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Abstract:   
This work dates from January 2016 as a result of my remarks related to physics made during my high studies. 

I try in this work to explain the cause behind the inability of Newtonian mechanics to describe correctly many 

phenomena where the studied object rotates at a very high linear speed. I proved that, in this case, the velocity 

field is not equiprojective and that the famous formula for changing the reference frame is not correct. I made 

an application to the case of the GPS system satellites, then I presented a new method for studying a rotating 

system velocity without needing the conventional steps of changing reference frames. I finished my work by 

demonstrating the formulas of the main differential operators and I presented them with all the related steps 

and calculations by using the elementary surfaces. I am eager to discuss the results of this work further with 

physics and mathematics specialists, and I hope that my formulas will help to simplify the study of many 

difficult physics phenomena. 
Keywords: Newtonian mechanics, Rotations, derivative, perpendicularity, Nabla, Gradient, Curl, Divergence, 

differential operators, GPS, reference frame.  

 

1. Introduction 
Even nowadays, there are many electromagnetic phenomena where we will always make mistakes by 

using the normal mathematical tools in their study. They are in general all the phenomena where the 

studied object rotates at a high linear speed, especially when its speed exceeds three quarters of the 

light speed. [1,2,3] Because in this case the study mistake becomes very coarse and impossible to 

neglect.   

Furthermore, the scientists are obliged to use the relativity of time as a difficult explanation or 

statistical physics as a solution to the contradictions found by the conventional change of reference 

frames. This problematic is described as a historical crisis of Newtonian classical mechanics. [4] 

I proved first in the part A of my thesis that in this case the velocity field is not equiprojective and 

that the famous conventional steps for changing the reference frame are not correct.  

I presented also a method for studying rotating systems velocity without needing the normal change 

of reference frames that requires the perpendicularity of a rotating vector and its derivative. [5,6,7] 

I presented also an application to the case of the GPS system satellites that avoids the relativity of 

time.[8,9,10] 

 I finished my work by demonstrating geometrically, in the part B, the formulas of the three important 

differential operators: Gradient (nabla), Divergence and Curl that can be found different in other 

works.[11,12,13]  

I presented those differential operators with all the related steps and calculations by using the 

elementary surfaces. However, the results found will make the convinced readers change their vector 

and matrix calculations especially with the famous navier-stokes equations. [14,15,16] 

I remind the readers that this work is a revision of personal previous work made since January 2016 

entitled “mémoire en physiques”. [17] 
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Part A: Rotations of Newtonian mechanics: 

 

1. Introduction: 

We know that: 𝑓′(𝑥) =
𝑑𝑓

𝑑𝑥
 . However, in physics, the infinitesimal variation dx is never null when 

we study the movement in a physics phenomenon except at rest. Consequently, we shouldn’t use f’ 

the derivative of the function f. We should use 
𝑑𝑓

𝑑𝑥
 instead which is the differential divided by the 

infinitesimal variation. 

 

2. Remarks: 
 

 

Fig.1: The trigonometric circle of radius r=1. 
 

Let’s consider the circle of radius r=1 in the figure 1, where b is the length of the circular arc and a 

is the circular arc chord and dφ is the circular arc infinitesimal angle.  

Consequently b= dφ and S is the area of the circular segment that is the area of the surface between 

a and b, where 𝑆 =
𝑟2

2
× (𝑑𝜑 − 𝑠𝑖𝑛(𝑑𝜑)). 

And we consider that h=sin(dφ) and c=cos(dφ) and c+e=1. 

 

Remark 1:  

If  dφ is small enough, then 
𝑠𝑖𝑛(𝑑𝜑)

𝑑𝜑
≈ 1 ⇔ 𝑠𝑖𝑛(𝑑𝜑) ≈ 𝑑𝜑                                                         (1)       

and in this case S≈0 therefore a and b become combined which means a≈b. Also, in this case, h≈ dφ 

therefore by using Pythagoras’ theorem we conclude that: 𝑒2 + ℎ2 = 𝑎2 ⇔ 𝑑𝜑2 + 𝑒2 ≈ 𝑑𝜑2 

consequently: 𝑒2 ≈ 0 ⇔ 𝑒 ≈ 0and thus e disappears and cos(dφ)=c≈1. 

 We conclude that: 𝑠𝑖𝑛(𝑑𝜑) ≈ 𝑑𝜑 ⇒ 𝑐𝑜𝑠(𝑑𝜑) ≈ 1                                                                       (2)                                    

and we remark that in this case 𝑐𝑜𝑠(𝑑𝜑)2 + 𝑠𝑖𝑛(𝑑𝜑)2 ≠ 1consequently, trigonometric identities 

are unusable when sin(dφ)≈ dφ. 

By Al-Kashi’s theorem we prove also that a≈0 which implies that dφ≈0. And this is remarked also 

with: 𝑐𝑜𝑠(𝑑𝜑) ≈ 1 ⇔ 𝑑𝜑 ≈ 0and this is absurd since dφ exists during the study of the rotation in a 

physics phenomenon where we should have normally cos(dφ) < 1. 

We conclude that the approximation with sin(dφ)≈dφ is unusable. 
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If we use  sin(dφ)≈ dφ and 𝑐𝑜𝑠(𝑑𝜑) ≈ √1 − 𝑑𝜑2                                                                        (3) 

by using Pythagoras’ theorem in the trigonometric circle, then in this case: 𝑒 ≈ 1 − √1 − 𝑑𝜑2 ⇒

𝑒2 ≈ 2 − 𝑑𝜑2 − 2√1 − 𝑑𝜑2  

Hence: 𝑒2 + ℎ2 ≈ 𝑑𝜑2 ≈ 2 − 2√1 − 𝑑𝜑2 

Consequently: 2 ≈ 𝑑𝜑2 + 2√1 − 𝑑𝜑2 ⇒ 4 ≈ 𝑑𝜑4 + 4 − 4𝑑𝜑2 + 4𝑑𝜑2√1 − 𝑑𝜑2 

We conclude that: 1 ≈
𝑑𝜑2

4
+ √1 − 𝑑𝜑2 ⇒ (1 −

𝑑𝜑2

4
)
2

≈ 1 − 𝑑𝜑2 

And thus: 1 +
𝑑𝜑4

16
−

𝑑𝜑2

2
≈ 1 − 𝑑𝜑2 ⇒ 𝑑𝜑2 ≈ −8 

We proved that if we use sin(dφ)≈ dφ and 𝑐𝑜𝑠(𝑑𝜑) ≈ √1 − 𝑑𝜑2, then this implies that 𝑑𝜑2 ≈ −8 

which is a contradiction. Hence, the use of this approximation is false and can cause errors in the 

study of the rotation in a phenomenon. 

 

Remark 2: 

 

Now let’s use the limit of 
1−𝑐𝑜𝑠(𝑑𝜑)

𝑑𝜑2  when dφ tends to zero. 

We have consequently when dφ is small enough: 𝑐𝑜𝑠(𝑑𝜑) ≈ 1 −
𝑑𝜑2

2
.                                       (4) 

Consequently, by using  Pythagoras’ theorem in the trigonometric circle: 𝑠𝑖𝑛(𝑑𝜑) ≈ 𝑑𝜑 ×

√1 −
𝑑𝜑2

4
.  (5)                                                                                                               

In this case S≠0 even if we notice that a tends to dφ (a≈ dφ) when we use Al-Kashi’s theorem in the 

triangle of the figure 1.  S≠0 because a equals approximately dφ but b equals exactly dφ and the 

formula 𝑆 =
𝑟2

2
× (𝑑𝜑 − 𝑠𝑖𝑛(𝑑𝜑))prevents us to consider that a=b. 

This approximation is correct and causes no contradictions. Consequently, we can use it without 

risking any errors. 

All the trigonometric identities are usable in this case since 𝑐𝑜𝑠(𝑑𝜑)2 + 𝑠𝑖𝑛(𝑑𝜑)2 = 1and since the 

triangles of the trigonometric circle in figure 1 stay all valid. 

 

Remark 3: 

𝑐𝑜𝑠(𝑑𝜑) ≈ 1 −
𝑑𝜑2

2
⇔ 𝑑𝜑2 ≈ 2(1 − 𝑐𝑜𝑠(𝑑𝜑)) ≈ 4𝑠𝑖𝑛 (

𝑑𝜑

2
)
2

⇔ 𝑠𝑖𝑛 (
𝑑𝜑

2
) ≈

𝑑𝜑

2
                             

(6) 

consequently trigonometric identities are not usable for 
𝑑𝜑

2
. We conclude that we should fix dφ as 

the smallest detectable variation in the phenomenon studied rotation which depends on the detection 

technology in order to avoid mathematical contradictions.  

The fixed dφ will respect the formulas: 𝑐𝑜𝑠(𝑑𝜑) ≈ 1 −
𝑑𝜑2

2
and 𝑠𝑖𝑛(𝑑𝜑) ≈ 𝑑𝜑 × √1 −

𝑑𝜑2

4
. 

However, in this case we should use dt as the variable.  

During the rotation in Newtonian mechanics,  we have a fixed infinitesimal variation which defines 

the fixed change dφ that happens in different changing durations Δt. For example, in a polar 

coordinate system (ρ,φ,z=0), we will have: 
𝑑𝑒𝜌⃗⃗ ⃗⃗  (𝜑)

𝑑𝑡
=

𝑑𝑒𝜌⃗⃗ ⃗⃗  (𝜑)

𝛥𝑡
=

𝑑𝑒𝜌⃗⃗ ⃗⃗  (𝜑)

𝛥𝑡×𝜑. × 𝜑. =
𝑑𝑒𝜌⃗⃗ ⃗⃗  (𝜑)

𝑑𝜑
× 𝜑.                                                                         (7) 

where: 𝜑. =
𝑑𝜑

𝛥𝑡
 and dt=Δt is the variable duration of each dφ. You will find in this document an 

example of this method application that deals with the case of GPS systems. 

 

Important: 



 
 

 

29 

 

These approximations imply that: 
𝑑𝑒𝑖𝜑

𝑑𝜑
≠ 𝑖(𝑐𝑜𝑠(𝜑) + 𝑖𝑠𝑖𝑛(𝜑))  

consequently: 𝑒𝑖𝜑 ≠ 𝑐𝑜𝑠(𝜑) + 𝑖𝑠𝑖𝑛(𝜑) 
 

And thus: 𝑐𝑜𝑠(𝜑) ≠
𝑒𝑖𝜑

2
+

𝑒−𝑖𝜑

2
 and: 𝑠𝑖𝑛(𝜑) ≠

𝑒𝑖𝜑

2𝑖
−

𝑒−𝑖𝜑

2𝑖
 

 

 

Remark 4:  

In order to simplify the results, we will consider that 𝑐𝑜𝑠(𝑑𝜑) = 1 −
𝑑𝜑2

2
and 𝑠𝑖𝑛(𝑑𝜑) = 𝑑𝜑 ×

√1 −
𝑑𝜑2

4
 (not only approximations). 

We deduce that:  

𝑐𝑜𝑠(𝜑 + 𝑑𝜑) = 𝑐𝑜𝑠(𝜑) × 𝑐𝑜𝑠(𝑑𝜑) − 𝑠𝑖𝑛(𝜑) × 𝑠𝑖𝑛(𝑑𝜑)

= (1 −
𝑑𝜑2

2
) × 𝑐𝑜𝑠(𝜑) − 𝑑𝜑 × √1 −

𝑑𝜑2

4
× 𝑠𝑖𝑛(𝜑) 

                                                                                                                                                        (8) 

and: 

𝑠𝑖𝑛(𝜑 + 𝑑𝜑) = 𝑠𝑖𝑛(𝜑) × 𝑐𝑜𝑠(𝑑𝜑) + 𝑐𝑜𝑠(𝜑) × 𝑠𝑖𝑛(𝑑𝜑)

= (1 −
𝑑𝜑2

2
) × 𝑠𝑖𝑛(𝜑) + 𝑑𝜑 × √1 −

𝑑𝜑2

4
× 𝑐𝑜𝑠(𝜑) 

                                                                                                                                                        (9)   

Consequently:  

𝑑𝑐𝑜𝑠(𝜑)

𝑑𝜑
=

𝑐𝑜𝑠(𝜑+𝑑𝜑)−𝑐𝑜𝑠(𝜑)

𝑑𝜑
=

−𝑑𝜑

2
× 𝑐𝑜𝑠(𝜑) − √1 −

𝑑𝜑2

4
× 𝑠𝑖𝑛(𝜑)                                  (10) 

and: 
𝑑𝑠𝑖𝑛(𝜑)

𝑑𝜑
=

𝑠𝑖𝑛(𝜑+𝑑𝜑)−𝑠𝑖𝑛(𝜑)

𝑑𝜑
=

−𝑑𝜑

2
× 𝑠𝑖𝑛(𝜑) + √1 −

𝑑𝜑2

4
× 𝑐𝑜𝑠(𝜑)                            (11) 

and:
𝑑𝑡𝑎𝑛(𝜑)

𝑑𝜑
=

√1−
𝑑𝜑2

4

(1−
𝑑𝜑2

2
)×𝑐𝑜𝑠(𝜑)2−

𝑑𝜑

2
×√1−

𝑑𝜑2

4
×𝑠𝑖𝑛(2𝜑)

                                             (12) 

and: 
𝑑𝑐𝑜𝑡(𝜑)

𝑑𝜑
=

−√1−
𝑑𝜑2

4

(1−
𝑑𝜑2

2
)×𝑠𝑖𝑛(𝜑)2+

𝑑𝜑

2
×√1−

𝑑𝜑2

4
×𝑠𝑖𝑛(2𝜑)

                                              (13) 

where we can check that: 

𝑠𝑖𝑛′(𝜑) =
𝑑𝑠𝑖𝑛(𝜑)

𝑑𝜑
 = 𝑐𝑜𝑠(𝜑)and: 𝑐𝑜𝑠′(𝜑) =

𝑑𝑐𝑜𝑠(𝜑)

𝑑𝜑
 = −𝑠𝑖𝑛(𝜑) 

and: 𝑡𝑎𝑛′(𝜑) =
𝑑𝑡𝑎𝑛(𝜑)

𝑑𝜑
 =

1

𝑐𝑜𝑠(𝜑)2
 and:  𝑐𝑜𝑡′(𝜑) =

𝑑𝑐𝑜𝑡(𝜑)

𝑑𝜑
 =

−1

𝑠𝑖𝑛(𝜑)2
 

We can also deduce by using these approximations that: 

∫
𝐵

𝐴
𝑠𝑖𝑛(𝜑)𝑑𝜑 = −√1 −

𝑑𝜑2

4
× (𝑐𝑜𝑠(𝐵) − 𝑐𝑜𝑠(𝐴)) −

𝑑𝜑

2
× (𝑠𝑖𝑛(𝐵) − 𝑠𝑖𝑛(𝐴))                                

(14) 

and: ∫
𝐵

𝐴
𝑐𝑜𝑠(𝜑)𝑑𝜑 =

−𝑑𝜑

2
× (𝑐𝑜𝑠(𝐵) − 𝑐𝑜𝑠(𝐴)) + √1 −

𝑑𝜑2

4
× (𝑠𝑖𝑛(𝐵) − 𝑠𝑖𝑛(𝐴))                        

(15) 

by integrating
𝑑𝑐𝑜𝑠(𝜑)

𝑑𝜑
and 

𝑑𝑠𝑖𝑛(𝜑)

𝑑𝜑
 calculated above. 

These two integrals are only approximate sums since dφ is fixed as  dφ>0. However Riemann’s 

definition of integrals requires that dφ tends exactly to zero. 

However, we can also check from above that: 
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∫
𝐵

𝐴
𝑠𝑖𝑛 (𝜑)𝑑𝜑 = 𝑐𝑜𝑠(𝐴) − 𝑐𝑜𝑠(𝐵) and: ∫

𝐵

𝐴
𝑐𝑜𝑠 (𝜑)𝑑𝜑 = 𝑠𝑖𝑛(𝐵) − 𝑠𝑖𝑛(𝐴) 

 

∫
𝐵

𝐴
𝑡𝑎𝑛(𝜑)𝑑𝜑and ∫

𝐵

𝐴
𝑐𝑜𝑡(𝜑)𝑑𝜑are left as a challenge to the readers!!! 

 

 

Remark 5: 

We can prove easily that: 

𝑐𝑜𝑠(𝜑) = −𝑑𝑐𝑜𝑠(𝜑) −
𝑑2𝑐𝑜𝑠(𝜑)

𝑑𝜑2                                                                                         (16) 

and: 𝑠𝑖𝑛(𝜑) = −𝑑𝑠𝑖𝑛(𝜑) −
𝑑2𝑠𝑖𝑛(𝜑)

𝑑𝜑2                                                                                   (17) 

Consequently: 𝑡𝑎𝑛(𝜑) =
𝑑2𝑠𝑖𝑛(𝜑)+𝑑𝜑2×𝑑𝑠𝑖𝑛(𝜑)

𝑑2𝑐𝑜𝑠(𝜑)+𝑑𝜑2×𝑑𝑐𝑜𝑠(𝜑)
                                                           (18) 

and: 𝑐𝑜𝑡(𝜑) =
𝑑2𝑐𝑜𝑠(𝜑)+𝑑𝜑2×𝑑𝑐𝑜𝑠(𝜑)

𝑑2𝑠𝑖𝑛(𝜑)+𝑑𝜑2×𝑑𝑠𝑖𝑛(𝜑)
                                                                           (19) 

And also: (
𝑑𝑠𝑖𝑛(𝜑)

𝑑𝜑
)
2

+ (
𝑑𝑐𝑜𝑠(𝜑)

𝑑𝜑
)
2

= 1                                                                              (20) 

and: (
𝑑2𝑠𝑖𝑛(𝜑)

𝑑𝜑2 )
2

+ (
𝑑2𝑐𝑜𝑠(𝜑)

𝑑𝜑2 )
2

= 1.                                                                                   (21) 

 

 

3. Conclusion 1: 
 

Let’s consider that �⃗� (𝜑) is a rotating vector that belongs to the plane of its rotation φ. 

Hence: 

𝑑�⃗⃗� (𝜑)

𝑑𝜑
=

�⃗⃗� (𝜑+𝑑𝜑)−�⃗⃗� (𝜑)

𝑑𝜑
= −‖�⃗� (𝜑)‖ × (

𝑑𝜑

2
× (𝑐𝑜𝑠(𝜑)𝑖 + 𝑠𝑖𝑛(𝜑)𝑗 ) + √1 −

𝑑𝜑2

4
× (𝑠𝑖𝑛(𝜑)𝑖 −

𝑐𝑜𝑠(𝜑)𝑗 )) =
−𝑑𝜑

2
× �⃗� (𝜑) + √1 −

𝑑𝜑2

4
× �⃗� (𝜑 +

𝜋

2
)  

                                                                                                                                                   (22) 

Consequently: 
𝑑�⃗⃗� (𝜑)

𝑑𝜑
× �⃗� (𝜑) =

−𝑑𝜑

2
× ‖�⃗� (𝜑)‖2 ≠ 0                                 (23) 

because dφ exists during the study.  

Where: ‖
𝑑�⃗⃗� (𝜑)

𝑑𝜑
‖ = ‖�⃗� (𝜑)‖ and: (

𝑑�⃗⃗� (𝜑)

𝑑𝜑
, �⃗� (𝜑))^ = 𝑎𝑟𝑐𝑐𝑜𝑠 (

−𝑑𝜑

2
)                                   (24) 

 

4. Results and applications: 
 

Result 1: 

When using the approximations:𝑐𝑜𝑠(𝑑𝜑) = 1 −
𝑑𝜑2

2
and 𝑠𝑖𝑛(𝑑𝜑) = 𝑑𝜑 × √1 −

𝑑𝜑2

4
, if �⃗� (𝜑)is a 

rotating vector that belongs to the plane of its rotation φ, then 
𝑑�⃗⃗� (𝜑)

𝑑𝜑
is not orthogonal to �⃗� (𝜑). 

Consequently, the famous method of reference frames change becomes false and unusable in 

Newtonian mechanics. Furthermore, the velocity field becomes not equiprojective for solid 

mechanics. 

 

Result 2: 

In cylindrical coordinates (ρ,φ,z): 

𝑑𝑒𝜌⃗⃗ ⃗⃗  (𝜑)

𝑑𝜑
=

−𝑑𝜑

2
× 𝑒𝜌⃗⃗  ⃗(𝜑) + √1 −

𝑑𝜑2

4
× 𝑒𝜑⃗⃗⃗⃗ (𝜑)                                                                         (25) 
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and: 
𝑑𝑒𝜑⃗⃗⃗⃗  ⃗(𝜑)

𝑑𝜑
=

−𝑑𝜑

2
× 𝑒𝜑⃗⃗⃗⃗ (𝜑) − √1 −

𝑑𝜑2

4
× 𝑒𝜌⃗⃗  ⃗(𝜑)                                                                 (26) 

 

Important example:  

We will study the case of The GPS system satellites by proving the real time at a given satellite. We 

will need no time dilation in this proof. 

Let’s consider that the speed V of the satellite is constant V=k1 , 

By using the correct approximations above: 
𝑑𝑂𝑀⃗⃗⃗⃗⃗⃗  ⃗

𝑑𝑡
=

𝑑𝜌(𝑡)

𝑑𝑡
× 𝑒𝜌(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −

𝑑𝜑

2
× 𝜑. × 𝜌(𝑡) × 𝑒𝜌(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  +

𝜌(𝑡) × 𝜑. × √1 −
𝑑𝜑2

4
× 𝑒𝜑(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                          (27) 

Where M stands for the position of the satellite that has a circular orbit of angle φ. 

Since the speed vector given to the satellite is tangent to the circle of the wanted trajectory, we 

should have: 
𝑑𝜌(𝑡)

𝑑𝑡
× 𝑒𝜌(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  −

𝑑𝜑

2
× 𝜑. × 𝜌(𝑡) × 𝑒𝜌(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 0⃗                                                        (28) 

Hence: 
𝑑𝜌(𝑡)

𝑑𝑡
=

𝑑𝜑

2
× 𝜑. × 𝜌(𝑡)                                                                                            (29) 

Consequently: 𝜌(𝑡) = 𝑒𝑥𝑝 (
𝑑𝜑

2
× 𝜑 + 𝑙𝑛(ℎ)) = ℎ × 𝑒𝑥𝑝 (

𝑑𝜑

2
× 𝜑)                                           (30) 

Where:  h is the initial altitude of the satellite. 

The linear speed V of the GPS satellite is the constant speed that equals the initial speed given to 

the satellite in order to start orbiting.  

Consequently: �⃗� = 𝜌(𝑡) × 𝜑. × √1 −
𝑑𝜑2

4
× 𝑒𝜑(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗                                                                    (31) 

And thus: 
𝑑𝜑

𝑑𝑡
=

𝑉

ℎ×√1−
𝑑𝜑2

4

× 𝑒𝑥𝑝 (
−𝑑𝜑

2
× 𝜑) = 𝑒𝑥𝑝(

−𝑑𝜑

2
× 𝜑 + 𝑙𝑛 (

𝑉

ℎ×√1−
𝑑𝜑2

4

))      (32) 

 

We should remark that: 

 ρ(t) increases in the beginning of the GPS satellite lifetime with a very slight change thanks 

to the initial launching power from earth. 

 φ=0 at the point where the satellite started orbiting after being launched. 

 φ  is always increasing and exceeds 2π, consequently φ is always positive and  
𝑑𝜑

𝑑𝑡
⩾ 0. 

 dφ is the constant smallest variation of the satellite angle that we can detect, and dt is the 

time needed for that variation. 

Since we consider in our study that dφ is constant and dt is the variable, we conclude that: 𝑑𝑡 =
ℎ

𝑉
×

√1 −
𝑑𝜑2

4
× 𝑑𝜑 × 𝑒𝑥𝑝 (

𝑑𝜑

2
× 𝜑)                                                                              (33) 

and thus dt depends on the satellite rotation angle φ. 

 

application: 

The real time ΔT needed by the satellite to make the first lap around the earth after it is launched is: 

𝛥𝑇 = ∑

𝐾

𝑖=1

(
ℎ

𝑉
× √1 −

𝑑𝜑2

4
× 𝑑𝜑 × 𝑒𝑥𝑝 (𝑖

𝑑𝜑

2
× 𝑑𝜑)) + 𝛥𝑡

=
ℎ

𝑉
× √1 −

𝑑𝜑2

4
× 𝑑𝜑 × ∑

𝐾

𝑖=1

(𝑒𝑥𝑝 (𝑖
𝑑𝜑2

2
)) + 𝛥𝑡 

                                                                                                                                                 (34) 
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Where: 𝐾 = ⌊
2𝜋

𝑑𝜑
⌋(the floor of 

2𝜋

𝑑𝜑
)                                                                              (35) 

and 𝛥𝑡 =
ℎ

𝑉
× √1 −

𝑑𝜑2

4
× 𝑑𝜑1 × 𝑒𝑥𝑝 (

𝑑𝜑1

2
× 2𝜋)                                                                 (36) 

and 𝑑𝜑1 = 2𝜋 − 𝐾 × 𝑑𝜑.                                                                                                      (37) 

 

Result 3: 

In spherical coordinates(r,θ,φ): 

𝑑𝑒𝑟⃗⃗  ⃗ =
𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜑
𝑑𝜑 +

𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜃
𝜃and: 𝑑𝑒𝜃⃗⃗⃗⃗ =

𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜑
𝑑𝜑 +

𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜃
𝜃and: 𝑑𝑒𝜑⃗⃗⃗⃗ =

𝜕𝑒𝜑⃗⃗⃗⃗  ⃗

𝜕𝜑
𝑑𝜑 +

𝜕𝑒𝜑⃗⃗⃗⃗  ⃗

𝜕𝜃
𝜃  

since (𝑒𝑟⃗⃗  ⃗, 𝑒𝜃⃗⃗⃗⃗ , 𝑒𝜑⃗⃗⃗⃗ )don’t change by the variation of r but only θ and φ. 

Also: 
𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜃
=

−𝑑𝜃

2
× 𝑒𝑟⃗⃗  ⃗ + √1 −

𝑑𝜃2

4
× 𝑒𝜃⃗⃗⃗⃗                                                                                     (38) 

and: 
𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜃
=

−𝑑𝜃

2
× 𝑒𝜃⃗⃗⃗⃗ − √1 −

𝑑𝜃2

4
× 𝑒𝑟⃗⃗  ⃗                                                                                     (39) 

since: 𝑒𝑟⃗⃗  ⃗and 𝑒𝜃⃗⃗⃗⃗ are always in the rotation plane θ. 

And also: 
𝜕𝑒𝜑⃗⃗⃗⃗  ⃗

𝜕𝜃
= 0⃗  since 𝑒𝜑⃗⃗⃗⃗ is always perpendicular to the plane of the rotation θ. Consequently, 𝑒𝜑⃗⃗⃗⃗  

doesn’t change by the variation of θ. 

In order to find: 
𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜑
, 
𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜑
and 

𝜕𝑒𝜑⃗⃗⃗⃗  ⃗

𝜕𝜑
, we should make the projections of 𝑒𝑟⃗⃗  ⃗, 𝑒𝜃⃗⃗⃗⃗ and 𝑒𝜑⃗⃗⃗⃗ in the suitable 

cylindrical coordinates (ρ,φ,z) with the same plane of rotation φ that contains always 𝑒𝜌⃗⃗  ⃗and the 

same vector 𝑒𝜑⃗⃗⃗⃗ of the spherical coordinates. 

Hence:  𝑒𝑟⃗⃗  ⃗ = 𝑠𝑖𝑛(𝜃) × 𝑒𝜌⃗⃗  ⃗ + 𝑐𝑜𝑠(𝜃) × �⃗� and: 𝑒𝜃⃗⃗⃗⃗ = 𝑐𝑜𝑠(𝜃) × 𝑒𝜌⃗⃗  ⃗ − 𝑠𝑖𝑛(𝜃) × �⃗�   

and: 𝑒𝜑⃗⃗⃗⃗ = 𝑒𝑟⃗⃗  ⃗ ∧ 𝑒𝜃⃗⃗⃗⃗ where: 𝑒𝜑⃗⃗⃗⃗ is the same in the two coordinates systems. 

Also: 
𝜕�⃗� 

𝜕𝜑
= 0⃗ consequently: 

𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜑
= 𝑠𝑖𝑛(𝜃) ×

𝜕𝑒𝜌⃗⃗ ⃗⃗  

𝜕𝜑
= 𝑠𝑖𝑛(𝜃) × (

−𝑑𝜑

2
× 𝑒𝜌⃗⃗  ⃗ + √1 −

𝑑𝜑2

4
× 𝑒𝜑⃗⃗⃗⃗ )  (40) 

And: 
𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜑
= 𝑐𝑜𝑠(𝜃) ×

𝜕𝑒𝜌⃗⃗ ⃗⃗  

𝜕𝜑
= 𝑐𝑜𝑠(𝜃) × (

−𝑑𝜑

2
× 𝑒𝜌⃗⃗  ⃗ + √1 −

𝑑𝜑2

4
× 𝑒𝜑⃗⃗⃗⃗ )                                          (41) 

with: 𝑒𝜌⃗⃗  ⃗ = 𝑠𝑖𝑛(𝜃) × 𝑒𝑟⃗⃗  ⃗ + 𝑐𝑜𝑠(𝜃) × 𝑒𝜃⃗⃗⃗⃗  

and thus: 

𝜕𝑒𝑟⃗⃗⃗⃗ 

𝜕𝜑
=

−𝑑𝜑

2
× 𝑠𝑖𝑛(𝜃)2 × 𝑒𝑟⃗⃗  ⃗ −

𝑑𝜑

4
× 𝑠𝑖𝑛(2𝜃) × 𝑒𝜃⃗⃗⃗⃗ + 𝑠𝑖𝑛(𝜃) × √1 −

𝑑𝜑2

4
× 𝑒𝜑⃗⃗⃗⃗                                 

(42) 

and:
𝜕𝑒𝜃⃗⃗ ⃗⃗  

𝜕𝜑
=

−𝑑𝜑

4
× 𝑠𝑖𝑛(2𝜃) × 𝑒𝑟⃗⃗  ⃗ −

𝑑𝜑

2
× 𝑐𝑜𝑠(𝜃)2𝑒𝜃 + 𝑐𝑜𝑠(𝜃) × √1 −

𝑑𝜑2

4
× 𝑒𝜑⃗⃗⃗⃗                            (43) 

and: 
𝜕𝑒𝜑⃗⃗⃗⃗  ⃗

𝜕𝜑
= −𝑠𝑖𝑛(𝜃) × √1 −

𝑑𝜑2

4
× 𝑒𝑟⃗⃗  ⃗ − 𝑐𝑜𝑠(𝜃) × √1 −

𝑑𝜑2

4
× 𝑒𝜃⃗⃗⃗⃗ −

𝑑𝜑

2
× 𝑒𝜑⃗⃗⃗⃗                                

(44) 

 

5. Conclusion 2: 

𝑑𝑒𝑟⃗⃗  ⃗ = −(
𝑑𝜃2

2
+

𝑑𝜑2

2
× 𝑠𝑖𝑛(𝜃)2) × 𝑒𝑟⃗⃗  ⃗ + (𝑑𝜃 × √1 −

𝑑𝜃2

4
−

𝑑𝜑2

4
× 𝑠𝑖𝑛(2𝜃)) × 𝑒𝜃⃗⃗⃗⃗ + 𝑑𝜑

× √1 −
𝑑𝜑2

4
× 𝑠𝑖𝑛(𝜃) × 𝑒𝜑⃗⃗⃗⃗  

                                                                                                                                                   (45) 
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and: 𝑑𝑒𝜃⃗⃗⃗⃗ = −(𝑑𝜃 × √1 −
𝑑𝜃2

4
−

𝑑𝜑2

4
× 𝑠𝑖𝑛(2𝜃)) × 𝑒𝑟⃗⃗  ⃗ − (

𝑑𝜃2

2
+

𝑑𝜑2

2
× 𝑐𝑜𝑠(𝜃)2) × 𝑒𝜃⃗⃗⃗⃗ + 𝑑𝜑 ×

√1 −
𝑑𝜑2

4
× 𝑐𝑜𝑠(𝜃) × 𝑒𝜑⃗⃗⃗⃗  

                                                                                                                                                    (46) 

and also:𝑑𝑒𝜑⃗⃗⃗⃗ = −𝑑𝜑 × √1 −
𝑑𝜑2

4
× 𝑠𝑖𝑛(𝜃) × 𝑒𝑟⃗⃗  ⃗ − 𝑑𝜑 × √1 −

𝑑𝜑2

4
× 𝑐𝑜𝑠(𝜃) × 𝑒𝜃⃗⃗⃗⃗ −

𝑑𝜑2

2
× 𝑒𝜑⃗⃗⃗⃗      

(47) 

 

6. A new method to avoid the conventional method of changing reference frames: 
 

We will present a new method to avoid the famous method of changing reference frames that needs 

the perpendicularity between a rotating vector and its derivative. 

When a given reference frame with orthonormal direct axes is making any revolution, this 

revolution can be decomposed to three simple revolutions, and each one of these simple revolutions 

is around one of the three axes. However each axis changes only by two simple revolutions that are 

the simple revolutions around the two other axes and not by the revolution around itself. 

Consequently, let’s consider that α is the angle of the simple revolution around the axis 𝑖 , β is the 

angle of the simple revolution around the axis 𝑗 , and ɣ is the angle of the simple revolution around 

the axis �⃗� where (𝑖 , 𝑗 , �⃗� )are the three orthonormal direct axes of the reference frame that makes any 

given revolution. This revolution is composed of the three simple revolutions of angles:  α, β and ɣ. 

Let’s study each one of the three axes independently from each other. The simple revolution doesn’t  

influence its axis but the two others. Hence each axis is influenced by two simple revolutions and 

thus we can use a spherical coordinates system to study each axis.  

We will calculate 
𝑑𝑖 

𝑑𝑡
, 
𝑑𝑗 

𝑑𝑡
and 

𝑑�⃗� 

𝑑𝑡
 which are the derivatives of 𝑖 ,𝑗 and�⃗� in an absolute fixed reference 

frame (𝑂𝑥⃗⃗⃗⃗  ⃗, 𝑂𝑦⃗⃗⃗⃗  ⃗, 𝑂𝑧⃗⃗⃗⃗  ⃗). 

This method is useful in order to avoid the difficult projections of 𝑖 ,𝑗 and�⃗� in the absolute fixed 

reference frame. Furthermore, the three derivatives will be calculated without making any change of 

reference frames. However, the functions  α(t), β(t) and ɣ(t) of the three simple revolutions  must be 

well known before making this study. 

 

Step 1: The study of the vector 𝑖 : 
 

Let’s consider that 𝑖 = 𝑒𝑟⃗⃗  ⃗, 𝑗 = 𝑒𝜃⃗⃗⃗⃗ and �⃗� = 𝑒𝜑⃗⃗⃗⃗ where:𝑒𝑟⃗⃗  ⃗, 𝑒𝜃⃗⃗⃗⃗ and 𝑒𝜑⃗⃗⃗⃗ are the vectors of a spherical 

coordinates system. 

We conclude that: ɣ=θ and α has no effects on 𝑖 . However, we should find the relation between φ 

and both β  and ɣ. 
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Fig.2 : The circle of rotation  β and the ellipse of rotation  φ. 
 

The figure 2 shows that the intersection of the rotation β plane and the rotation φ plane is the 

axis𝑂𝑥⃗⃗⃗⃗  ⃗of a Cartesian coordinates system. And the orthogonal projection of the circle made by the 

rotation β inside the plane of𝑒𝜑⃗⃗⃗⃗  is an ellipse made by the rotation φ. We consider that O is the 

center of the ellipse whereas φ is the angle between 𝑒𝜑⃗⃗⃗⃗ and 𝑂𝑥⃗⃗⃗⃗  ⃗. 

𝐴𝐵⃗⃗⃗⃗  ⃗is perpendicular to the plane of the rotation φ which is the plane of 𝑒𝜑⃗⃗⃗⃗ that is the plane of the two 

Cartesian vectors 𝑂𝑥⃗⃗⃗⃗  ⃗and 𝑂𝑦⃗⃗⃗⃗  ⃗. 

𝐴𝐶⃗⃗⃗⃗  ⃗is in the plane of the rotation β which is the plane of 𝑖 and 𝐴𝐶⃗⃗⃗⃗  ⃗is perpendicular to the axis 𝑂𝑥⃗⃗⃗⃗  ⃗. 
We can prove that: 𝐴𝐶 = 𝑠𝑖𝑛(𝛽)and 𝐴𝐵 = 𝑠𝑖𝑛(𝛽) × 𝑐𝑜𝑠(𝜃)                                                  (48) 

𝑂𝐵⃗⃗ ⃗⃗  ⃗is in the plane of 𝑒𝜑⃗⃗⃗⃗ with: 𝑂𝐵 = √1 − 𝐴𝐵2 = √1 − 𝑠𝑖𝑛(𝛽)2 × 𝑐𝑜𝑠(𝜃)2                            (49) 

And the equation of the ellipse is: 
𝑥2

𝑎2 +
𝑦2

𝑏2 + 1 

where a= (the half of the ellipse major axis), and b= (the half of the ellipse minor axis). 

Consequently: a=1 and b= sin(θ) 

And also: 𝑥 = 𝑂𝐵 × 𝑐𝑜𝑠(𝜑)and: 𝑦 = 𝑂𝐵 × 𝑠𝑖𝑛(𝜑) 

Therefore, the ellipse equation becomes: 𝑐𝑜𝑠(𝜑)2 × (1 − 𝑐𝑜𝑠(𝜃)2 × 𝑠𝑖𝑛(𝛽)2) +
𝑠𝑖𝑛(𝜑)2

𝑠𝑖𝑛(𝜃)2
×

(1 − 𝑐𝑜𝑠(𝜃)2 × 𝑠𝑖𝑛(𝛽)2) = 1                                     (50) 

Consequently: 𝑐𝑜𝑠(𝜑)2 =
𝑡𝑎𝑛(𝜃)2

(𝑐𝑜𝑠(𝜃)2×𝑠𝑖𝑛(𝛽)2)−1
+

1

𝑐𝑜𝑠(𝜃)2
=

𝑡𝑎𝑛(𝛾)2

(𝑐𝑜𝑠(𝛾)2×𝑠𝑖𝑛(𝛽)2)−1
+

1

𝑐𝑜𝑠(𝛾)2
 (51) 

and this equation doesn’t change even if: 𝜑 >
𝜋

2
and: 𝛽 >

𝜋

2
. 

Since we know exactly the functions β(t) and ɣ(t), we can deduce easily the function φ(t) in order to 

be able to calculate dφ(t), especially that: 0 ⩽ 𝛽 ⩽
𝜋

2
⇒ 0 ⩽ 𝜑 ⩽

𝜋

2
and: 

𝜋

2
⩽ 𝛽 ⩽ 𝜋 ⇒

𝜋

2
⩽ 𝜑 ⩽

𝜋and also: 𝜋 ⩽ 𝛽 ⩽
3𝜋

2
⇒ 𝜋 ⩽ 𝜑 ⩽

3𝜋

2
and also: 

3𝜋

2
⩽ 𝛽 ⩽ 2𝜋 ⇒

3𝜋

2
⩽ 𝜑 ⩽ 2𝜋. 

However we can only use this formula when 𝛾 ≠ 0 and 𝛾 ≠
𝜋

2
. 

But we notice that if 𝛾 =
𝜋

2
and ɣ stays fixed, then always φ=β and thus we can study𝑖 easily by using 

cylindrical coordinates system. 

Finally, by using the formula of 𝑑𝑒𝑟⃗⃗  ⃗, we conclude that: 
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(52)
𝑑𝑖 

𝑑𝑡
= −(

𝑑𝜃

2
×

𝑑𝜃

𝑑𝑡
+

𝑑𝜑

2
×

𝑑𝜑

𝑑𝑡
× 𝑠𝑖𝑛(𝜃)2) × 𝑖 + (

𝑑𝜃

𝑑𝑡
× √1 −

𝑑𝜃2

4
−

𝑑𝜑

4
×

𝑑𝜑

𝑑𝑡
× 𝑠𝑖𝑛(2𝜃)) × 𝑗 +

𝑑𝜑

𝑑𝑡
× √1 −

𝑑𝜑2

4
× 𝑠𝑖𝑛(𝜃) × �⃗�       

Hence:  

     
𝑑𝑖 

𝑑𝑡
= −(

𝑑𝛾

2
×

𝑑𝛾

𝑑𝑡
+

𝑑𝜑1

2
×

𝑑𝜑1

𝑑𝑡
× 𝑠𝑖𝑛(𝛾)2) × 𝑖 + (

𝑑𝛾

𝑑𝑡
× √1 −

𝑑𝛾2

4
−

𝑑𝜑1

4
×

𝑑𝜑1

𝑑𝑡
× 𝑠𝑖𝑛(2𝛾)) × 𝑗 +

𝑑𝜑1

𝑑𝑡
× √1 −

𝑑𝜑1
2

4
× 𝑠𝑖𝑛(𝛾) × �⃗�                                                                                                               

(53) 

where: φ1(t)=φ(t) in step 1. 

 

Step 2: The study of the vector 𝑗 : 
 

By following the same method, let’s consider that 𝑖 = 𝑒𝜑⃗⃗⃗⃗ , 𝑗 = 𝑒𝑟⃗⃗  ⃗and �⃗� = 𝑒𝜃⃗⃗⃗⃗ where:𝑒𝑟⃗⃗  ⃗, 𝑒𝜃⃗⃗⃗⃗ and 𝑒𝜑⃗⃗⃗⃗ are 

the vectors of an other spherical coordinates system. 

We conclude that: α=θ and β has no effects on 𝑗 . However, we should find the relation between φ 

and both α and ɣ. And Let’s consider that:  φ2(t)=φ(t) in step 2. 

The ellipse equation gives: 𝑐𝑜𝑠(𝜑2)
2 =

𝑡𝑎𝑛(𝛼)2

(𝑐𝑜𝑠(𝛼)2×𝑠𝑖𝑛(𝛾)2)−1
+

1

𝑐𝑜𝑠(𝛼)2
                              (54) 

Consequently, we can deduce easily the function φ2(t). 

And thus by using the formula of 𝑑𝑒𝑟⃗⃗  ⃗again, we conclude that: 

   
𝑑𝑗 

𝑑𝑡
=

𝑑𝜑2

𝑑𝑡
× √1 −

𝑑𝜑2
2

4
× 𝑠𝑖𝑛(𝛼)𝑖 − (

𝑑𝛼

2
×

𝑑𝛼

𝑑𝑡
+

𝑑𝜑2

2
×

𝑑𝜑2

𝑑𝑡
× 𝑠𝑖𝑛(𝛼)2) × 𝑗 + (

𝑑𝛼

𝑑𝑡
× √1 −

𝑑𝛼2

4
−

𝑑𝜑2

4
×

𝑑𝜑2

𝑑𝑡
× 𝑠𝑖𝑛(2𝛼)) × �⃗�                                                               (55) 

Step 3: The study of the vector �⃗� :  
 

By following the same method, let’s consider that 𝑖 = 𝑒𝜃⃗⃗⃗⃗ , 𝑗 = 𝑒𝜑⃗⃗⃗⃗ and �⃗� = 𝑒𝑟⃗⃗  ⃗where:𝑒𝑟⃗⃗  ⃗, 𝑒𝜃⃗⃗⃗⃗ and 𝑒𝜑⃗⃗⃗⃗ are 

the vectors of an other spherical coordinates system. 

We conclude that: β=θ and ɣ has no effects on �⃗� . However, we should find the relation between φ 

and both α and β. And Let’s consider that:  φ3(t)=φ(t) in step 3. 

The ellipse equation gives: 𝑐𝑜𝑠(𝜑3)
2 =

𝑡𝑎𝑛(𝛽)2

(𝑐𝑜𝑠(𝛽)2×𝑠𝑖𝑛(𝛼)2)−1
+

1

𝑐𝑜𝑠(𝛽)2
                             (56) 

Consequently, we can deduce easily the function φ3(t). 

And thus by using the formula of 𝑑𝑒𝑟⃗⃗  ⃗again, we conclude that: 

 
𝑑�⃗� 

𝑑𝑡
= (

𝑑𝛽

𝑑𝑡
× √1 −

𝑑𝛽2

4
−

𝑑𝜑3

4
×

𝑑𝜑3

𝑑𝑡
× 𝑠𝑖𝑛(2𝛽)) 𝑖 +

𝑑𝜑3

𝑑𝑡
× √1 −

𝑑𝜑3
2

4
× 𝑠𝑖𝑛(𝛽) × 𝑗 −

(
𝑑𝛽

2
×

𝑑𝛽

𝑑𝑡
+

𝑑𝜑3

2
×

𝑑𝜑3

𝑑𝑡
× 𝑠𝑖𝑛(𝛽)2) × �⃗�                                                                              (57) 

7. An important advice: 

The result of this vector study should preferably be used with the formula: 𝛥𝐸𝑐 = ∫ 𝑣 ×

𝑑𝑝⃗⃗ ⃗⃗  during the energetic study of a system, then simplifications can be made in order to find the 

correct expression of the kinetic energy variation 𝛥𝐸𝑐. 

 

Part B: Differential operators: 
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The differential operators gradient (nabla), divergence, curl and Laplacian provide information 

about about a field of scalars or vectors situated immediately in front of the studied point M 

according to the orientations of the axes of the used coordinates system. 

Let’s prove the formulas of each differential operator geometrically by using the three coordinates 

systems in an Euclidean space where the field lines are considered continuous vector functions. 

  

1. The operator gradient (nabla): 

Let’s consider a function of locations points: 𝑓: 𝐸 → 𝑅. Where E is the Euclidean space and the 

function f is differentiable and thus continuous. 

Consequently:𝑓: 𝐸 →  𝑅 𝑀 →  𝑓(𝑀)  makes a scalar field. 

In each of the three coordinates system, the operator gradient has this form: 𝑑𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 × 𝑑𝑀⃗⃗⃗⃗⃗⃗ . 
 

The Cartesian coordinates System (x,y,z): 

  𝑑𝑓 =
𝜕𝑓

𝜕𝑥
. 𝑑𝑥 +

𝜕𝑓

𝜕𝑦
. 𝑑𝑦 +

𝜕𝑓

𝜕𝑧
. 𝑑𝑧 = (

𝜕𝑓

𝜕𝑥
. 𝑒𝑥⃗⃗  ⃗ +

𝜕𝑓

𝜕𝑦
. 𝑒𝑦⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗) × (𝑑𝑥. 𝑒𝑥⃗⃗  ⃗ + 𝑑𝑦. 𝑒𝑦⃗⃗⃗⃗ + 𝑑𝑧. 𝑒𝑧⃗⃗  ⃗) =

(
𝜕𝑓

𝜕𝑥
. 𝑒𝑥⃗⃗  ⃗ +

𝜕𝑓

𝜕𝑦
. 𝑒𝑦⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗) × 𝑑𝑀⃗⃗⃗⃗⃗⃗                                                                                          (58) 

Consequently: �⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝑥
. 𝑒𝑥⃗⃗  ⃗ +

𝜕𝑓

𝜕𝑦
. 𝑒𝑦⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗                                                         (59) 

The cylindrical coordinates system (ρ,φ,z):  

𝑑𝑓 =
𝜕𝑓

𝜕𝜌
. 𝑑𝜌 +

𝜕𝑓

𝜕𝜑
. 𝑑𝜑 +

𝜕𝑓

𝜕𝑧
. 𝑑𝑧                                                                                             (60) 

and 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 𝑑𝜌. 𝑒𝜌⃗⃗  ⃗ + 𝜌. 𝑑𝜑. 𝑒𝜑⃗⃗⃗⃗ + 𝑑𝑧. 𝑒𝑧⃗⃗  ⃗                                                                                       (61) 

and: �⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 = 𝐴. 𝑒𝜌⃗⃗  ⃗ + 𝐵. 𝑒𝜑⃗⃗⃗⃗ + 𝐶. 𝑒𝑧⃗⃗  ⃗ where A,B and C are the coordinates of �⃗� 𝑓. 

Consequently: 𝑑𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 × 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 𝐴. 𝑑𝜌 + 𝐵. 𝜌. 𝑑𝜑 + 𝐶. 𝑑𝑧                                                 (62) 

We conclude this identification: 𝐴 =
𝜕𝑓

𝜕𝜌
                                                                             (63) 

and: 𝐵 =
1

𝜌
×

𝜕𝑓

𝜕𝜑
                                                                                                                   (64) 

and 𝐶 =
𝜕𝑓

𝜕𝑧
.                                                                                                                          (65) 

And thus:  �⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝜌
. 𝑒𝜌⃗⃗  ⃗ +

𝜕𝑓

𝜕𝜑
×

1

𝜌
. 𝑒𝜑⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗                         (66)         

The spherical coordinates(r,θ,φ): 

𝑑𝑓 =
𝜕𝑓

𝜕𝑟
. 𝑑𝑟 +

𝜕𝑓

𝜕𝜃
. 𝑑𝜃 +

𝜕𝑓

𝜕𝜑
. 𝑑𝜑                                                                                            (67)                                           

and 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 𝑑𝑟. 𝑒𝑟⃗⃗  ⃗ + 𝑟. 𝑑𝜃. 𝑒𝜃⃗⃗⃗⃗ + 𝑠𝑖𝑛(𝜃). 𝑟. 𝑑𝜑. 𝑒𝜑⃗⃗⃗⃗                                                                       (68) 

and: �⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 = 𝐴. 𝑒𝑟⃗⃗  ⃗ + 𝐵. 𝑒𝜃⃗⃗⃗⃗ + 𝐶. 𝑒𝜑⃗⃗⃗⃗  where A,B and C are the coordinates of �⃗� 𝑓. 

Consequently: 𝑑𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 × 𝑑𝑀⃗⃗⃗⃗⃗⃗ = 𝐴. 𝑑𝑟 + 𝐵. 𝑟. 𝑑𝜃 + 𝐶. 𝑠𝑖𝑛(𝜃). 𝑟. 𝑑𝜑                                 (69) 

We conclude this identification: 𝐴 =
𝜕𝑓

𝜕𝑟
                                                                             (70) 

and:𝐵 =
1

𝑟
×

𝜕𝑓

𝜕𝜃
                                                                                                                     (71) 

and 𝐶 =
1

𝑟.𝑠𝑖𝑛(𝜃)
×

𝜕𝑓

𝜕𝜑
.                                                                                                       (72) 

And thus:  �⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝑟
. 𝑒𝑟⃗⃗  ⃗ +

1

𝑟
×

𝜕𝑓

𝜕𝜃
. 𝑒𝜃⃗⃗⃗⃗ +

1

𝑟.𝑠𝑖𝑛(𝜃)
×

𝜕𝑓

𝜕𝜑
. 𝑒𝜑⃗⃗⃗⃗                  (73) 

 

Clarifications: 

 𝑑𝑀⃗⃗⃗⃗⃗⃗  is an infinitesimal displacement that depends on the used coordinates system. 

 The studied function f must be expressed according to the coordinates system of the used 

reference frame, then we use the coordinates of M in the final expression. 

 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓characterizes the variation of f in the space for a given displacement 𝑑𝑀⃗⃗⃗⃗⃗⃗ . 
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 df changes depending on M the studied point of the space, because to each point M 

corresponds a value f(M), and also, 𝑑𝑀⃗⃗⃗⃗⃗⃗  is immediately in front of the studied point M 

according to the orientations of the axes of the used coordinates system . Consequently, 

𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 is a vector field that depends on the value f(M) at the location of the point M and 

also on the coordinates system being used.   

  𝑑𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 × 𝑑𝑀⃗⃗⃗⃗⃗⃗ = ‖𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓‖ × ‖𝑑𝑀⃗⃗⃗⃗⃗⃗ ‖ × 𝑐𝑜𝑠(𝛺) consequently 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   𝑓 is located at a 

rotation angle 𝛺 from 𝑑𝑀⃗⃗⃗⃗⃗⃗  in the anticlockwise orientation. 

 The level surfaces are the space surfaces where f stays constant. And 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓is 

perpendicular to its level surfaces. 

 

2.The flow and the operator divergence: 

The elementary flow is: 𝑑𝜙 = 𝐴 × 𝑑𝑆 × �⃗� = 𝑑𝑖𝑣𝐴 × 𝑑𝜏 

𝑑𝑖𝑣𝐴 is a scalar field where: 

 𝐴 is a vector field  

 dS and dτ are consecutively the elementary surface and volume of the used coordinates 

system. 

 �⃗� is the unit normal vector to dS. 

For a closed surface we orientate �⃗� towards outside the surface. Also, dS and dτ change from a 

coordinates system to an other. Consequently, 𝑑𝑖𝑣𝐴  depends on the coordinates system being used. 

 

The Cartesian coordinates System (x,y,z): 

We remark that: dτ=dx.dy.dz and dS1=dS2=dx.dy and  dS3=dS4=dy.dz and dS5=dS6=dx.dz. 

And also: 𝑑𝜙1 = 𝐴 × 𝑑𝑆1 × 𝑛1⃗⃗⃗⃗ = −𝐴𝑧 × 𝑑𝑥 × 𝑑𝑦                                                                 (74) 

and: 𝑑𝜙2 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆2 × 𝑛2⃗⃗⃗⃗ = 𝐴⁺𝑧 × 𝑑𝑥 × 𝑑𝑦                                                                        (75) 

where: 𝐴⁺𝑧 = 𝐴𝑧 +
𝜕𝐴𝑧

𝜕𝑧
. 𝑑𝑧                                                                                             (76) 

Consequently: 𝑑𝜙𝑧 = 𝑑𝜙1 + 𝑑𝜙2 =
𝜕𝐴𝑧

𝜕𝑧
. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧 =

𝜕𝐴𝑧

𝜕𝑧
. 𝑑𝜏                                         (77) 

because: 𝑛2⃗⃗⃗⃗ = −𝑛1⃗⃗⃗⃗ = �⃗� . 

And also: 𝑑𝜙3 = 𝐴 × 𝑑𝑆3 × 𝑛3⃗⃗⃗⃗ = −𝐴𝑥 × 𝑑𝑦 × 𝑑𝑧                                                                 (78) 

and: 𝑑𝜙4 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆4 × 𝑛4⃗⃗⃗⃗ = 𝐴⁺𝑥 × 𝑑𝑦 × 𝑑𝑧                                                                        (79) 

where: 𝐴⁺𝑥 = 𝐴𝑥 +
𝜕𝐴𝑥

𝜕𝑥
. 𝑑𝑥                                                                                             (80) 

Consequently: 𝑑𝜙𝑥 = 𝑑𝜙3 + 𝑑𝜙4 =
𝜕𝐴𝑥

𝜕𝑥
. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧 =

𝜕𝐴𝑥

𝜕𝑥
. 𝑑𝜏                                         (81) 

because: 𝑛4⃗⃗⃗⃗ = −𝑛3⃗⃗⃗⃗ = 𝑖 . 

And also: 𝑑𝜙5 = 𝐴 × 𝑑𝑆5 × 𝑛5⃗⃗⃗⃗ = −𝐴𝑦 × 𝑑𝑥 × 𝑑𝑧                                                                  (82) 

and: 𝑑𝜙6 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆6 × 𝑛6⃗⃗⃗⃗ = 𝐴⁺𝑦 × 𝑑𝑥 × 𝑑𝑧                                                                         (83) 

where: 𝐴⁺𝑦 = 𝐴𝑦 +
𝜕𝐴𝑦

𝜕𝑦
. 𝑑𝑦                                                                                             (84) 

Consequently: 𝑑𝜙𝑦 = 𝑑𝜙5 + 𝑑𝜙6 =
𝜕𝐴𝑦

𝜕𝑦
. 𝑑𝑥. 𝑑𝑦. 𝑑𝑧 =

𝜕𝐴𝑦

𝜕𝑦
. 𝑑𝜏                                        (85) 

because: 𝑛6⃗⃗⃗⃗ = −𝑛5⃗⃗⃗⃗ = 𝑗 . 

And thus: 𝑑𝜙 = 𝑑𝜙𝑥 + 𝑑𝜙𝑦 + 𝑑𝜙𝑧 = (
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
) × 𝑑𝜏                                           (86) 

We finally conclude that: 𝑑𝑖𝑣𝐴 =
𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
                                                     (87) 

 

The cylindrical coordinates system (ρ,φ,z):  

In the cylindrical coordinates system: 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝜌 × 𝑒𝜌⃗⃗  ⃗ + 𝑧 × �⃗� where M is a point of the space. 
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Fig.3 : The elementary volume dτ and the elementary surfaces dS1 and dS2. 
 

In the figure 3, the elementary volume is: 𝑑𝜏 = 𝜌 × 𝑑𝜑 × 𝑑𝜌 × 𝑑𝑧.                                (88) 

Also: 𝑑𝑆1 = 𝜌 × 𝑑𝜑 × 𝑑𝑧                                                                                                  (89) 

and 𝑑𝑆2 = (𝜌 + 𝑑𝜌) × 𝑑𝜑 × 𝑑𝑧                                                                                            (90) 

 

Fig.4 : The elementary similar surfaces dS3, dS4, and the elementary similar surfaces dS5 and dS6. 
 

In the figure 3, we prove by using circular sectors that:𝑑𝑆3 = 𝑑𝑆4 = 𝑑𝜌 × 𝑑𝑧                  (91) 

And: 𝑑𝑆5 = 𝑑𝑆6 = 𝑑𝜌 × 𝑑𝜑 × (𝜌 +
𝑑𝜌

2
)                                                                               (92) 

Hence: 𝑑𝜙1 = 𝐴 × 𝑑𝑆1 × 𝑛1⃗⃗⃗⃗ = −𝐴𝜌 × 𝜌 × 𝑑𝜑 × 𝑑𝑧                                                                (93) 

and: 𝑑𝜙2 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆2 × 𝑛2⃗⃗⃗⃗ = 𝐴⁺𝜌 × (𝜌 + 𝑑𝜌) × 𝑑𝜑 × 𝑑𝑧                                                        (94) 

where: 𝐴⁺𝜌 = 𝐴𝜌 +
𝜕𝐴𝜌

𝜕𝜌
. 𝑑𝜌                                                                                             (95) 

Consequently: 𝑑𝜙𝜌 = 𝑑𝜙1 + 𝑑𝜙2 = (
𝐴𝜌

𝜌
+

𝜕𝐴𝜌

𝜕𝜌
× (1 +

𝑑𝜌

𝜌
)) . 𝑑𝜏                                           (96) 

because: 𝑛2⃗⃗⃗⃗ = −𝑛1⃗⃗⃗⃗ = 𝑒𝜌⃗⃗  ⃗. 

And also: 𝑑𝜙3 = 𝐴 × 𝑑𝑆3 × 𝑛3⃗⃗⃗⃗ = −𝐴𝜑 × 𝑑𝜌 × 𝑑𝑧                                                                  (97) 

and: 𝑑𝜙4 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆4 × 𝑛4⃗⃗⃗⃗ = 𝐴⁺𝜑 × 𝑑𝜌 × 𝑑𝑧                                                                        (98) 

where: 𝐴⁺𝜑 = 𝐴𝜑 +
𝜕𝐴𝜑

𝜕𝜑
. 𝑑𝜑                                                                                             (99) 

Consequently: 𝑑𝜙𝜑 = 𝑑𝜙3 + 𝑑𝜙4 =
𝜕𝐴𝜑

𝜕𝜑
× 𝑑𝜑 × 𝑑𝜌 × 𝑑𝑧 =

1

𝜌
×

𝜕𝐴𝜑

𝜕𝜑
× 𝑑𝜏                           (100) 

because: 𝑛4⃗⃗⃗⃗ = −𝑛3⃗⃗⃗⃗ = 𝑒𝜑⃗⃗⃗⃗ . 
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And also: 𝑑𝜙5 = 𝐴 × 𝑑𝑆5 × 𝑛5⃗⃗⃗⃗ = −𝐴𝑧 × 𝑑𝜌 × 𝑑𝜑 × (𝜌 +
𝑑𝜌

2
)                                                (101) 

and: 𝑑𝜙6 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆6 × 𝑛6⃗⃗⃗⃗ = 𝐴⁺𝑧 × 𝑑𝜌 × 𝑑𝜑 × (𝜌 +
𝑑𝜌

2
)                                                       (102) 

where: 𝐴⁺𝑧 = 𝐴𝑧 +
𝜕𝐴𝑧

𝜕𝑧
. 𝑑𝑧                                                                                              (103) 

Consequently: 𝑑𝜙𝑧 = 𝑑𝜙5 + 𝑑𝜙6 =
𝜕𝐴𝑧

𝜕𝑧
× 𝑑𝜑 × 𝑑𝜌 × 𝑑𝑧 × (𝜌 +

𝑑𝜌

2
) = (1 +

𝑑𝜌

2𝜌
) ×

𝜕𝐴𝑧

𝜕𝑧
× 𝑑𝜏  

(104) 

because: 𝑛6⃗⃗⃗⃗ = −𝑛5⃗⃗⃗⃗ = �⃗� . 

 Hence: 𝑑𝜙 = 𝑑𝜙𝜌 + 𝑑𝜙𝜑 + 𝑑𝜙𝑧 = (
𝐴𝜌

𝜌
+ (1 +

𝑑𝜌

𝜌
) ×

𝜕𝐴𝜌

𝜕𝜌
+

1

𝜌
×

𝜕𝐴𝜑

𝜕𝜑
+ (1 +

𝑑𝜌

2𝜌
) ×

𝜕𝐴𝑧

𝜕𝑧
) × 𝑑𝜏 

(105) 

We finally conclude that: 𝑑𝑖𝑣𝐴 =
𝐴𝜌

𝜌
+ (1 +

𝑑𝜌

𝜌
) ×

𝜕𝐴𝜌

𝜕𝜌
+

1

𝜌
×

𝜕𝐴𝜑

𝜕𝜑
+ (1 +

𝑑𝜌

2𝜌
) ×

𝜕𝐴𝑧

𝜕𝑧
       (106) 

The spherical coordinates(r,θ,φ): 

In the spherical coordinates: 𝑂𝑀⃗⃗ ⃗⃗ ⃗⃗  = 𝑟 × 𝑒𝑟⃗⃗  ⃗and𝑒𝑟⃗⃗  ⃗is always in the plane of the rotation θ. And the 

elementary volume is: 𝑑𝜏 = 𝑟2 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜃 × 𝑑𝜑 × 𝑑𝑟.                                                   (107) 

Fig.5 : The six elementary surfaces forming an infinitesimal volume. And the elementary similar surfaces 

dS1 and dS2. 

 

 In the figure 5, the vector that is the radius of the circular arc made by dφ is always in the plane of 

𝑒𝜑⃗⃗⃗⃗ . And by using circular sectors: 𝑑𝑆1 = 𝑑𝑆2 = (𝑟 +
𝑑𝑟

2
) × 𝑑𝜃 × 𝑑𝑟.                            (108) 

 

Fig.6 : The elementary surfaces dS3 and dS4. 
 

In the figure 6: 𝑑𝑆3 = (𝑟 +
𝑑𝑟

2
) × 𝑠𝑖𝑛(𝜃)2 × 𝑑𝜑 × 𝑑𝑟                                                           (109) 

and: 𝑑𝑆4 = (𝑟 +
𝑑𝑟

2
) × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃)2 × 𝑑𝜑 × 𝑑𝑟                                                                     (110) 



 
 

 

40 

 

Fig.7 : The elementary surfaces dS5  and dS6. 
 

In the figure 7, we flatten the surface dS5 consequently we get a trapezoid shape that has the 

following height h1: 

ℎ1 = (𝑟2 × 𝑑𝜃2 + 𝑟2 × 𝑑𝜑2 × (𝑠𝑖𝑛(𝜃 + 𝑑𝜃) − 𝑠𝑖𝑛(𝜃))
2
)

1

2
                                                           

(111) 

 

Hence:  

𝑑𝑆5 =
ℎ1×(𝑟×𝑑𝜑×𝑠𝑖𝑛(𝜃+𝑑𝜃)+𝑟×𝑑𝜑×𝑠𝑖𝑛(𝜃))

2
=

𝑟2

4
× 𝑑𝜑 × 𝑑𝜃 × (4(𝑠𝑖𝑛(𝜃 + 𝑑𝜃) + 𝑠𝑖𝑛(𝜃))

2
− 𝑑𝜑2 ×

(
𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
)
2

)

1

2

                                                   (112)   

 

                                                                                                                                                        

We make the same with the surface dS6 and we get a trapezoid shape that has the following height 

h2: ℎ2 = ((𝑟 + 𝑑𝑟)2 × 𝑑𝜃2 + (𝑟 + 𝑑𝑟)2 × 𝑑𝜑2 × (𝑠𝑖𝑛(𝜃 + 𝑑𝜃) − 𝑠𝑖𝑛(𝜃))
2
)

1

2
                               

(113)  

 

And: 

         𝑑𝑆6 =
ℎ2×((𝑟+𝑑𝑟)×𝑑𝜑×𝑠𝑖𝑛(𝜃+𝑑𝜃)+(𝑟+𝑑𝑟)×𝑑𝜑×𝑠𝑖𝑛(𝜃))

2
=

(𝑟+𝑑𝑟)2

4
× 𝑑𝜑 × 𝑑𝜃 × (4(𝑠𝑖𝑛(𝜃 + 𝑑𝜃) +

𝑠𝑖𝑛(𝜃))
2
− 𝑑𝜑2 × (

𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
)
2

)

1

2

                                                     (114) 

 

                                                                                                                                                       

  

We have:  𝑑𝜙1 = 𝐴 × 𝑑𝑆1 × 𝑛1⃗⃗⃗⃗ = −𝐴𝜑 × 𝑑𝜃 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
)                                                          

(115) 

and: 𝑑𝜙2 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆2 × 𝑛2⃗⃗⃗⃗ = 𝐴⁺𝜑 × 𝑑𝜃 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
)                                                                 

(116) 

where: 𝐴⁺𝜑 = 𝐴𝜑 +
𝜕𝐴𝜑

𝜕𝜑
. 𝑑𝜑                                                                                                     (117) 

Consequently: 𝑑𝜙𝜑 = 𝑑𝜙1 + 𝑑𝜙2 =
𝜕𝐴𝜑

𝜕𝜑
× 𝑑𝜃 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +

𝑑𝑟

2
) = (

1+
𝑑𝑟

2𝑟

𝑟×𝑠𝑖𝑛(𝜃)
) ×

𝜕𝐴𝜑

𝜕𝜑
× 𝑑𝜏  

(118) 
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because: 𝑛2⃗⃗⃗⃗ = −𝑛1⃗⃗⃗⃗ = 𝑒𝜑⃗⃗⃗⃗ . 

And also:  𝑑𝜙3 = 𝐴 × 𝑑𝑆3 × 𝑛3⃗⃗⃗⃗ = −𝐴𝜃 × 𝑠𝑖𝑛(𝜃)2 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
)                           (119)                 

and: 𝑑𝜙4 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆4 × 𝑛4⃗⃗⃗⃗ = 𝐴⁺𝜃 × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃)2 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
)                             (120)                           

 

because: 𝑛4⃗⃗⃗⃗ = −𝑛3⃗⃗⃗⃗ = 𝑒𝜃⃗⃗⃗⃗ where: 𝐴⁺𝜃 = 𝐴𝜃 +
𝜕𝐴𝜃

𝜕𝜃
. 𝑑𝜃                                                             (121) 

 

Consequently:  

𝑑𝜙𝜃 = 𝑑𝜙3 + 𝑑𝜙4

= −𝐴𝜃 × 𝑠𝑖𝑛(𝜃)2 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
) + 𝐴𝜃 × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃)2 × 𝑑𝜑 × 𝑑𝑟

× (𝑟 +
𝑑𝑟

2
) +

𝜕𝐴𝜃

𝜕𝜃
× 𝑠𝑖𝑛(𝜃 + 𝑑𝜃)2 × 𝑑𝜃 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +

𝑑𝑟

2
) 

  

                                                                                                                                                       (122) 

Hence:  

   𝑑𝜙𝜃 = 𝐴𝜃 × 𝑑𝜑 × 𝑑𝑟 × (𝑟 +
𝑑𝑟

2
) × (𝑠𝑖𝑛(𝜃 + 𝑑𝜃)2 − 𝑠𝑖𝑛(𝜃)2) +

𝜕𝐴𝜃

𝜕𝜃
×

𝑠𝑖𝑛(𝜃+𝑑𝜃)2

𝑠𝑖𝑛(𝜃)×𝑟2 × (𝑟 +
𝑑𝑟

2
) ×

𝑑𝜏 = 𝐴𝜃 × (𝑟 +
𝑑𝑟

2
) ×

(𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2)

𝑑𝜃
×

𝑑𝜏

𝑠𝑖𝑛(𝜃)×𝑟2 +
𝜕𝐴𝜃

𝜕𝜃
×

𝑠𝑖𝑛(𝜃+𝑑𝜃)2

𝑠𝑖𝑛(𝜃)×𝑟2 × (𝑟 +
𝑑𝑟

2
) × 𝑑𝜏                       

(123) 

Let’s consider that:  

𝐵(𝜃) =
𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
=

𝑑𝑠𝑖𝑛(𝜃)2

𝑑𝜃
= 2 × 𝑠𝑖𝑛(𝜃) ×

𝑑𝑠𝑖𝑛(𝜃)

𝑑𝜃
                                                          

(124) 

 

And also: 𝐷(𝜃) =
𝑠𝑖𝑛(𝜃+𝑑𝜃)2

𝑠𝑖𝑛(𝜃)
                                                                                                  (125) 

We conclude that:  

𝑑𝜙𝜃 = 𝐴𝜃 × (
1

𝑟
+

𝑑𝑟

2𝑟2) × 𝐵(𝜃) ×
𝑑𝜏

𝑠𝑖𝑛(𝜃)
+

𝜕𝐴𝜃

𝜕𝜃
× 𝐷(𝜃) × (

1

𝑟
+

𝑑𝑟

2𝑟2) × 𝑑𝜏                                        

(126) 

 

For:𝑑𝑆5and 𝑑𝑆6: 

Let’s consider that:    𝐹(𝜃) = (𝑠𝑖𝑛(𝜃 + 𝑑𝜃) + 𝑠𝑖𝑛(𝜃))
2
                                                               

(127) 

and:  𝐺(𝜃) = (
𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
)
2

= (
𝑑(𝑠𝑖𝑛(𝜃)2)

𝑑𝜃
)
2

= (2 × 𝑠𝑖𝑛(𝜃) ×
𝑑𝑠𝑖𝑛(𝜃)

𝑑𝜃
)
2

                     (128) 

Consequently:  𝑑𝜙5 = 𝐴 × 𝑑𝑆5 × 𝑛5⃗⃗⃗⃗ = −𝐴𝑟 ×
𝑟2

4
× 𝑑𝜑 × 𝑑𝜃 × (4𝐹(𝜃) − 𝑑𝜑2 × 𝐺(𝜃))

1

2                 

(129) 

and: 𝑑𝜙6 = 𝐴⁺⃗⃗⃗⃗ × 𝑑𝑆6 × 𝑛6⃗⃗⃗⃗ = 𝐴⁺𝑟 ×
(𝑟+𝑑𝑟)2

4
× 𝑑𝜑 × 𝑑𝜃 × (4𝐹(𝜃) − 𝑑𝜑2 × 𝐺(𝜃))

1

2                      

(130) 

because: 𝑛6⃗⃗⃗⃗ = −𝑛5⃗⃗⃗⃗ = 𝑒𝑟⃗⃗  ⃗and: 𝐴⁺𝑟 = 𝐴𝑟 +
𝜕𝐴𝑟

𝜕𝑟
. 𝑑𝑟                                                                   (131) 

We conclude that: 𝑑𝜙𝑟 = (𝐴𝑟 × (
𝑑𝑟

4𝑟2 +
1

2𝑟
) +

𝜕𝐴𝑟

𝜕𝑟
× (

1

2
+

𝑑𝑟

2𝑟
)
2

) ×
(4.𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

𝑠𝑖𝑛(𝜃)
× 𝑑𝜏             

(132) 

And thus:  
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  𝑑𝜙 = 𝑑𝜙𝑟 + 𝑑𝜙𝜃 + 𝑑𝜙𝜑 = (
1+

𝑑𝑟

2𝑟

𝑟×𝑠𝑖𝑛(𝜃)
) ×

𝜕𝐴𝜑

𝜕𝜑
× 𝑑𝜏 + 𝐴𝜃 × (

1

𝑟
+

𝑑𝑟

2𝑟2) × 𝐵(𝜃) ×
𝑑𝜏

𝑠𝑖𝑛(𝜃)
+

𝜕𝐴𝜃

𝜕𝜃
×

𝐷(𝜃) × (
1

𝑟
+

𝑑𝑟

2𝑟2) × 𝑑𝜏 + (𝐴𝑟 × (
𝑑𝑟

4𝑟2 +
1

2𝑟
) +

𝜕𝐴𝑟

𝜕𝑟
× (

1

2
+

𝑑𝑟

2𝑟
)
2

) ×
(4.𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

𝑠𝑖𝑛(𝜃)
× 𝑑𝜏                           

(133) 

We finally conclude that:  

   𝑑𝑖𝑣𝐴 = (
1+

𝑑𝑟

2𝑟

𝑟×𝑠𝑖𝑛(𝜃)
) ×

𝜕𝐴𝜑

𝜕𝜑
+ 𝐴𝜃 × (

1

𝑟
+

𝑑𝑟

2𝑟2
) ×

𝐵(𝜃)

𝑠𝑖𝑛(𝜃)
+

𝜕𝐴𝜃

𝜕𝜃
× 𝐷(𝜃) × (

1

𝑟
+

𝑑𝑟

2𝑟2
) +

(𝐴𝑟 × (
𝑑𝑟

4𝑟2 +
1

2𝑟
) +

𝜕𝐴𝑟

𝜕𝑟
× (

1

2
+

𝑑𝑟

2𝑟
)
2

) ×
(4.𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

𝑠𝑖𝑛(𝜃)
                                                               

(134) 

By using the demonstrated approximations:  

 

𝐵(𝜃) = −𝑑𝜃 × 𝑠𝑖𝑛(𝜃)2 + √1 −
𝑑𝜃2

4
× 2 × 𝑠𝑖𝑛(𝜃) × 𝑐𝑜𝑠(𝜃)

=
−𝑑𝜃

2
× (1 − 𝑐𝑜𝑠(2𝜃)) + √1 −

𝑑𝜃2

4
× 𝑠𝑖𝑛(2𝜃) 

                                                                                                                                                     (135) 

And: 

𝐷(𝜃) = (1 −
𝑑𝜃2

2
)
2

× 𝑠𝑖𝑛(𝜃) + 2𝑑𝜃 × (1 −
𝑑𝜃2

2
) × √1 −

𝑑𝜃2

4
× 𝑐𝑜𝑠(𝜃) + 𝑑𝜃2 × (1 −

𝑑𝜃2

4
) ×

𝑐𝑜𝑠(𝜃)

𝑡𝑎𝑛(𝜃)
 (136) 

 And Also: 

   𝐹(𝜃) = (√2 −
𝑑𝜃2

2√2
)
2

× (1 − 𝑐𝑜𝑠(2𝜃)) +
𝑑𝜃2

2
× (1 −

𝑑𝜃2

4
) × (1 + 𝑐𝑜𝑠(2𝜃)) + (4 − 3𝑑𝜃2 +

3

4
×

𝑑𝜃4 −
𝑑𝜃6

16
)

1

2
× 𝑑𝜃 × 𝑠𝑖𝑛(2𝜃)                                                                                  (137) 

And:  

𝐺(𝜃) = 𝐵(𝜃)2 = (
𝑑𝜃2

4
+

1

2
) + 𝑐𝑜𝑠(4𝜃) × (

𝑑𝜃2

4
−

1

2
) −

𝑑𝜃2

2
× 𝑐𝑜𝑠(2𝜃) +

𝑑𝜃

2
× √1 −

𝑑𝜃2

4

× 𝑠𝑖𝑛(4𝜃) − 𝑑𝜃 × √1 −
𝑑𝜃2

4
× 𝑠𝑖𝑛(2𝜃) 

                                                                                                                                                      (138)           

Clarifications: 

 In order to calculate the divergence of 𝐴 in a point of the space M(x,y,z), we should replace 

by the data of 𝐴 in the expression of the chosen reference frame coordinates system. Then, 

we integrate the final expression by using the coordinates of the studied part of the space if 

the integration is possible. 

 The six vectors 𝑛𝑖⃗⃗  ⃗that are normal to the elementary surfaces are oriented towards outside. 

Consequently, for a uniform field 𝐴 , when 𝑑𝜙 > 0,  the field vectors that are in the studied 

part of the space, in the orientation of the used reference frame axes, have the same 

orientations of the vectors 𝑛𝑖⃗⃗  ⃗. And thus the field 𝐴 is divergent in the studied part of the 

space and 
𝑑𝜙

𝑑𝜏
= 𝑑𝑖𝑣𝐴 > 0. 
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 In the case when 𝑑𝜙 < 0, the field vectors in the studied part of the space have orientations 

opposite to the vectors 𝑛𝑖⃗⃗  ⃗orientations. Consequently the field 𝐴 is convergent in the studied 

part of the space and 
𝑑𝜙

𝑑𝜏
= 𝑑𝑖𝑣𝐴 < 0. 

 In the case when 𝑑𝜙 = 0, and the field 𝐴 exists in the studied part of the space, this means 

that every field vector has its opposite across each elementary surface. In this case 
𝑑𝜙

𝑑𝜏
=

𝑑𝑖𝑣𝐴 = 0, otherwise the field is tangent to all the elementary surfaces and thus it is a 

rotational field. 

 

3. The operator curl: 

In an orthonormed direct reference frame of axes (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗), we can define the operator curl as: 

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒1⃗⃗  ⃗ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒2⃗⃗  ⃗ 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒3⃗⃗  ⃗    

And it is a vector field that respects the following Stokes’ theorem: 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒1⃗⃗  ⃗. 𝑑𝑆23 =

𝑑𝐶1 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒2⃗⃗  ⃗. 𝑑𝑆13 = 𝑑𝐶2 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 . 𝑒3⃗⃗  ⃗. 𝑑𝑆12 = 𝑑𝐶3  
Where: dS12, is the elementary surface in the plane (𝑒1⃗⃗  ⃗, 𝑒2⃗⃗  ⃗),dS13 is the elementary surface in the 

plane (𝑒1⃗⃗  ⃗, 𝑒3⃗⃗  ⃗)and dS23 is the elementary surface in the plane (𝑒2⃗⃗  ⃗, 𝑒3⃗⃗  ⃗), and Also: dC1,dC2 and dC3 are 

respectively their closed boundaries of the corresponding elementary surfaces in the reference frame 

planes. These boundaries are outlines oriented anticlockwise when we are observing the surfaces 

from the inside (center) of the reference frame. 

We prove that: 𝑑𝐶1 = 𝐴11
⃗⃗ ⃗⃗ ⃗⃗ × 𝑑11 × 𝑒2⃗⃗  ⃗ + 𝐴12

⃗⃗ ⃗⃗ ⃗⃗ × 𝑑12 × 𝑒3⃗⃗  ⃗ − 𝐴13
⃗⃗ ⃗⃗ ⃗⃗ × 𝑑13 × 𝑒2⃗⃗  ⃗ − 𝐴14

⃗⃗ ⃗⃗ ⃗⃗ × 𝑑14 × 𝑒3⃗⃗  ⃗ 𝑑𝐶2 =

𝐴21
⃗⃗ ⃗⃗ ⃗⃗  × 𝑑21 × 𝑒3⃗⃗  ⃗ + 𝐴22

⃗⃗ ⃗⃗ ⃗⃗  × 𝑑22 × 𝑒1⃗⃗  ⃗ − 𝐴23
⃗⃗ ⃗⃗ ⃗⃗  × 𝑑23 × 𝑒3⃗⃗  ⃗ − 𝐴24

⃗⃗ ⃗⃗ ⃗⃗  × 𝑑24 × 𝑒1⃗⃗  ⃗ 𝑑𝐶3 = 𝐴31
⃗⃗ ⃗⃗ ⃗⃗  × 𝑑31 × 𝑒2⃗⃗  ⃗ +

𝐴32
⃗⃗ ⃗⃗ ⃗⃗  × 𝑑32 × 𝑒1⃗⃗  ⃗ − 𝐴33

⃗⃗ ⃗⃗ ⃗⃗  × 𝑑33 × 𝑒2⃗⃗  ⃗ − 𝐴34
⃗⃗ ⃗⃗ ⃗⃗  × 𝑑34 × 𝑒1⃗⃗  ⃗              (139)         Where: dij is the elementary 

length of the elementary surface sides. And Aij is the field vector of 𝐴 that coincides with dij.   

The boundaries are drawn by starting from the studied point M(x,y,z). Consequently, the sides of 

the elementary surfaces have elementary sides  dij in common. 

 

 

The Cartesian coordinates System (x,y,z): 

Fig.8 : The boundaries dC1, dC2 and dC3 of the cartesian coordinates. 
 

In the figure 8: dS23=dy.dz                                                                                                        (140) 

 and: dS13=dx.dz                                                                                                                        (141) 

and dS12=dx.dy                                                                                                                          (142) 

And: 𝑑𝐶1 = 𝐴11
⃗⃗ ⃗⃗ ⃗⃗ × 𝑑11 × 𝑒2⃗⃗  ⃗ + 𝐴12

⃗⃗ ⃗⃗ ⃗⃗ × 𝑑12 × 𝑒3⃗⃗  ⃗ − 𝐴13
⃗⃗ ⃗⃗ ⃗⃗ × 𝑑13 × 𝑒2⃗⃗  ⃗ − 𝐴14

⃗⃗ ⃗⃗ ⃗⃗ × 𝑑14 × 𝑒3⃗⃗  ⃗                         
(143)          

Consequently: 𝑑𝐶1 = −𝐴𝑧1
× 𝑑𝑧 − 𝐴⁺𝑦1

× 𝑑𝑦 + 𝐴⁺𝑧1
× 𝑑𝑧 + 𝐴𝑦1

× 𝑑𝑦                                         

(144) 

By following the same method we prove that:  
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𝑑𝐶2 = −𝐴𝑥2
× 𝑑𝑥 − 𝐴⁺𝑧2

× 𝑑𝑧 + 𝐴⁺𝑥2
× 𝑑𝑥 + 𝐴𝑧2

× 𝑑𝑧                                                                 

(145) 

And: 𝑑𝐶3 = 𝐴𝑥3
× 𝑑𝑥 + 𝐴⁺𝑦3

× 𝑑𝑦 − 𝐴⁺𝑥3
× 𝑑𝑥 − 𝐴𝑧3

× 𝑑𝑧                                                          

(146) 

Where: 𝐴⁺𝑦1
= 𝐴𝑦1

+
𝜕𝐴𝑦1

𝜕𝑧
. 𝑑𝑧                                                                                               (147) 

and: 𝐴⁺𝑧1
= 𝐴𝑧1

+
𝜕𝐴𝑧1

𝜕𝑦
. 𝑑𝑦                                                                                                     (148) 

and also: 𝐴⁺𝑥2
= 𝐴𝑥2

+
𝜕𝐴𝑥2

𝜕𝑧
. 𝑑𝑧                                                                                              (149) 

and: 𝐴⁺𝑧2
= 𝐴𝑧2

+
𝜕𝐴𝑧2

𝜕𝑥
. 𝑑𝑥                                                                                                     (150) 

and also: 𝐴⁺𝑥3
= 𝐴𝑥3

+
𝜕𝐴𝑥3

𝜕𝑦
. 𝑑𝑦                                                                                             (151) 

and: 𝐴⁺𝑦3
= 𝐴𝑦3

+
𝜕𝐴𝑦3

𝜕𝑥
. 𝑑𝑥                                                                                                    (152) 

with: 𝐴𝑥 = 𝐴𝑥2
= 𝐴𝑥3

and: 𝐴𝑦 = 𝐴𝑦1
= 𝐴𝑦2

and: 𝐴𝑧 = 𝐴𝑧1
= 𝐴𝑧3

                                         (153) 

because the sides of the elementary surfaces have elementary sides  dij in common. 

And thus: 𝑑𝐶1 = −𝐴𝑧 × 𝑑𝑧 − (𝐴𝑦 +
𝜕𝐴𝑦

𝜕𝑧
. 𝑑𝑧) × 𝑑𝑦 + (𝐴𝑧 +

𝜕𝐴𝑧

𝜕𝑦
. 𝑑𝑦) × 𝑑𝑧 + 𝐴𝑦 × 𝑑𝑦 𝑑𝐶2 =

−𝐴𝑥 × 𝑑𝑥 − (𝐴𝑧 +
𝜕𝐴𝑧

𝜕𝑥
. 𝑑𝑥) × 𝑑𝑧 + (𝐴𝑥 +

𝜕𝐴𝑥

𝜕𝑧
. 𝑑𝑧) × 𝑑𝑥 + 𝐴𝑧 × 𝑑𝑧 𝑑𝐶3 = 𝐴𝑥 × 𝑑𝑥 +

(𝐴𝑦 +
𝜕𝐴𝑦

𝜕𝑥
. 𝑑𝑥) × 𝑑𝑦 − (𝐴𝑥 +

𝜕𝐴𝑥

𝜕𝑦
. 𝑑𝑦) × 𝑑𝑥 − 𝐴𝑧 × 𝑑𝑧                     (154) 

Consequently:  𝑑𝐶1 =
−𝜕𝐴𝑦

𝜕𝑧
. 𝑑𝑧 × 𝑑𝑦 +

𝜕𝐴𝑧

𝜕𝑦
. 𝑑𝑦 × 𝑑𝑧 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑖 × 𝑑𝑆23                                (155) 

where: dS23=dy.dz                                                                                                                     (156) 

And:  𝑑𝐶2 =
−𝜕𝐴𝑧

𝜕𝑥
. 𝑑𝑧 × 𝑑𝑥 +

𝜕𝐴𝑥

𝜕𝑧
. 𝑑𝑥 × 𝑑𝑧 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑗 × 𝑑𝑆13                                               (157) 

where: dS13=dx.dz                                                                                                                     (158) 

And also: 𝑑𝐶3 =
−𝜕𝐴𝑥

𝜕𝑦
. 𝑑𝑦 × 𝑑𝑥 +

𝜕𝐴𝑦

𝜕𝑥
. 𝑑𝑥 × 𝑑𝑦 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × �⃗� × 𝑑𝑆12                                       (159) 

where: dS12=dx.dy                                                                                                                    (160) 

 

We conclude finally that: 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 =
−𝜕𝐴𝑦

𝜕𝑧
+

𝜕𝐴𝑧

𝜕𝑦
 
−𝜕𝐴𝑧

𝜕𝑥
+

𝜕𝐴𝑥

𝜕𝑧
 
−𝜕𝐴𝑥

𝜕𝑦
+

𝜕𝐴𝑦

𝜕𝑥
                                                                  

(161) 

 

 

 

 

The cylindrical coordinates system (ρ,φ,z):  

Fig.9 : The boundaries dC1, dC2 and dC3 of the cylindrical coordinates. 
 

In the figure 9: 𝑑𝑆23 = 𝜌 × 𝑑𝜑 × 𝑑𝑧                                                                                  (162) 
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and: 𝑑𝑆13 = 𝑑𝜌 × 𝑑𝑧                                                                                                          (163) 

and: 𝑑𝑆12 = (𝜌 +
𝑑𝜌

2
) × 𝑑𝜑 × 𝑑𝜌                                                                                        (164) 

And: 𝑑𝐶1 = 𝐴𝜑1
× 𝜌 × 𝑑𝜑 + 𝐴⁺𝑧1

× 𝑑𝑧 − 𝐴⁺𝜑1
× 𝜌 × 𝑑𝜑 − 𝐴𝑧1

× 𝑑𝑧                                        

(165) 

And also: 𝑑𝐶2 = 𝐴𝑧2
× 𝑑𝑧 + 𝐴⁺𝜌2

× 𝑑𝜌 − 𝐴𝜌2
× 𝑑𝜌 − 𝐴⁺𝑧2

× 𝑑𝑧                                             (166) 

And also: 𝑑𝐶3 = 𝐴𝜌3
× 𝑑𝜌 + 𝐴⁺𝜑3

× (𝜌 + 𝑑𝜌) × 𝑑𝜑 − 𝐴⁺𝜌3
× 𝑑𝜌 − 𝐴𝜑3

× 𝜌 × 𝑑𝜑                    

(167) 

Where: 𝐴⁺𝑧1
= 𝐴𝑧1

+
𝜕𝐴𝑧1

𝜕𝜑
. 𝑑𝜑                                                                                          (168) 

and: 𝐴⁺𝜑1
= 𝐴𝜑1

+
𝜕𝐴𝜑1

𝜕𝑧
. 𝑑𝑧                                                                                               (169) 

and also: 𝐴⁺𝜌2
= 𝐴𝜌2

+
𝜕𝐴𝜌2

𝜕𝑧
. 𝑑𝑧                                                                                        (170) 

and: 𝐴⁺𝑧2
= 𝐴𝑧2

+
𝜕𝐴𝑧2

𝜕𝜌
. 𝑑𝜌                                                                                              (171) 

and also: 𝐴⁺𝜑3
= 𝐴𝜑3

+
𝜕𝐴𝜑3

𝜕𝜌
. 𝑑𝜌                                                                                      (172) 

and: 𝐴⁺𝜌3
= 𝐴𝜌3

+
𝜕𝐴𝜌3

𝜕𝜑
. 𝑑𝜑                                                                                              (173) 

with: 𝐴𝜌 = 𝐴𝜌2
= 𝐴𝜌3

and: 𝐴𝜑 = 𝐴𝜑1
= 𝐴𝜑3

and: 𝐴𝑧 = 𝐴𝑧1
= 𝐴𝑧2

                                    (174) 

because the sides of the elementary surfaces have elementary sides  dij in common. 

And thus: 𝑑𝐶1 = 𝐴𝜑 × 𝜌 × 𝑑𝜑 + (𝐴𝑧 +
𝜕𝐴𝑧

𝜕𝜑
. 𝑑𝜑) × 𝑑𝑧 − (𝐴𝜑 +

𝜕𝐴𝜑

𝜕𝑧
. 𝑑𝑧) × 𝜌 × 𝑑𝜑 − 𝐴𝑧 ×

𝑑𝑧 𝑑𝐶2 = 𝐴𝑧 × 𝑑𝑧 + (𝐴𝜌 +
𝜕𝐴𝜌

𝜕𝑧
. 𝑑𝑧) × 𝑑𝜌 − (𝐴𝑧 +

𝜕𝐴𝑧

𝜕𝜌
. 𝑑𝜌) × 𝑑𝑧 − 𝐴𝜌 × 𝑑𝜌 𝑑𝐶3 = 𝐴𝜌 × 𝑑𝜌 +

(𝐴𝜑 +
𝜕𝐴𝜑

𝜕𝜌
. 𝑑𝜌) × (𝜌 + 𝑑𝜌) × 𝑑𝜑 − (𝐴𝜌 +

𝜕𝐴𝜌

𝜕𝜑
. 𝑑𝜑) × 𝑑𝜌 − 𝐴𝜑 × 𝜌 × 𝑑𝜑    

                                                                                                                                             (175) 

Consequently:  𝑑𝐶1 =
−𝜕𝐴𝜑

𝜕𝑧
. 𝑑𝑧 × 𝜌 × 𝑑𝜑 +

𝜕𝐴𝑧

𝜕𝜑
. 𝑑𝜑 × 𝑑𝑧 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜌⃗⃗  ⃗ × 𝑑𝑆23                 (176) 

Where: 𝑑𝑆23 = 𝜌 × 𝑑𝜑 × 𝑑𝑧                                                                                               (177) 

And:  𝑑𝐶2 =
−𝜕𝐴𝑧

𝜕𝜌
. 𝑑𝑧 × 𝑑𝜌 +

𝜕𝐴𝜌

𝜕𝑧
. 𝑑𝜌 × 𝑑𝑧 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜑⃗⃗⃗⃗ × 𝑑𝑆13                                      (178) 

Where:  𝑑𝑆13 = 𝑑𝜌 × 𝑑𝑧                                                                                                   (179) 

And also: 𝑑𝐶3 =
−𝜕𝐴𝜌

𝜕𝜑
. 𝑑𝜑 × 𝑑𝜌 +

𝜕𝐴𝜑

𝜕𝜌
. 𝑑𝜌 × 𝜌 × 𝑑𝜑 + (𝐴𝜑 +

𝜕𝐴𝜑

𝜕𝜌
× 𝑑𝜌) × 𝑑𝜌 × 𝑑𝜑 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 ×

�⃗� × 𝑑𝑆12 (180) 

Where:  𝑑𝑆12 = (𝜌 +
𝑑𝜌

2
) × 𝑑𝜑 × 𝑑𝜌                                                                                       (181) 

Hence: 
−𝜕𝐴𝜑

𝜕𝑧
+

1

𝜌
.
𝜕𝐴𝑧

𝜕𝜑
= 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜌⃗⃗  ⃗                                                                                    (182) 

And: 
−𝜕𝐴𝑧

𝜕𝜌
+

𝜕𝐴𝜌

𝜕𝑧
= 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜑⃗⃗⃗⃗                                                                                             (183) 

And also: 
−𝜕𝐴𝜌

𝜕𝜑
.

2

2𝜌+𝑑𝜌
+

𝜕𝐴𝜑

𝜕𝜌
.

2𝜌

2𝜌+𝑑𝜌
+

𝜕𝐴𝜑

𝜕𝜌
.

2𝑑𝜌

2𝜌+𝑑𝜌
+ 𝐴𝜑 .

2

2𝜌+𝑑𝜌
= 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × �⃗�          (184) 

We conclude finally that: 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 =
−𝜕𝐴𝜑

𝜕𝑧
+

1

𝜌
.
𝜕𝐴𝑧

𝜕𝜑
 
−𝜕𝐴𝑧

𝜕𝜌
+

𝜕𝐴𝜌

𝜕𝑧
 

−2

2𝜌+𝑑𝜌
.
𝜕𝐴𝜌

𝜕𝜑
+

2(𝜌+𝑑𝜌)

2𝜌+𝑑𝜌
.
𝜕𝐴𝜑

𝜕𝜌
+

2

2𝜌+𝑑𝜌
. 𝐴𝜑                 (185) 

 

The spherical coordinates(r,θ,φ): 
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Fig.10 : The boundaries dC1, dC2 and dC3 of the spherical coordinates. 
 

In the figure 10:  

  𝑑𝑆23 =
ℎ1×(𝑟×𝑑𝜑×𝑠𝑖𝑛(𝜃+𝑑𝜃)+𝑟×𝑑𝜑×𝑠𝑖𝑛(𝜃))

2
=

𝑟2

4
× 𝑑𝜑 × 𝑑𝜃 × (4(𝑠𝑖𝑛(𝜃 + 𝑑𝜃) + 𝑠𝑖𝑛(𝜃))

2
− 𝑑𝜑2 ×

(
𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
)
2

)

1

2

                                                  (186) 

Consequently, by considering that:  

𝐹(𝜃) = (𝑠𝑖𝑛(𝜃 + 𝑑𝜃) + 𝑠𝑖𝑛(𝜃))
2
                                                                                                 

(187) 

and:  𝐺(𝜃) = (
𝑠𝑖𝑛(𝜃+𝑑𝜃)2−𝑠𝑖𝑛(𝜃)2

𝑑𝜃
)
2

                                                                                    (188)           

We find that: 𝑑𝑆23 =
𝑟2

4
× 𝑑𝜑 × 𝑑𝜃 × (4𝐹(𝜃) − 𝑑𝜑2 × 𝐺(𝜃))

1

2                                                   

(189) 

We remind that the calculations from before gave:   

 𝐹(𝜃) = (√2 −
𝑑𝜃2

2√2
)
2

× (1 − 𝑐𝑜𝑠(2𝜃)) +
𝑑𝜃2

2
× (1 −

𝑑𝜃2

4
) × (1 + 𝑐𝑜𝑠(2𝜃)) + (4 − 3𝑑𝜃2 +

3

4
×

𝑑𝜃4 −
𝑑𝜃6

16
)

1

2
× 𝑑𝜃 × 𝑠𝑖𝑛(2𝜃)                                                                              (190)                                                    

 

And:  

 𝐺(𝜃) = (
𝑑𝜃2

4
+

1

2
) + 𝑐𝑜𝑠(4𝜃) × (

𝑑𝜃2

4
−

1

2
) −

𝑑𝜃2

2
× 𝑐𝑜𝑠(2𝜃) +

𝑑𝜃

2
× √1 −

𝑑𝜃2

4
× 𝑠𝑖𝑛(4𝜃) − 𝑑𝜃 ×

√1 −
𝑑𝜃2

4
× 𝑠𝑖𝑛(2𝜃)                                                                                                                                     

(191) 

Also: 𝑑𝑆13 = (𝑟 +
𝑑𝑟

2
) × 𝑠𝑖𝑛(𝜃)2 × 𝑑𝜑 × 𝑑𝑟                                                                                 

(192) 

And also: 𝑑𝑆12 = (𝑟 +
𝑑𝑟

2
) × 𝑑𝜃 × 𝑑𝑟                                                                                          (193) 

 

We have: 𝑑𝐶1 = 𝐴𝜃1
× 𝑟 × 𝑑𝜃 + 𝐴⁺𝜑1

× 𝑟 × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃) × 𝑑𝜑 − 𝐴⁺𝜃1
× 𝑟 × 𝑑𝜃 − 𝐴𝜑1

× 𝑟 ×

𝑠𝑖𝑛(𝜃) × 𝑑𝜑 
                                                                                                                                                     (194)            

And: 𝑑𝐶2 = 𝐴𝜑2
× 𝑟 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 + 𝐴⁺𝑟2 × 𝑑𝑟 − 𝐴⁺𝜑2

× (𝑟 + 𝑑𝑟) × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 − 𝐴𝑟2 × 𝑑𝑟            

(195) 

And also: 𝑑𝐶3 = 𝐴𝑟3 × 𝑑𝑟 + 𝐴⁺𝜃3
× (𝑟 + 𝑑𝑟) × 𝑑𝜃 − 𝐴⁺𝑟3 × 𝑑𝑟 − 𝐴𝜃3

× 𝑟 × 𝑑𝜃                         

(196)         

Where:  𝐴⁺𝜑1
= 𝐴𝜑1

+
𝜕𝐴𝜑1

𝜕𝜃
. 𝑑𝜃                                                                                               (197) 
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and:𝐴⁺𝜃1
= 𝐴𝜃1

+
𝜕𝐴𝜃1

𝜕𝜑
. 𝑑𝜑                                                                                                      (198) 

and also: 𝐴⁺𝑟2 = 𝐴𝑟2 +
𝜕𝐴𝑟2

𝜕𝜑
. 𝑑𝜑                                                                                              (199) 

and: 𝐴⁺𝜑2
= 𝐴𝜑2

+
𝜕𝐴𝜑2

𝜕𝑟
. 𝑑𝑟                                                                                                     (200)          

and also: 𝐴⁺𝜃3
= 𝐴𝜃3

+
𝜕𝐴𝜃3

𝜕𝑟
. 𝑑𝑟                                                                                              (201) 

and: 𝐴⁺𝑟3 = 𝐴𝑟3 +
𝜕𝐴𝑟3

𝜕𝜃
. 𝑑𝜃                                                                                                     (202) 

with: 𝐴𝑟 = 𝐴𝑟2 = 𝐴𝑟3and: 𝐴𝜃 = 𝐴𝜃1
= 𝐴𝜃3

and: 𝐴𝜑 = 𝐴𝜑1
= 𝐴𝜑2

                                           (203) 

because the sides of the elementary surfaces have elementary sides  dij in common. 

And thus:  𝑑𝐶1 = 𝐴𝜃 × 𝑟 × 𝑑𝜃 + (𝐴𝜑 +
𝜕𝐴𝜑

𝜕𝜃
. 𝑑𝜃) × 𝑟 × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃) × 𝑑𝜑 − (𝐴𝜃 +

𝜕𝐴𝜃

𝜕𝜑
. 𝑑𝜑) ×

𝑟 × 𝑑𝜃 − 𝐴𝜑 × 𝑟 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 

                                                                                                                                                    (204) 

And: 𝑑𝐶2 = 𝐴𝜑 × 𝑟 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 + (𝐴𝑟 +
𝜕𝐴𝑟

𝜕𝜑
. 𝑑𝜑) × 𝑑𝑟 − (𝐴𝜑 +

𝜕𝐴𝜑

𝜕𝑟
. 𝑑𝑟) × 𝑑𝜑 × 𝑠𝑖𝑛(𝜃) ×

(𝑟 + 𝑑𝑟) − 𝐴𝑟 × 𝑑𝑟 

                                                                                                                                                   (205) 

And also: 

𝑑𝐶3 = 𝐴𝑟 × 𝑑𝑟 + (𝐴𝜃 +
𝜕𝐴𝜃

𝜕𝑟
. 𝑑𝑟) × (𝑟 + 𝑑𝑟) × 𝑑𝜃 − (𝐴𝑟 +

𝜕𝐴𝑟

𝜕𝜃
. 𝑑𝜃) × 𝑑𝑟 − 𝐴𝜃 × 𝑟 × 𝑑𝜃 

                                                                                                                                                  (206) 

Consequently:   

𝑑𝐶1 = (𝐴𝜑 +
𝜕𝐴𝜑

𝜕𝜃
. 𝑑𝜃) × 𝑟 × 𝑠𝑖𝑛(𝜃 + 𝑑𝜃) × 𝑑𝜑 − 𝐴𝜑 × 𝑟 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 −

𝜕𝐴𝜃

𝜕𝜑
× 𝑟 × 𝑑𝜑 × 𝑑𝜃

=
−𝜕𝐴𝜃

𝜕𝜑
× 𝑟 × 𝑑𝜑 × 𝑑𝜃 + 𝐴𝜑 × 𝑟 × (𝑠𝑖𝑛(𝜃 + 𝑑𝜃) − 𝑠𝑖𝑛(𝜃)) × 𝑑𝜑 +

𝜕𝐴𝜑

𝜕𝜃
. 𝑑𝜃 × 𝑟

× 𝑠𝑖𝑛(𝜃 + 𝑑𝜃) × 𝑑𝜑 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝑟⃗⃗  ⃗ × 𝑑𝑆23 
 

                                                                                                                                                   (207) 

Where: 𝑑𝑆23 =
𝑟2

4
× 𝑑𝜑 × 𝑑𝜃 × (4𝐹(𝜃) − 𝑑𝜑2 × 𝐺(𝜃))

1

2                                                          (208) 

And:  𝑑𝐶2 =
𝜕𝐴𝑟

𝜕𝜑
. 𝑑𝜑 × 𝑑𝑟 − 𝐴𝜑 × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 × 𝑑𝑟 −

𝜕𝐴𝜑

𝜕𝑟
. (𝑟 + 𝑑𝑟) × 𝑠𝑖𝑛(𝜃) × 𝑑𝜑 × 𝑑𝑟 =

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜃⃗⃗⃗⃗ × 𝑑𝑆13 
                                                                                                                                                   (209) 

Where:  𝑑𝑆13 = (𝑟 +
𝑑𝑟

2
) × 𝑠𝑖𝑛(𝜃)2 × 𝑑𝜑 × 𝑑𝑟                                                                           

(210) 

And also: 𝑑𝐶3 =
−𝜕𝐴𝑟

𝜕𝜃
. 𝑑𝜃 × 𝑑𝑟 +

𝜕𝐴𝜃

𝜕𝑟
. 𝑑𝑟 × (𝑟 + 𝑑𝑟) × 𝑑𝜃 + 𝐴𝜃 × 𝑑𝜃 × 𝑑𝑟 = 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜑⃗⃗⃗⃗ × 𝑑𝑆12 

(211) 

Where: 𝑑𝑆12 = (𝑟 +
𝑑𝑟

2
) × 𝑑𝜃 × 𝑑𝑟                                                                                           (212) 

We conclude that:  

 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝑟⃗⃗  ⃗ =
−𝜕𝐴𝜃

𝜕𝜑
×

1

𝑟

4
×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

+ 𝐴𝜑 ×
𝑠𝑖𝑛(𝜃+𝑑𝜃)−𝑠𝑖𝑛(𝜃)

𝑟

4
×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2×𝑑𝜃

+

𝜕𝐴𝜑

𝜕𝜃
.

𝑠𝑖𝑛(𝜃+𝑑𝜃)

𝑟

4
×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

        (213) 

Consequently:  
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 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝑟⃗⃗  ⃗ =
4

𝑟×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))
1
2

× (−
𝜕𝐴𝜃

𝜕𝜑
+

𝑠𝑖𝑛(𝜃+𝑑𝜃)−𝑠𝑖𝑛(𝜃)

𝑑𝜃
× 𝐴𝜑 + 𝑠𝑖𝑛(𝜃 + 𝑑𝜃) ×

𝜕𝐴𝜑

𝜕𝜃
) =

4

𝑟×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))
1
2

× (𝐴𝜑 × (
−𝑑𝜃

2
× 𝑠𝑖𝑛(𝜃) + √1 −

𝑑𝜃2

4
× 𝑐𝑜𝑠(𝜃)) +

𝜕𝐴𝜑

𝜕𝜃
× ((1 −

𝑑𝜃2

2
) ×

𝑠𝑖𝑛(𝜃) + √1 −
𝑑𝜃2

4
× 𝑑𝜃 × 𝑐𝑜𝑠(𝜃)) −

𝜕𝐴𝜃

𝜕𝜑
)                                                       (214)   

And: 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜃⃗⃗⃗⃗ =

𝜕𝐴𝑟
𝜕𝜑

𝑠𝑖𝑛(𝜃)2×(𝑟+
𝑑𝑟

2
)
−

𝐴𝜑

(𝑟+
𝑑𝑟

2
)×𝑠𝑖𝑛(𝜃)

−
𝜕𝐴𝜑

𝜕𝑟
×

𝑟+𝑑𝑟

(𝑟+
𝑑𝑟

2
)×𝑠𝑖𝑛(𝜃)

                                          

(215) 

And also: 𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 × 𝑒𝜑⃗⃗⃗⃗ =
−

𝜕𝐴𝑟
𝜕𝜃

𝑟+
𝑑𝑟

2

+
𝜕𝐴𝜃
𝜕𝑟

×(𝑟+𝑑𝑟)

𝑟+
𝑑𝑟

2

+
𝐴𝜃

𝑟+
𝑑𝑟

2

                                                                     (216) 

We conclude finally that: 

                                                                                                                                                    

𝑟𝑜𝑡⃗⃗⃗⃗⃗⃗ 𝐴 = ((
4

𝑟×(4𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))
1
2

× (𝐴𝜑 × (
−𝑑𝜃

2
× 𝑠𝑖𝑛(𝜃) + √1 −

𝑑𝜃2

4
× 𝑐𝑜𝑠(𝜃)) +

𝜕𝐴𝜑

𝜕𝜃
×

((1 −
𝑑𝜃2

2
) × 𝑠𝑖𝑛(𝜃) + √1 −

𝑑𝜃2

4
× 𝑑𝜃 × 𝑐𝑜𝑠(𝜃)) −

𝜕𝐴𝜃

𝜕𝜑
)) , (

𝜕𝐴𝑟
𝜕𝜑

𝑠𝑖𝑛(𝜃)2×(𝑟+
𝑑𝑟

2
)
−

𝐴𝜑

(𝑟+
𝑑𝑟

2
)×𝑠𝑖𝑛(𝜃)

−

𝜕𝐴𝜑

𝜕𝑟
×

𝑟+𝑑𝑟

(𝑟+
𝑑𝑟

2
)×𝑠𝑖𝑛(𝜃)

) , (
−𝜕𝐴𝑟
𝜕𝜃

𝑟+
𝑑𝑟

2

+
𝜕𝐴𝜃
𝜕𝑟

×(𝑟+𝑑𝑟)

𝑟+
𝑑𝑟

2

+
𝐴𝜃

𝑟+
𝑑𝑟

2

))           

                                                                                                                                       (217)              

 

Clarifications: 

 During the study, we should replace by the field coordinates in the curl formulas 

demonstrated above. Then, we integrate according to the studied part of the space when the 

integration is possible. 

 The operator curl informs about a part of the vicinity of a studied point. This part is the part 

of the space in front of the studied point in the orientation of the coordinates system being 

used. 

 If a coordinate of the curl is positive, then the  vector field 𝐴 located at the studied point 

vicinity that is perpendicular to that coordinate axis is a vortex field. The vortex is 

anticlockwise around the positive coordinate axis. 

 If that coordinate is negative then the vortex will be oriented clockwise.  

 If that coordinate is null whereas the field exists, then the field will be uniform in the part of 

the studied point vicinity concerned by the null coordinate. 

    

 

 

4. The operator Laplacian: 

Let’s consider a function of locations points: 𝑓: 𝐸 → 𝑅. Where E is the Euclidean space and the 

function f is differentiable and thus continuous. 

The Laplacian of f is: 𝛥𝑓 = 𝑑𝑖𝑣(𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓). 

The Cartesian coordinates System (x,y,z): 

�⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝑥
. 𝑒𝑥⃗⃗  ⃗ +

𝜕𝑓

𝜕𝑦
. 𝑒𝑦⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗and: 𝑑𝑖𝑣𝐴 =

𝜕𝐴𝑥

𝜕𝑥
+

𝜕𝐴𝑦

𝜕𝑦
+

𝜕𝐴𝑧

𝜕𝑧
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Where: 𝐴 is a vector field. 

Consequently: 𝛥𝑓 =
𝜕2𝑓

𝜕𝑥2 +
𝜕2𝑓

𝜕𝑦2 +
𝜕2𝑓

𝜕𝑧2                                                                                  (218) 

 

The cylindrical coordinates system (ρ,φ,z):  

�⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝜌
. 𝑒𝜌⃗⃗  ⃗ +

𝜕𝑓

𝜕𝜑
×

1

𝜌
. 𝑒𝜑⃗⃗⃗⃗ +

𝜕𝑓

𝜕𝑧
. 𝑒𝑧⃗⃗  ⃗ 

and: 𝑑𝑖𝑣𝐴 =
𝐴𝜌

𝜌
+ (1 +

𝑑𝜌

𝜌
) ×

𝜕𝐴𝜌

𝜕𝜌
+

1

𝜌
×

𝜕𝐴𝜑

𝜕𝜑
+ (1 +

𝑑𝜌

2𝜌
) ×

𝜕𝐴𝑧

𝜕𝑧
  

Where: 𝐴 is a vector field. 

Consequently: 𝛥𝑓 =
1

𝜌
×

𝜕𝑓

𝜕𝜌
+ (1 +

𝑑𝜌

𝜌
) ×

𝜕2𝑓

𝜕𝜌2
+

1

𝜌2
×

𝜕2𝑓

𝜕𝜑2
+ (1 +

𝑑𝜌

2𝜌
) ×

𝜕2𝑓

𝜕𝑧2
                          (219) 

The spherical coordinates(r,θ,φ): 

�⃗� 𝑓 = 𝑔𝑟𝑎𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  𝑓 =
𝜕𝑓

𝜕𝑟
. 𝑒𝑟⃗⃗  ⃗ +

1

𝑟
×

𝜕𝑓

𝜕𝜃
. 𝑒𝜃⃗⃗⃗⃗ +

1

𝑟. 𝑠𝑖𝑛(𝜃)
×

𝜕𝑓

𝜕𝜑
. 𝑒𝜑⃗⃗⃗⃗  

and:  

𝑑𝑖𝑣𝐴 = (
1 +

𝑑𝑟
2𝑟

𝑟 × 𝑠𝑖𝑛(𝜃)
) ×

𝜕𝐴𝜑

𝜕𝜑
+ 𝐴𝜃 × (

1

𝑟
+

𝑑𝑟

2𝑟2
) ×

𝐵(𝜃)

𝑠𝑖𝑛(𝜃)
+

𝜕𝐴𝜃

𝜕𝜃
× 𝐷(𝜃) × (

1

𝑟
+

𝑑𝑟

2𝑟2
)

+ (𝐴𝑟 × (
𝑑𝑟

4𝑟2
+

1

2𝑟
) +

𝜕𝐴𝑟

𝜕𝑟
× (

1

2
+

𝑑𝑟

2𝑟
)
2

) ×
(4. 𝐹(𝜃) − 𝑑𝜑2 × 𝐺(𝜃))

1
2

𝑠𝑖𝑛(𝜃)
 

Where: 𝐴  is a vector field. 

 

Consequently:  

   𝛥𝑓 = (
1+

𝑑𝑟

2𝑟

𝑟2×𝑠𝑖𝑛(𝜃)2
) ×

𝜕2𝑓

𝜕𝜑2 +
𝜕𝑓

𝜕𝜃
×

1+
𝑑𝑟

2𝑟

𝑟2 ×
𝐵(𝜃)

𝑠𝑖𝑛(𝜃)
+

𝜕2𝑓

𝜕𝜃2 ×
1+

𝑑𝑟

2𝑟

𝑟2 × 𝐷(𝜃) + (
𝜕𝑓

𝜕𝑟
× (

𝑑𝑟

4𝑟2 +
1

2𝑟
) +

𝜕2𝑓

𝜕𝑟2 ×

(
1

2
+

𝑑𝑟

2𝑟
)
2

) ×
(4.𝐹(𝜃)−𝑑𝜑2×𝐺(𝜃))

1
2

𝑠𝑖𝑛(𝜃)
                                      (220) 

We remind that:  

𝐵(𝜃) = −𝑑𝜃 × 𝑠𝑖𝑛(𝜃)2 + √1 −
𝑑𝜃2

4
× 2 × 𝑠𝑖𝑛(𝜃) × 𝑐𝑜𝑠(𝜃)

=
−𝑑𝜃

2
× (1 − 𝑐𝑜𝑠(2𝜃)) + √1 −

𝑑𝜃2

4
× 𝑠𝑖𝑛(2𝜃) 

And: 

𝐷(𝜃) = (1 −
𝑑𝜃2

2
)

2

× 𝑠𝑖𝑛(𝜃) + 2𝑑𝜃 × (1 −
𝑑𝜃2

2
) × √1 −

𝑑𝜃2

4
× 𝑐𝑜𝑠(𝜃) + 𝑑𝜃2 × (1 −

𝑑𝜃2

4
)

×
𝑐𝑜𝑠(𝜃)

𝑡𝑎𝑛(𝜃)
 

 And Also: 

𝐹(𝜃) = (√2 −
𝑑𝜃2

2√2
)

2

× (1 − 𝑐𝑜𝑠(2𝜃)) +
𝑑𝜃2

2
× (1 −

𝑑𝜃2

4
) × (1 + 𝑐𝑜𝑠(2𝜃))

+ (4 − 3𝑑𝜃2 +
3

4
× 𝑑𝜃4 −

𝑑𝜃6

16
)

1
2

× 𝑑𝜃 × 𝑠𝑖𝑛(2𝜃) 

And: 



 
 

 

50 

 

𝐺(𝜃) = 𝐵(𝜃)2 = (
𝑑𝜃2

4
+

1

2
) + 𝑐𝑜𝑠(4𝜃) × (

𝑑𝜃2

4
−

1

2
) −

𝑑𝜃2

2
× 𝑐𝑜𝑠(2𝜃) +

𝑑𝜃

2
× √1 −

𝑑𝜃2

4
×

𝑠𝑖𝑛(4𝜃) − 𝑑𝜃 × √1 −
𝑑𝜃2

4
× 𝑠𝑖𝑛(2𝜃)  

 

Clarifications: 

 During the study, we should replace by the studied function f in the Laplacian formulas 

demonstrated above. Then, we integrate according to the studied part of the space when the 

integration is possible. 

 If Δf=0 then f behaves uniformly in the location that is immediately in front of the studied 

point M. 

 If Δf>0 then a local minimum of f exists in the location that is immediately in front of the 

studied point M. 

 If Δf<0 then a local maximum of f exists in the location that is immediately in front of the 

studied point M. 

 When we are studying the Laplacian of a function f, the gradient vectors cross diagonally 

the volume made by the elementary surfaces of the divergence.  

 

Remark: 

The results found should make the convinced readers change their vector and matrix calculations 

especially with the famous navier-stokes equations. 
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