we may take a
single active mass state ma to represent all small masses, and oscillation data
is fitted to a 2× 2 mixing solution with a heavier (sterile) mass ms, as in(

ma

ms

)
=

(
U11 U12

U21 U22

)(
νa
νs

)
. (16)

The matrix U is approximately the identity, with the observed |U12|2 ' 0.01
corresponding to a mixing angle of about 6◦. A similar angle occurs in the 2×2
circulant for the right handed 0.00117 eV mixed with the active neutrino scale
of 0.01 eV.

One preferred value [23] for the sterile mass is 1.14 eV, but this is a little
lower than expected, and appears to disagree with the perfect 1.3 eV estimate
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of MiniBooNE from 2018 [24]. Small differences from the CMB value might be
accomodated by a Dirac-Milne [25], or alternative, redshift history.

Our effective sterile can accomodate the null results of some experiments, by
preferring the νe state as a partner to the proton, which represents the single
time direction of ordinary matter. Vacuum polarisation [26] under the neutrino
CMB correspondence [11] generates local inertial mass as a deformation of a
zero mass limit on cosmological scales. This principle does away with the need
for dark energy. Only for massless neutrinos in the Standard Model does CPT
hold. Table 1 indicates the CPT violation for the Dirac spinors, with separate
masses for ν and ν shown to be phenomenologically viable in [27][28]. Moreover,
the masses of Table 1, from June 2010, predicted quantitatively [2][3] the CPT
violation, observed in later MINOS results [29].

The mathematician R. A. Wilson has also considered [30] the selection of a
special low energy flavor in connection with the solar eccliptic plane, from the
perspective of the (3, 3) metric. It will be interesting to investigate anomalies
arising from multiple-time physics.
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