The Feit-Thompson conjecture and Cyclotomic polynomials Kaoru Motose

Abstract : We can see that Feit-Thompson conjecture is true using factorizations of cyclotomic polynomials on the finite prime field.

Key Words : Feit-Thompson conjecture, cyclotomic polynomials, finite fields.

2000 Mathematics Subject Classification : Primary 12E05,12E10; Secondary11A05.

Feit and Thompson conjectured in [2, p.970, last paragraph]

$$s := \Phi_p(q) = \frac{q^p - 1}{q - 1}$$
 never divides $t := \Phi_q(p) = \frac{p^q - 1}{p - 1}$ for distinct primes p and q ,

where $\Phi_m(x)$ is the *m*-th cyclotomic polynomial. The utility and the cause of this conjecture are also stated in [1, p.1], and [3, B25]. Stephens [8] found the unique example: for p = 17 and q = 3313, the prime $r = 2pq + 1 = \gcd(s, t)$ that shows $s \nmid t$ from r < s (see the next page **R1** or [6, p.82]). We show this conjecture is true. The next classical results on cyclotomic polynomials are important for our Theorem.

1. Let ℓ be a prime with $\ell \nmid m$. The *m*-th cyclotomic polynomial $\overline{\Phi}_m(x) := \Phi_m(x)$ on \mathbb{F}_{ℓ} has square free factors and the root $\overline{\zeta}_m$ of $\overline{\Phi}_m(x)$ is of order *m* for $\Phi_m(\zeta_m) = 0$ by the equation $x^m - 1 = \prod_{d \mid m} \overline{\Phi}_m(x)$ since $x^m - 1$ has no multiple roots for $\ell \nmid m$ (see also [4, p.64, 2.45.Theorem]).

2. Let $|a|_m$ be the order of $a \mod m$ for natural numbers a and m with gcd(a, m) = 1. $\overline{\Phi}_m(x)$ factorizes into irreducible polynomials $\overline{u}_k(x) = \prod_{n=0}^{|\ell|_m-1} (x - \overline{\zeta}_m^{k\ell^n})$ of the same degree $|\ell|_m$, where k satisfy $gcd(k, \ell m) = 1$ and $1 \le k < m$, since $\overline{u}_k(x)$ are invariant by Frobenius automorphism $\underline{\sigma}_\ell : \overline{\zeta}_m^k \to \overline{\zeta}_m^{k\ell}$ (see also [4, p.65, 2.47.Theorem.(ii)]).

By **1** and **2**, $\overline{\Phi}_m(x) := \Phi_m(x)$ on \mathbb{F}_ℓ has the minimal splitting field $\mathbb{F}_{\ell^{|\ell|_m}}$ since all square free $\varphi(m)/|\ell|_m$ irreducible factors with the same degree $|\ell|_m$ where $\varphi(m) = \deg \Phi_m(x)$.

Three proofs of our theorem yield from proving contents of Kummer's theorem (see [7, p.84 Theorem 2.17]) and Stephans' examples giving the assertions: a prime $r \mid \gcd(s,t)$ if and only if $|p|_r = q$ and $|q|_r = p$ by $r \equiv 1 \mod 2pq$.

. Theorem. If s divides t, then p is odd and p = q.

PROOF. We may assume p < q, namely, s < t by the next page **R3** or [5, p.16 Remark]. If p = 2, then $s \nmid t$ since s = q + 1 is even and $t = 2^q - 1$ is odd. Thus we assume p > 2.

We also see that s, t are odd and $r \equiv 1 \mod 2pq$ for any prime divisor r of s by the next page **R2** or [8] or [5, p.16, Lemma.(3)]. We can see $|p|_t = q$, $|p|_s = q$ and $|q|_s = p$ by $p^q \equiv 1 \mod t, p^q \equiv 1 \mod s$ and $q^p \equiv 1 \mod s$ from p < q < s and $s \mid t$.

p: Both $\Phi_t(x)$ and $\Phi_s(x)$ on \mathbb{F}_p have the splitting field \mathbb{F}_{p^q} from $|p|_t = q = |p|_s$. Thus by the isomorphism $\zeta_t \to \zeta_s$ over \mathbb{F}_p , s = t is contrary to s < t.

q: $\Phi_t(x)$ on \mathbb{F}_q factorizes into $\varphi(t)/|q|_t$ irreducible factors. We have $|q|_s = p$ divides $|q|_t$ by $q^{|q|_t} \equiv 1 \mod s$ and the inequality $\varphi(t)/|q|_t \ge \varphi(t)/|q|_s = \varphi(t)/p$ by $|q|_s = p$ because $\Phi_s(x)$ on \mathbb{F}_q is already factorize into $\varphi(s)/|q|_s = \varphi(s)/p$ irreducible factors and hence $\overline{\Phi}_t(x)$ factorizes at least into $\varphi(t)/|q|_s = \frac{\varphi(t)}{\varphi(s)} \cdot \frac{\varphi(s)}{p}$ irreducible factors. Thus $|q|_t = p$. If a prime $\ell \mid \gcd(t, (q-1))$, then $q \equiv 1 \mod \ell$ then we have $|q|_r = 1$ is contray to $p = |q|_t = 1$ by the same method as the above. From this and $t \mid s(q-1), s = t$, contrary to s < t. \Box

p and **q**: $\Phi_t(x)$ and $\Phi_s(x)$ on \mathbb{F}_p (resp. \mathbb{F}_q) has the minimal splitting field \mathbb{F}_{p^q} (resp. \mathbb{F}_{q^p}) by $|p|_t = |p|_s = q$. (resp. $|q|_t = |q|_s = p$.)

Since ζ_s on \mathbb{F}_p , on \mathbb{F}_q , and on \mathbb{Q} have the same order, $\Phi_t(x)$ and $\Phi_s(x)$ has the only one minimal splitting field $\mathbb{Q}(\zeta_t)$, we obtain a cotoradiction $p^q = |\mathbb{F}_{p^q}| = |\mathbb{F}_{q^p}| = q^p$. \Box

Remarks. We use the same notations and assumptions in the above discussions.

R1 Example of Stephens. Using the program $\lceil \text{MPQSX3} \rfloor$ attached to the package of language UBASIC designed by professor Yuji Kida, we have the prime factorization $s = r_1 r_2 r_3$ for p = 17, q = 3313 where r_1, r_2 and r_3 are primes with $r_k - 1(k = 1, 2, 3)$ are as the next table. We can see $gcd(s, t) = r_1$ by $q = 3313 \nmid (r_2 - 1)(r_3 - 1)$ in this table.

$$r_1 - 1 = 2 \times 17 \times 3313$$

- $r_2 1 = 2 \times 2 \times 5 \times 17 \times 35081 \times 2007623,$
- $r_3 1 = 2 \times 17 \times 1609 \times 763897 \times 1869248598543746584721506723.$

R2. $r \equiv 1 \mod 2pq$ for any prime divisor r of s under the conditions $s \mid t$ and 2 . $If <math>r \mid s$ and $q \equiv 1 \mod r$ then $0 \equiv s = q^{p-1} + \cdots + q + 1 \equiv p \mod r$ and r = p. We have a contradiction $0 \equiv t \equiv 1 \mod r$ by r = p. Thus $|q|_r = p$ by $q^p \equiv 1 \mod r$ and $q \not\equiv 1 \mod r$. Similarly $|p|_r = q$. Hence we have $r \equiv 1 \mod 2pq$ by Fermat little theorem.

R3. Since $\frac{x}{\log x}$ is strictly increasing for $3 \le x < y$,

$$\frac{x}{\log x} < \frac{y}{\log y}, \ y^x < x^y \text{ and } \frac{y^x - 1}{y - 1} < \frac{x^y - 1}{y - 1} < \frac{x^y - 1}{x - 1}.$$

Thus we have s = t is equivalent to p = q.

1

References

- [1] T. M. Apostrol, The resultant of the cyclotomic polynomials $F_m(ax)$ and $F_n(bx)$, Math. Comp., **29**(1975), 1-6. See p.1.
- [2] W. Feit and J.G. Thompson, A solvability criterion for finite groups and some consequences, Proc. Natl. Acad. Sci. USA. 48 (1962), 968-970. See p.970, last paragraph.
- [3] R. K. Guy, Unsolved problems in number theory, 1st ed. 1981, 2nd ed. 1994, 3rd ed. 2004, Springer. See B25.
- [4] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its applications, 20, 1983, Addison-Wesley Publishing Company, Massachusetts, USA. See p.64, 2.45. Theorem and p.65, 2.47. Theorem. (ii).
- [5] K. Motose, Notes to the Feit-Thompson conjecture, Proc. Japan Acad. Ser. A Math. Sci. 85(2009), no. 2, 16-17. See p.16, Remark and Lemma. (3).
- [6] K. Motose, Monologue of triangles (Sankkakei no hitorigoto in Japanese), Hirosaki University Press, 2017. See p.82.
- [7] T. Ono, An introduction to algebraic number theory, 1990, Plenum Press. See p.84 Theorem 2.17.
- [8] N. M. Stephens, On the Feit-Thompson conjecture, Math. Comp., 25 (1971), 625.

EMERITUS PROFESSOR, HIROSAKI UNIVERSITY Home post address: TORIAGE 5-13-5, HIROSAKI, 036-8171, JAPAN Email address: motose@hirosaki-u.ac.jp