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Abstract: 
This work dates from January 2016 as a result of my remarks related to physics made during my high studies.
I try in this work to explain the cause behind the inability of Newtonian mechanics to describe correctly many 
phenomena where the studied object rotates at a very high linear speed.
I proved that, in this case, the velocity field is not equiprojective and that the famous formula for changing the reference
frame is not correct.
I made an application to the case of the GPS system satellites, then I presented a new method for studying a rotating 
system velocity without needing the conventional steps of changing reference frames. 
I finished my work by demonstrating the formulas of the main differential operators and I presented them with all the 
related steps and calculations by using the elementary surfaces.
I am eager to discuss the results of this work further with physics and mathematics specialists, and I hope that my 
formulas will help to simplify the study of many difficult physics phenomena.
Keywords: Newtonian mechanics, Rotations, derivative, perpendicularity, Nabla, Gradient, Curl, Divergence, 
differential operators, GPS, reference frame. 

Introduction:
Even nowadays, there are many electromagnetic phenomena where we will always make mistakes 
by using the normal mathematical tools in their study. They are in general all the phenomena where 
the studied object rotates at a high linear speed, especially when its speed exceeds three quarters of 
the light speed. Because in this case the study mistake becomes very coarse and impossible to 
neglect.  
Furthermore, the scientists are obliged to use the relativity of time as a difficult explanation or 
statistical physics as a solution to the contradictions found by the conventional change of reference 
frames. This problematic is described as a historical crisis of Newtonial classical mechanics. [1]
I proved first in the part A of my thesis that in this case the velocity field is not equiprojective and 
that the famous conventional fsteps for changing the reference frame is not correct. 
I presented also a method for studying rotating systems velocity without needing the normal change
of reference frames that requires the perpendicularity of a rotating vector and its derivative. [2]
I presented also an application to the case of the GPS system satellites, then I finished my work by 
demonstrating geometrically, in the part B, the formulas of the three important differential 
operators: Gradient (nabla), Divergence and Curl.  
I presented those differential operators with all the related steps and calculations by using the 
elementary surfaces. However, the results found will make the convinced readers change their 
vector and matrix calculations especially with the famous navier-stokes equations. [3]
I remind the readers that this work is a revision of personal previous work made since January 2016 
entitled “mémoire en physiques”. [4]

Part A: Rotations of Newtonian mechanics:

1. Introduction:

We know that: f ' (x)=lim
dx→0

df
dx

. However, in physics, the infinitesimal variation dx is never null 

when we study the movement in a physics phenomenon except at rest. Consequently, we shouldn’t 

use f’ the derivative of the function f. We should use 
df
dx

 instead which is the differential divided

by the infinitesimal variation.



2. Remarks:

Fig.1: The trigonometric circle of radius r=1.

Let’s consider the circle of radius r=1 in the figure 1, where b is the length of the circular arc and a 
is the circular arc chord and dφ is the circular arc infinitesimal angle. 
Consequently b= dφ and S is the area of the circular segment that is the area of the surface between 

a and b, where S=
r2

2
×(d φ−sin(dφ)) .

And we consider that h=sin(dφ) and c=cos(dφ) and c+e=1.

Remark 1: 

If  dφ is small enough, then 
sin(d φ)

dφ
≈1⇔sin (d φ)≈d φ                                                          (1)  

and in this case S≈0 therefore a and b become combined which means a≈b. Also, in this case, h≈ dφ
therefore by using Pythagoras’ theorem we conclude that: e2

+h2
=a2

⇔d φ2
+e2
≈d φ2  

consequently: e2
≈0⇔e≈0 and thus e disappears and cos(dφ)=c≈1.

 We conclude that: sin(dφ)≈dφ⇒cos (d φ)≈1                                                                        (2)   
and we remark that in this case cos (d φ)2+sin(dφ)2≠1 consequently, trigonometric identities are
unusable when sin(dφ)≈ dφ.
By Al-Kashi’s theorem we prove also that a≈0 which implies that dφ≈0. And this is remarked also 
with: cos (d φ)≈1⇔dφ≈0 and this is absurd since dφ exists during the study of the rotation in a 
physics phenomenon where we should have normally cos(dφ) < 1.
We conclude that the approximation with sin(dφ)≈dφ is unusable.
If we use  sin(dφ)≈ dφ and cos (d φ)≈√1−d φ2                                                                         (3)
by using Pythagoras’ theorem in the trigonometric circle, then in this case:

e≈1−√1−d φ2
⇒ e2

≈2−d φ2
−2√1−d φ2  

Hence: e2
+h2
≈dφ2

≈2−2√1−d φ2

Consequently: 2≈dφ2
+2√1−d φ2

⇒4≈dφ4
+4−4d φ2

+4d φ2√1−d φ2

We conclude that: 1≈
d φ2

4
+√1−dφ2

⇒(1−
d φ2

4
)

2

≈1−dφ2



And thus: 1+
dφ4

16
−

dφ2

2
≈1−d φ2

⇒dφ2
≈−8

We proved that if we use sin(dφ)≈ dφ and cos (d φ)≈√1−d φ2 , then this implies that
d φ2

≈−8 which is a contradiction. Hence, the use of this approximation is false and can cause 
errors in the study of the rotation in a phenomenon.

Remark 2:

Now let’s use the limit of 
1−cos(d φ)

d φ2  when dφ tends to zero.

We have consequently when dφ is small enough: cos (d φ)≈1−
d φ2

2
.                                       (4)

Consequently, by using  Pythagoras’ theorem in the trigonometric circle:

sin(dφ)≈dφ×√1−
dφ2

4
.                                                                                                            (5)

In this case S≠0 even if we notice that a tends to dφ (a≈ dφ) when we use Al-Kashi’s theorem in the 
triangle of the figure 1.  S≠0 because a equals approximately dφ but b equals exactly dφ and the 

formula S=
r2

2
×(d φ−sin(dφ)) prevents us to consider that a=b.

This approximation is correct and causes no contradictions. Consequently, we can use it without 
risking any errors.
All the trigonometric identities are usable in this case since cos (d φ)2+sin(dφ)2=1 and since the
triangles of the trigonometric circle in figure 1 stay all valid.

Remark 3:

cos (d φ)≈1−
d φ2

2
⇔d φ2

≈2(1−cos(dφ))≈4sin(
d φ
2
)

2

⇔ sin(
d φ
2
)≈

d φ
2

                             (6)

consequently trigonometric identities are not usable for 
dφ
2

. We conclude that we should fix dφ 

as the smallest detectable variation in the phenomenon studied rotation which depends on the 
detection technology in order to avoid mathematical contradictions. 

The fixed dφ will respect the formulas: cos (d φ)≈1−
d φ2

2
and sin(dφ)≈dφ×√1−

dφ2

4
. 

However, in this case we should use dt as the variable. 
During the rotation in Newtonian mechanics,  we have a fixed infinitesimal variation which defines 
the fixed change dφ that happens in different changing durations Δt. For example, in a polar 
coordinate system (ρ,φ,z=0), we will have:

d e⃗ρ(φ)
dt

=
d e⃗ρ(φ)
Δ t

=
d e⃗ρ (φ)

Δ t×φ
. ×φ

.
=

d e⃗ρ(φ)
dφ

×φ
.

                                                                         (7)

where: φ
.
=

d φ
Δ t

 and dt=Δt is the variable duration of each dφ. You will find in this document an 

example of this method application that deals with the case of GPS systems.

Important:

These approximations imply that: de iφ

d φ
≠i(cos (φ)+i sin(φ))  

consequently: e iφ
≠cos (φ)+ isin(φ)



And thus: cos (φ)≠
eiφ

2
+

e−iφ

2
 and: sin(φ)≠

e iφ

2i
−

e−iφ

2i

Remark 4: 

In order to simplify the results, we will consider that cos (d φ)=1−
dφ2

2
and

sin(dφ)=d φ×√1−
dφ2

4
 (not only approximations).

We deduce that: 

cos (φ+d φ)=cos(φ)×cos (d φ)−sin(φ)×sin (d φ)=(1−
d φ2

2
)×cos(φ)−dφ×√1−

dφ2

4
×sin (φ)

                                                                                                                                                        (8)
and:

sin(φ+dφ)=sin(φ)×cos (d φ)+cos(φ)×sin(d φ)=(1−
dφ2

2
)×sin(φ)+d φ×√1−

d φ2

4
×cos(φ)

                                                                                                                                                        (9)  
Consequently: 

dcos (φ)
d φ

=
cos (φ+dφ)−cos (φ)

d φ
=
−d φ

2
×cos(φ)−√1−

dφ2

4
×sin(φ)                                   (10)

and: 
d sin (φ)

dφ
=

sin(φ+d φ)−sin(φ)
dφ

=
−d φ

2
×sin(φ)+√1−

dφ2

4
×cos (φ)                             (11)

and:
d tan(φ)

d φ
=

√1−
dφ2

4

(1−
d φ2

2
)×cos (φ)2−

d φ
2
×√1−

dφ2

4
×sin(2φ)

                                             (12)

and: 
dcot (φ)

d φ
=

−√1−
d φ2

4

(1−
d φ2

2
)×sin(φ)2+

d φ
2
×√1−

d φ2

4
×sin(2φ)

                                              (13)

where we can check that:

sin '(φ)= lim
dφ→0

d sin(φ)
d φ

=cos(φ) and: cos ' (φ)= lim
dφ→0

d cos(φ)
d φ

=−sin(φ)

and: tan ' (φ)= lim
dφ→0

d tan (φ)
d φ

=
1

cos (φ)2
 and:  cot ' (φ)= lim

dφ→0

d cot(φ)
dφ

=
−1

sin (φ)2

We can also deduce by using these approximations that:

∫
A

B

sin(φ)d φ=−√1−
d φ2

4
×(cos(B)−cos (A))−

dφ
2
×(sin(B)−sin (A ))                                 (14)

and: ∫
A

B

cos (φ)dφ=
−dφ

2
×(cos (B)−cos(A))+√1−

dφ2

4
×(sin(B)−sin(A ))                         (15)

by integrating
d cos (φ)

d φ
and 

d sin (φ)
dφ

 calculated above.

These two integrals are only approximate sums since dφ is fixed as  dφ>0. However Riemann’s 
definition of integrals requires that dφ tends exactly to zero.
However, we can also check from above that:



lim
dφ→0
∫
A

B

sin (φ)d φ=cos(A)−cos(B)  and: lim
dφ→0
∫
A

B

cos (φ)d φ=sin(B)−sin (A )

∫
A

B

tan(φ)dφ and ∫
A

B

cot (φ)d φ are left as a challenge to the readers!!!

Remark 5:
We can prove easily that:

cos (φ)=−d cos(φ)−
d2 cos(φ)

dφ2                                                                                         (16)

and: sin(φ)=−d sin (φ)−
d2sin (φ)

d φ2                                                                                   (17)

Consequently: tan (φ)=
d2sin (φ)+d φ2

×d sin(φ)

d2cos (φ)+d φ2
×d cos(φ)

                                                           (18)

and: cot(φ)=
d2 cos(φ)+dφ2

×d cos (φ)

d2sin(φ)+dφ2
×d sin (φ)

                                                                           (19)

And also: (
d sin (φ)

dφ
)

2

+(
d cos (φ)

d φ
)

2

=1                                                                               (20)

and: (
d2sin(φ)

dφ2 )
2

+(
d2cos (φ)

d φ2 )
2

=1 .                                                                                   (21)

3. Conclusion 1:

Let’s consider that u⃗(φ)  is a rotating vector that belongs to the plane of its rotation φ.
Hence: 

                                                                                                                                                   (22)

Consequently: 
d u⃗(φ)

d φ
×u⃗ (φ)=

−d φ
2
×‖u⃗(φ)‖2

≠0                                  (23)

because dφ exists during the study. 

Where: ‖
d u⃗ (φ)

d φ
‖=‖u⃗ (φ)‖  and: 

^
(

d u⃗(φ)
d φ

,u⃗ (φ))=arccos(
−d φ

2
)                                    (24)

4. Results and applications:

Result 1:

When using the approximations: cos (d φ)=1−
dφ2

2
and sin(dφ)=d φ×√1−

dφ2

4
, if u⃗(φ)

is a rotating vector that belongs to the plane of its rotation φ, then 
d u⃗(φ)

d φ
is not orthogonal to

u⃗(φ) . Consequently, the famous method of reference frames change becomes false and unusable
in Newtonian mechanics. Furthermore, the velocity field becomes not equiprojective for solid 
mechanics.

d u⃗(φ)
d φ

=
u⃗(φ+dφ)−u⃗ (φ)

d φ
=−‖u⃗(φ)‖×(

d φ
2
×(cos(φ) i⃗+sin(φ) j⃗ )+√1−

d φ2

4
×(sin(φ)i⃗−cos(φ) j⃗))=

−dφ
2
×u⃗ (φ)+√1−

d φ2

4
×u⃗(φ+ π

2
)



Result 2:
In cylindrical coordinates (ρ,φ,z):

d e⃗ρ(φ)
d φ

=
−d φ

2
×e⃗ρ (φ)+√1−

d φ2

4
×e⃗φ(φ)                                                                          (25)

and: 
d e⃗φ(φ)

d φ
=
−d φ

2
×e⃗φ(φ)−√1−

d φ2

4
× e⃗ρ(φ)                                                                  (26)

Important example: 
We will study the case of The GPS system satellites by proving the real time at a given satellite. We 
will need no time dilation in this proof.
Let’s consider that the speed V of the satellite is constant V=k1 ,
By using the correct approximations above:

d O⃗M
dt

=
d ρ( t)

dt
×e⃗ρ (t)−

d φ
2
×φ

.
×ρ(t )×e⃗ρ(t )+ρ(t)×φ

.
×√1−

d φ2

4
× e⃗φ (t)                         (27)

Where M stands for the position of the satellite that has a circular orbit of angle φ.
Since the speed vector given to the satellite is tangent to the circle of the wanted trajectory, we 

should have: 
dρ(t)

dt
×e⃗ρ(t)−

dφ
2
×φ

.
×ρ( t)×e⃗ρ(t )=0⃗                                                        (28)

Hence: 
dρ(t)

dt
=

d φ
2
×φ

.
×ρ(t)                                                                                             (29)

Consequently: ρ(t)=exp (
dφ
2
×φ+ ln(h))=h×exp(

d φ
2
×φ)                                            (30)

Where:  h is the initial altitude of the satellite.
The linear speed V of the GPS satellite is the constant speed that equals the initial speed given to the
satellite in order to start orbiting. 

Consequently: V⃗=ρ(t)×φ
.
×√1−

d φ2

4
×e⃗φ(t)                                                                   (31)

And thus: 
dφ
dt
=

V

h×√1−
dφ2

4

×exp(
−d φ

2
×φ)=exp (

−dφ
2
×φ+ ln (

V

h×√1−
dφ2

4

))       (32)

We should remark that:
• ρ(t) increases in the beginning of the GPS satellite lifetime with a very slight change thanks 

to the initial launching power from earth.
• φ=0 at the point where the satellite started orbiting after being launched.

• φ  is always increasing and exceeds 2π, consequently φ is always positive and  
dφ
dt
⩾0 .

• dφ is the constant smallest variation of the satellite angle that we can detect, and dt is the 
time needed for that variation.

Since we consider in our study that dφ is constant and dt is the variable, we conclude that:

dt=
h
V
×√1−

dφ2

4
×d φ×exp(

d φ
2
×φ)                                                                               (33)

and thus dt depends on the satellite rotation angle φ.

application:
The real time ΔT needed by the satellite to make the first lap around the earth after it is launched is:

ΔT=∑
i=1

K

(
h
V
×√1−

d φ2

4
×d φ×exp (i

d φ
2
×d φ))+Δ t=

h
V
×√1−

dφ2

4
×dφ×∑

i=1

K

(exp (i
d φ2

2
))+Δ t

                                                                                                                                                 (34)



Where: K=⌊
2π
d φ
⌋ (the floor of 

2π
dφ

)                                                                              (35)

and Δ t=
h
V
×√1−

dφ2

4
×dφ1×exp(

d φ1

2
×2π)                                                                  (36)

and d φ1=2π−K×d φ .                                                                                                      (37)

Result 3:
In spherical coordinates(r,θ,φ):

d e⃗r=
∂ e⃗r

∂φ
dφ+

∂ e⃗r

∂θ
θ and: d e⃗θ=

∂ e⃗θ
∂φ

d φ+
∂ e⃗θ
∂θ
θ and: d e⃗φ=

∂ e⃗φ
∂φ

d φ+
∂ e⃗φ
∂θ
θ  

since (e⃗r , e⃗θ , e⃗φ) don’t change by the variation of r but only θ and φ.

Also: 
∂ e⃗r

∂θ
=
−dθ

2
×e⃗r+√1−

dθ2

4
×e⃗θ                                                                                     (38)

and: 
∂ e⃗θ
∂θ
=
−dθ

2
×e⃗θ−√1−

dθ2

4
× e⃗r                                                                                      (39)

since: e⃗r and e⃗θ are always in the rotation plane θ.

And also: 
∂ e⃗φ
∂ θ
=0⃗  since e⃗φ is always perpendicular to the plane of the rotation θ. 

Consequently, e⃗φ  doesn’t change by the variation of θ.

In order to find: 
∂ e⃗r

∂φ
, 
∂ e⃗θ
∂φ

and 
∂ e⃗φ
∂φ

, we should make the projections of e⃗r , e⃗θ and

e⃗φ in the suitable cylindrical coordinates (ρ,φ,z) with the same plane of rotation φ that contains 
always e⃗ρ and the same vector e⃗φ of the spherical coordinates.

Hence:  e⃗r=sin (θ)×e⃗ρ+cos (θ)× k⃗ and: e⃗θ=cos (θ)× e⃗ρ−sin(θ)× k⃗  
and: e⃗φ=e⃗r∧e⃗θ where: e⃗φ is the same in the two coordinates systems.

Also: ∂ k⃗
∂φ
=0⃗ consequently: 

∂ e⃗r

∂φ
=sin(θ)×

∂ e⃗ρ
∂φ
=sin(θ)×(

−d φ
2
×e⃗ρ+√1−

d φ2

4
× e⃗φ)   (40)

And: 
∂ e⃗θ
∂φ
=cos(θ)×

∂ e⃗ρ
∂φ
=cos (θ)×(

−dφ
2
× e⃗ρ+√1−

d φ2

4
×e⃗φ)                                           (41)

with: e⃗ρ=sin (θ)×e⃗r+cos (θ)× e⃗θ
and thus:
∂ e⃗r

∂φ
=
−d φ

2
×sin(θ)2× e⃗r−

dφ
4
×sin(2θ)×e⃗θ+sin(θ)×√1−

dφ2

4
×e⃗φ                                 (42)

and:
∂ e⃗θ
∂φ
=
−dφ

4
×sin(2θ)×e⃗r−

d φ
2
×cos (θ)2eθ+cos(θ)×√1−

d φ2

4
×e⃗φ                            (43)

and: 
∂ e⃗φ
∂φ
=−sin(θ)×√1−

dφ2

4
× e⃗r−cos (θ)×√1−

d φ2

4
× e⃗θ−

dφ
2
× e⃗φ                                (44)

5. Conclusion 2:

d e⃗r=−(
dθ2

2
+

dφ2

2
×sin (θ)2)× e⃗r+(d θ×√1−

dθ2

4
−

d φ2

4
×sin(2θ))×e⃗θ+d φ×√1−

d φ2

4
×sin(θ)× e⃗φ

                                                                                                                                                   (45)
and:

d e⃗θ=−(dθ×√1−
dθ2

4
−

dφ2

4
×sin(2θ))×e⃗r−(

d θ2

2
+

d φ2

2
×cos(θ)2)× e⃗θ+d φ×√1−

d φ2

4
×cos(θ)×e⃗φ

                                                                                                                                                    (46)



and also: d e⃗φ=−d φ×√1−
d φ2

4
×sin(θ)×e⃗r−dφ×√1−

dφ2

4
×cos (θ)× e⃗θ−

d φ2

2
×e⃗φ      (47)

6. A new method to avoid the conventional method of changing reference frames:

We will present a new method to avoid the famous method of changing reference frames that needs 
the perpendicularity between a rotating vector and its derivative.
When a given reference frame with orthonormal direct axes is making any revolution, this 
revolution can be decomposed to three simple revolutions, and each one of these simple revolutions 
is around one of the three axes. However each axis changes only by two simple revolutions that are 
the simple revolutions around the two other axes and not by the revolution around itself.
Consequently, let’s consider that α is the angle of the simple revolution around the axis i⃗ , β is the
angle of the simple revolution around the axis j⃗ , and ɣ is the angle of the simple revolution 
around the axis k⃗ where (i⃗ , j⃗ , k⃗ ) are the three orthonormal direct axes of the reference frame 
that makes any given revolution. This revolution is composed of the three simple revolutions of 
angles:  α, β and ɣ. Let’s study each one of the three axes independently from each other. The 
simple revolution doesn’t  influence its axis but the two others. Hence each axis is influenced by 
two simple revolutions and thus we can use a spherical coordinates system to study each axis. 

We will calculate 
d i⃗
dt

, 
d j⃗
dt

and 
d k⃗
dt

 which are the derivatives of i⃗ , j⃗ and k⃗ in an 

absolute fixed reference frame (O⃗x , O⃗y ,O⃗z) .
This method is useful in order to avoid the difficult projections of i⃗ , j⃗ and k⃗ in the absolute 
fixed reference frame. Furthermore, the three derivatives will be calculated without making any 
change of reference frames. However, the functions  α(t), β(t) and ɣ(t) of the three simple 
revolutions  must be well known before making this study.

Step 1: The study of the vector i⃗ :

Let’s consider that i⃗=e⃗r , j⃗= e⃗θ and k⃗=e⃗φ where: e⃗r , e⃗θ and e⃗φ are the vectors of a 
spherical coordinates system.
We conclude that: ɣ=θ and α has no effects on i⃗ . However, we should find the relation between φ
and both β  and ɣ.

Fig.2 : The circle of rotation  β and the ellipse of rotation  φ.



The figure 2 shows that the intersection of the rotation β plane and the rotation φ plane is the axis
O⃗x of a Cartesian coordinates system. And the orthogonal projection of the circle made by the 

rotation β inside the plane of e⃗φ  is an ellipse made by the rotation φ. We consider that O is the 
center of the ellipse whereas φ is the angle between e⃗φ and O⃗x .

A⃗B is perpendicular to the plane of the rotation φ which is the plane of e⃗φ that is the plane of 
the two Cartesian vectors O⃗x and O⃗y .

A⃗C is in the plane of the rotation β which is the plane of i⃗ and A⃗C is perpendicular to the 
axis O⃗x .
We can prove that: AC=sin (β) and AB=sin(β)×cos (θ)                                                   (48)

O⃗B is in the plane of e⃗φ with: OB=√1−AB2
=√1−sin(β)2×cos (θ)2                             (49)

And the equation of the ellipse is: x2

a2+
y2

b2 +1

where a= (the half of the ellipse major axis), and b= (the half of the ellipse minor axis).
Consequently: a=1 and b= sin(θ)
And also: x=OB×cos(φ) and: y=OB×sin (φ)
Therefore, the ellipse equation becomes:

cos (φ)2×(1−cos(θ)2×sin(β)2)+
sin (φ)2

cos (θ)2
×(1−cos(θ)2×sin(β)2)=1                                      (50)

Consequently: cos (φ)2=
tan(θ)2

(cos (θ)2×sin(β)2)−1
+

1
cos (θ)2

=
tan(γ )2

(cos (γ)2×sin(β)2)−1
+

1
cos(γ)2

 (51)

and this equation doesn’t change even if: φ>π
2

and: β> π
2

.

Since we know exactly the functions β(t) and ɣ(t), we can deduce easily the function φ(t) in order to
be able to calculate dφ(t), especially that: 0⩽β⩽ π

2
⇒0⩽φ⩽π

2
and: π

2
⩽β⩽π⇒ π

2
⩽φ⩽π and 

also: π⩽β⩽
3 π
2
⇒π⩽φ⩽

3π
2

and also: 
3 π
2
⩽β⩽2π⇒

3π
2
⩽φ⩽2π .

However we can only use this formula when γ≠0  and γ≠π
2

.

But we notice that if γ=π
2

and ɣ stays fixed, then always φ=β and thus we can study i⃗ easily 

by using cylindrical coordinates system.
Finally, by using the formula of d e⃗r , we conclude that:

                                                                                                                                                     (52)    
Hence: 

                                                                                                                                                     (53)
where: φ1(t)=φ(t) in step 1.

Step 2: The study of the vector j⃗ :

By following the same method, let’s consider that i⃗=e⃗φ , j⃗= e⃗r and k⃗=e⃗θ where: e⃗r ,
e⃗θ and e⃗φ are the vectors of an other spherical coordinates system.

We conclude that: α=θ and β has no effects on j⃗ . However, we should find the relation between 
φ and both α and ɣ. And Let’s consider that:  φ2(t)=φ(t) in step 2.

The ellipse equation gives: cos (φ2)
2
=

tan(α)2

(cos(α)2×sin(γ)2)−1
+

1
cos (α)2

                              (54)

d i⃗
dt
=−(

d θ
2
×

d θ
dt
+

d φ
2
×

d φ
dt
×sin(θ)2)×i⃗+(

d θ
dt
×√1−

dθ2

4
−

d φ
4
×

d φ
dt
×sin(2θ))× j⃗+

d φ
dt
×√1−

dφ2

4
×sin(θ)×k⃗

d i⃗
dt
=−(

d γ
2
×

d γ
dt
+

d φ1

2
×

dφ1

dt
×sin (γ)2)×i⃗+(

d γ
dt
×√1−

d γ2

4
−

d φ1

4
×

d φ1

dt
×sin(2 γ))× j⃗+

d φ1

dt
×√1−

dφ1
2

4
×sin(γ )×k⃗



Consequently, we can deduce easily the function φ2(t).
And thus by using the formula of d e⃗r again, we conclude that:

                                                                                                                                                    (55)
Step 3: The study of the vector k⃗ : 

By following the same method, let’s consider that i⃗=e⃗θ , j⃗= e⃗φ and k⃗=e⃗r where: e⃗r ,
e⃗θ and e⃗φ are the vectors of an other spherical coordinates system.

We conclude that: β=θ and ɣ has no effects on k⃗ . However, we should find the relation between 
φ and both α and β. And Let’s consider that:  φ3(t)=φ(t) in step 3.

The ellipse equation gives: cos (φ3)
2
=

tan(β)2

(cos(β)2×sin(α)2)−1
+

1
cos(β)2

                             (56)

Consequently, we can deduce easily the function φ3(t).
And thus by using the formula of d e⃗r again, we conclude that:

                                                                                                                                                  (57)
7. An important advice:
The result of this vector study should preferably be used with the formula: Δ Ec=∫ v⃗× d⃗p during 
the energetic study of a system, then simplifications can be made in order to find the correct 
expression of the kinetic energy variation Δ E c .

Part B: Differential operators:
The differential operators gradient (nabla), divergence, curl and Laplacian provide information 
about about a field of scalars or vectors situated immediately in front of the studied point M 
according to the orientations of the axes of the used coordinates system.
Let’s prove the formulas of each differential operator geometrically by using the three coordinates 
systems in an Euclidean space where the field lines are considered continuous vector functions.
 
1. The operator gradient (nabla):
Let’s consider a function of locations points: f : E→ℝ . Where E is the Euclidean space and the 
function f is differentiable and thus continuous.

Consequently: f :
E→ ℝ

M→ f (M )
 makes a scalar field.

In each of the three coordinates system, the operator gradient has this form: df=g⃗rad f×d⃗M .

The Cartesian coordinates System (x,y,z):

                                                                                                                                                   (58)

Consequently: ∇⃗ f=g⃗rad f=
∂ f
∂ x

. e⃗x+
∂ f
∂ y

. e⃗ y+
∂ f
∂ z

. e⃗z                                                          (59)

The cylindrical coordinates system (ρ,φ,z): 

df=
∂ f
∂ρ

. d ρ+
∂ f
∂φ

. d φ+
∂ f
∂ z

. dz                                                                                              (60)

and d⃗M=dρ . e⃗ρ+ρ . dφ . e⃗φ+d z . e⃗z                                                                                        (61)

and: ∇⃗ f=g⃗rad f=A . e⃗ρ+B . e⃗φ+C . e⃗z  where A,B and C are the coordinates of ∇⃗ f .

d j⃗
dt
=

d φ2

dt
×√1−

dφ2
2

4
×sin (α) i⃗−(

dα
2
×

dα
dt
+

dφ2

2
×

d φ2

dt
×sin(α)2)× j⃗+(

dα
dt
×√1−

dα2

4
−

dφ2

4
×

d φ2

dt
×sin(2α))×k⃗

d k⃗
dt
=(

dβ
dt
×√1−

dβ2

4
−

dφ3

4
×

d φ3

dt
×sin(2β)) i⃗+

d φ3

dt
×√1−

d φ3
2

4
×sin(β)× j⃗−(

dβ
2
×

dβ
dt
+

d φ3

2
×

d φ3

dt
×sin(β)2)× k⃗

df=
∂ f
∂ x

. dx+
∂ f
∂ y

. dy+
∂ f
∂ z

. dz=(
∂ f
∂ x

.e⃗ x+
∂ f
∂ y

. e⃗y+
∂ f
∂ z

. e⃗z)×(dx . e⃗x+dy . e⃗ y+dz .e⃗ z)=(
∂ f
∂ x

. e⃗x+
∂ f
∂ y

. e⃗ y+
∂ f
∂ z

. e⃗z)×d⃗M



Consequently: df=g⃗rad f×d⃗M=A .d ρ+B .ρ . dφ+C . dz                                                  (62)

We conclude this identification: A=
∂ f
∂ρ

                                                                             (63)

and: B=
1
ρ×

∂ f
∂φ

                                                                                                                   (64)

and C=
∂ f
∂ z

.                                                                                                                          (65)

And thus:  ∇⃗ f=g⃗rad f=
∂ f
∂ρ

. e⃗ρ+
∂ f
∂φ
×

1
ρ . e⃗φ+

∂ f
∂ z

. e⃗z                          (66)   

The spherical coordinates(r,θ,φ):

df=
∂ f
∂r

. dr+
∂ f
∂θ

. d θ+
∂ f
∂φ

. dφ                                                                                             (67)       

and d⃗M=d r .e⃗r+r . d θ . e⃗θ+sin (θ). r . d φ . e⃗φ                                                                       (68)

and: ∇⃗ f=g⃗rad f=A . e⃗r+B . e⃗θ+C . e⃗φ  where A,B and C are the coordinates of ∇⃗ f .

Consequently: df=g⃗rad f×d⃗M=A .d r+B .r . d θ+C . sin(θ). r . dφ                                  (69)

We conclude this identification: A=
∂ f
∂ r

                                                                             (70)

and: B=
1
r
×
∂ f
∂ θ

                                                                                                                     (71)

and C=
1

r . sin(θ)
×
∂ f
∂φ

.                                                                                                       (72)

And thus:  ∇⃗ f=g⃗rad f=
∂ f
∂r

. e⃗r+
1
r
×
∂ f
∂θ

. e⃗θ+
1

r . sin(θ)
×
∂ f
∂φ

. e⃗φ                  (73)

Clarifications:
• d⃗M  is an infinitesimal displacement that depends on the used coordinates system.
• The studied function f must be expressed according to the coordinates system of the used 

reference frame, then we use the coordinates of M in the final expression.
• g⃗rad f characterizes the variation of f in the space for a given displacement d⃗M .
• df changes depending on M the studied point of the space, because to each point M 

corresponds a value f(M), and also, d⃗M  is immediately in front of the studied point M 
according to the orientations of the axes of the used coordinates system . Consequently,

g⃗rad f  is a vector field that depends on the value f(M) at the location of the point M 
and also on the coordinates system being used.  

• df=g⃗rad f×d⃗M=‖⃗grad f‖×‖d⃗M‖×cos (Ω) consequently g⃗rad f  is located at a 

rotation angle τ from d⃗M in the anticlockwise orientation: cos (Ω)=
^

( g⃗rad f , d⃗M ) .
• The level surfaces are the space surfaces where f stays constant. And g⃗rad f is 

perpendicular to its level surfaces.

2.The flow and the operator divergence:
The elementary flow is: d ϕ= A⃗×dS×n⃗=d i v A⃗×d τ

d iv A⃗ is a scalar field where:
• A⃗ is a vector field 
• dS and dτ are consecutively the elementary surface and volume of the used coordinates 

system.
• n⃗ is the unit normal vector to dS.

For a closed surface we orientate n⃗ towards outside the surface. Also, dS and dτ change from a 
coordinates system to an other. Consequently, d iv A⃗  depends on the coordinates system being 
used.



The Cartesian coordinates System (x,y,z):
We remark that: dτ=dx.dy.dz and dS1=dS2=dx.dy and  dS3=dS4=dy.dz and dS5=dS6=dx.dz.
And also: d ϕ1=A⃗×dS1× n⃗1=−A z×dx×dy                                                                  (74)

and: d ϕ2=A⃗ ⁺×dS2× n⃗2=A⁺z×dx×dy                                                                         (75)

where: A ⁺z=A z+
∂ A z

∂ z
.dz                                                                                              (76)

Consequently: d ϕz=d ϕ1+d ϕ2=
∂ A z

∂ z
.dx . dy . dz=

∂ A z

∂ z
.d τ                                          (77)

because: n⃗2=− n⃗1=k⃗ .
And also: d ϕ3= A⃗×dS3×n⃗3=−Ax×dy×dz                                                                  (78)

and: d ϕ4= A⃗⁺×dS4×n⃗4=A ⁺x×dy×dz                                                                         (79)

where: A ⁺x=A x+
∂ A x

∂ x
. dx                                                                                              (80)

Consequently: d ϕx=dϕ3+d ϕ4=
∂ A x

∂ x
. dx . dy . dz=

∂ A x

∂ x
. d τ                                          (81)

because: n⃗4=−n⃗3=i⃗ .
And also: d ϕ5= A⃗×dS5×n⃗5=−A y×dx×dz                                                                   (82)

and: d ϕ6= A⃗⁺×dS6×n⃗6=A ⁺y×dx×dz                                                                          (83)

where: A ⁺y=A y+
∂ A y

∂ y
. dy                                                                                              (84)

Consequently: d ϕ y=d ϕ5+d ϕ6=
∂ A y

∂ y
.dx . dy . dz=

∂ A y

∂ y
. d τ                                         (85)

because: n⃗6=−n⃗5= j⃗ .

And thus: d ϕ=d ϕx+d ϕ y+d ϕz=(
∂ A x

∂ x
+
∂ A y

∂ y
+
∂ A z

∂ z
)×d τ                                            (86)

We finally conclude that: d iv A⃗=
∂ A x

∂ x
+
∂ A y

∂ y
+
∂ A z

∂ z
                                                     (87)

The cylindrical coordinates system (ρ,φ,z): 
In the cylindrical coordinates system: O⃗M=ρ× e⃗ρ+z× k⃗ where M is a point of the space.

Fig.3 : The elementary volume dτ and the elementary surfaces dS1 and dS2.

In the figure 3, the elementary volume is: d τ=ρ×d φ×dρ×dz .                                (88)
Also: dS1=ρ×d φ×dz                                                                                                   (89)
and dS2=(ρ+dρ)×d φ×dz                                                                                             (90)



Fig.4 : The elementary similar surfaces dS3, dS4, and the elementary similar surfaces dS5 and dS6.

In the figure 3, we prove by using circular sectors that: dS3=dS4=dρ×dz                   (91)

And: dS5=dS6=d ρ×d φ×(ρ+
dρ
2
)                                                                                (92)

Hence: d ϕ1=A⃗×dS1× n⃗1=−Aρ×ρ×d φ×dz                                                                 (93)

and: d ϕ2=A⃗ ⁺×dS2× n⃗2=A⁺ρ×(ρ+dρ)×d φ×dz                                                         (94)

where: A ⁺ρ=Aρ+
∂ Aρ
∂ρ

. dρ                                                                                              (95)

Consequently: d ϕρ=d ϕ1+d ϕ2=(
Aρ

ρ +
∂ Aρ

∂ρ
×(1+

dρ
ρ )) . d τ                                            (96)

because: n⃗2=− n⃗1=e⃗ρ .
And also: d ϕ3= A⃗×dS3×n⃗3=−Aφ×dρ×dz                                                                   (97)

and: d ϕ4= A⃗⁺×dS4×n⃗4=A ⁺φ×dρ×dz                                                                         (98)

where: A ⁺φ=Aφ+
∂ Aφ
∂φ

. dφ                                                                                              (99)

Consequently: d ϕφ=d ϕ3+d ϕ4=
∂ Aφ

∂φ
×d φ×d ρ×dz=

1
ρ×
∂ Aφ

∂φ
×d τ                            (100)

because: n⃗4=−n⃗3=e⃗φ .

And also: d ϕ5= A⃗×dS5×n⃗5=−A z×dρ×dφ×(ρ+
dρ
2
)                                                 (101)

and: d ϕ6= A⃗⁺×dS6×n⃗6=A ⁺z×dρ×d φ×(ρ+
dρ
2
)                                                        (102)

where: A ⁺z=A z+
∂ A z

∂ z
.dz                                                                                               (103)

Consequently: d ϕz=d ϕ5+dϕ6=
∂ A z

∂ z
×dφ×dρ×dz×(ρ+

dρ
2
)=(1+

dρ
2ρ
)×
∂ A z

∂ z
×d τ   (104)

because: n⃗6=−n⃗5= k⃗ .

 Hence: d ϕ=d ϕρ+d ϕφ+d ϕz=(
Aρ

ρ +(1+
dρ
ρ )×

∂ Aρ

∂ρ
+

1
ρ×
∂ Aφ

∂φ
+(1+

dρ
2ρ
)×
∂ A z

∂ z
)×d τ  (105)

We finally conclude that: d iv A⃗=
Aρ
ρ +(1+

dρ
ρ )×

∂ Aρ
∂ρ

+
1
ρ×

∂ Aφ

∂φ
+(1+

d ρ
2ρ
)×
∂ A z

∂ z
       (106)

The spherical coordinates(r,θ,φ):
In the spherical coordinates: O⃗M=r×e⃗r and e⃗r is always in the plane of the rotation θ. And the

elementary volume is: d τ=r2
×sin(θ)×d θ×dφ×dr .                                                   (107)



Fig.5 : The six elementary surfaces forming an infinitesimal volume. And the elementary similar surfaces 
dS1 and dS2.

 In the figure 5, the vector that is the radius of the circular arc made by dφ is always in the plane of

e⃗φ . And by using circular sectors: dS1=dS2=(r+
dr
2
)×d θ×dr .                            (108)

Fig.6 : The elementary surfaces dS3 and dS4.

In the figure 6: dS3=(r+
dr
2
)×sin (θ)2×d φ×dr                                                            (109)

and: dS4=(r+
dr
2
)×sin(θ+dθ)2×dφ×dr                                                                      (110)

Fig.7 : The elementary surfaces dS5  and dS6.



In the figure 7, we flatten the surface dS5 consequently we get a trapezoid shape that has the 
following height h1:

h1=(r
2
×dθ2

+r 2
×d φ2

×(sin(θ+dθ)−sin(θ))2)
1
2                                                                   (111)

Hence: 

                                                                                                                                                     (112)   
We make the same with the surface dS6 and we get a trapezoid shape that has the following height 

h2: h2=((r+dr )2×d θ2
+(r+dr )2×d φ2

×(sin(θ+dθ)−sin(θ))2)
1
2                                          (113)

And:

                                                                                                                                                       (114)
 

We have:  d ϕ1=A⃗×dS1× n⃗1=−Aφ×d θ×d r×(r+
d r
2
)                                                           (115)

and: d ϕ2=A⃗ ⁺×dS2× n⃗2=A⁺φ×d θ×d r×(r+
d r
2
)                                                                  (116)

where: A ⁺φ=Aφ+
∂ Aφ
∂φ

. dφ                                                                                                      (117)

Consequently: d ϕφ=d ϕ1+d ϕ2=
∂ Aφ

∂φ
×d θ×d φ×d r×(r+

d r
2
)=(

1+
dr
2 r

r×sin(θ)
)×
∂ Aφ

∂φ
×d τ   (118)

because: n⃗2=− n⃗1=e⃗φ .

And also:  d ϕ3= A⃗×dS3×n⃗3=−Aθ×sin (θ)2×d φ×d r×(r+
d r
2
)                                           (119)

and: d ϕ4= A⃗⁺×dS4×n⃗4=A ⁺θ×sin(θ+dθ)2×dφ×d r×(r+
d r
2
)                                          (120)

because: n⃗4=−n⃗3=e⃗θ where: A ⁺θ=Aθ+
∂ Aθ

∂θ
. d θ                                                              (121)

Consequently:  

                                                                                                                                                       (122)
Hence: 

                                                                                                                                                       (123)
Let’s consider that: 

B (θ)=
sin(θ+dθ)2−sin(θ)2

dθ
=

d sin (θ)2

d θ
=2×sin(θ)×

dsin(θ)
d θ

                                               (124)

And also: D(θ)=
sin(θ+d θ)2

sin(θ)
                                                                                                  (125)

We conclude that: 

d ϕθ=Aθ×(
1
r
+

d r
2 r2 )×B(θ)×

d τ
sin (θ)

+
∂ Aθ

∂ θ
×D(θ)×(

1
r
+

dr
2 r2 )×d τ                                         (126)

d ϕθ=d ϕ3+d ϕ4=−Aθ×sin(θ)2×d φ×d r×(r+
d r
2
)+Aθ×sin(θ+dθ)2×dφ×d r×(r+

d r
2
)+
∂ Aθ

∂θ
×sin(θ+d θ)2×d θ×dφ×d r×(r+

d r
2
)

d ϕθ=Aθ×d φ×d r×(r+
d r
2
)×(sin(θ+dθ)2−sin(θ)2)+

∂ Aθ

∂θ
×

sin(θ+dθ)2

sin (θ)×r2 ×(r+
d r
2
)×d τ=Aθ×(r+

d r
2
)×
(sin (θ+d θ)2−sin(θ)2)

dθ
×

d τ
sin(θ)×r 2+

∂ Aθ
∂θ
×

sin(θ+d θ)2

sin(θ)×r2 ×(r+
d r
2
)×d τ

dS5=
h1×(r×dφ×sin(θ+dθ)+r×d φ×sin (θ))

2
=

r2

4
×d φ×d θ×(4(sin(θ+dθ)+sin(θ))2−dφ2

×(
sin(θ+dθ)2−sin(θ)2

d θ
)

2

)
1
2

dS6=
h2×((r+dr )×d φ×sin (θ+d θ)+(r+dr )×d φ×sin (θ))

2
=
(r+dr )2

4
×dφ×dθ×(4 (sin(θ+d θ)+sin(θ))2−d φ2

×(
sin (θ+d θ)2−sin(θ)2

dθ
)

2

)
1
2



For: d S5 and d S6 :

Let’s consider that:    F(θ)=(sin(θ+dθ)+sin(θ))2                                                                (127)

and:  G(θ)=(
sin(θ+dθ)2−sin (θ)2

d θ
)

2

=(
d (sin(θ)2)

d θ
)

2

=(2×sin(θ)×
dsin(θ)

dθ
)

2

                     (128)

Consequently:  d ϕ5= A⃗×dS5×n⃗5=−A r×
r2

4
×d φ×dθ×(4 F (θ)−dφ2

×G (θ))
1
2                  (129)

and: d ϕ6= A⃗⁺×dS6×n⃗6=A ⁺r×
(r+dr )2

4
×d φ×d θ×(4 F(θ)−d φ2

×G(θ))
1
2                       (130)

because: n⃗6=−n⃗5= e⃗r and: A ⁺r=A r+
∂ A r

∂r
. dr                                                                    (131)

We conclude that: d ϕr=(A r×(
dr

4 r2+
1

2 r
)+
∂ Ar

∂ r
×(

1
2
+

dr
2 r
)

2

)×
(4. F(θ)−d φ2

×G(θ))
1
2

sin(θ)
×d τ  (132)

And thus: 

                                                                                                                                                     (133)
We finally conclude that: 

                                                                                                                                                     (134)
By using the demonstrated approximations: 

B (θ)=−dθ×sin(θ)2+√1−
d θ2

4
×2×sin (θ)×cos (θ)=

−d θ
2
×(1−cos (2θ))+√1−

dθ2

4
×sin(2θ)

                                                                                                                                                     (135)
And:

D(θ)=(1−
d θ2

2
)

2

×sin (θ)+2dθ×(1−
dθ2

2
)×√1−

dθ2

4
×cos(θ)+dθ2

×(1−
d θ2

4
)×

cos (θ)
tan (θ)

 (136)

 And Also:

                                                                                                                                                      (137)
And: 

                                                                                                                                                      (138) 
Clarifications:
• In order to calculate the divergence of A⃗ in a point of the space M(x,y,z), we should 

replace by the data of A⃗ in the expression of the chosen reference frame coordinates 
system. Then, we integrate the final expression by using the coordinates of the studied part 
of the space if the integration is possible.

• The six vectors n⃗i that are normal to the elementary surfaces are oriented towards outside.
Consequently, for a uniform field A⃗ , when d ϕ>0 ,  the field vectors that are in the 
studied part of the space, in the orientation of the used reference frame axes, have the same 

d iv A⃗=(
1+

dr
2 r

r×sin(θ)
)×
∂ Aφ

∂φ
+Aθ×(

1
r
+

d r

2 r2
)×

B(θ)
sin (θ)

+
∂ Aθ

∂ θ
×D(θ)×(

1
r
+

d r

2 r2
)+(A r×(

dr

4 r2
+

1
2 r
)+
∂ Ar

∂ r
×(

1
2
+

dr
2 r
)

2

)×
(4. F(θ)−d φ2

×G(θ))
1
2

sin(θ)

d ϕ=d ϕr+d ϕθ+d ϕφ=(
1+

dr
2 r

r×sin(θ)
)×
∂ Aφ
∂φ

×d τ+Aθ×(
1
r
+

d r

2r 2
)×B(θ)×

d τ
sin(θ)

+
∂ Aθ
∂θ
×D(θ)×(

1
r
+

d r

2 r2
)×d τ+(Ar×(

dr

4 r2
+

1
2 r
)+
∂ A r

∂r
×(

1
2
+

dr
2 r
)

2

)×
(4.F (θ)−dφ2

×G(θ))
1
2

sin(θ)
×d τ

F(θ)=(√2−
d θ2

2√2
)

2

×(1−cos (2θ))+
dθ2

2
×(1−

d θ2

4
)×(1+cos (2θ))+(4−3d θ2

+
3
4
×dθ4

−
d θ6

16
)

1
2×dθ×sin(2θ)

G(θ)=B(θ)2=(
dθ2

4
+

1
2
)+cos (4 θ)×(

d θ2

4
−

1
2
)−

dθ2

2
×cos(2θ)+

dθ
2
×√1−

dθ2

4
×sin(4 θ)−d θ×√1−

dθ2

4
×sin (2θ)



orientations of the vectors n⃗i . And thus the field A⃗ is divergent in the studied part of 

the space and 
dϕ
d τ
=d i v A⃗>0 .

• In the case when d ϕ<0 , the field vectors in the studied part of the space have 
orientations opposite to the vectors n⃗i orientations. Consequently the field A⃗ is 

convergent in the studied part of the space and 
dϕ
d τ
=d i v A⃗<0 .

• In the case when d ϕ=0 , and the field A⃗ exists in the studied part of the space, this 
means that every field vector has its opposite across each elementary surface. In this case

dϕ
d τ
=d i v A⃗=0 , otherwise the field is tangent to all the elementary surfaces and thus it is 

a rotational field.

3. The operator curl:
In an orthonormed direct reference frame of axes (e⃗1 , e⃗2 ,e⃗3) , we can define the operator curl as:

r⃗ot A⃗=
r⃗ot A⃗ .e⃗1

r⃗ot A⃗ .e⃗2

r⃗ot A⃗ . e⃗3

  

And it is a vector field that respects the following Stokes’ theorem: 
r⃗ot A⃗ . e⃗1 . dS23=dC1

r⃗ot A⃗ . e⃗2 . dS13=dC2

r⃗ot A⃗ . e⃗3 . dS12=dC3

Where: dS12, is the elementary surface in the plane (e⃗1 , e⃗2) ,dS13 is the elementary surface in the 
plane (e⃗1 , e⃗3) and dS23 is the elementary surface in the plane (e⃗2 , e⃗3) , and Also: dC1,dC2 and 
dC3 are respectively their closed boundaries of the corresponding elementary surfaces in the 
reference frame planes. These boundaries are outlines oriented anticlockwise when we are 
observing the surfaces from the inside (center) of the reference frame.

We prove that: 
dC1= A⃗11×d11×e⃗2+ A⃗12×d12×e⃗3− A⃗13×d13×e⃗2−A⃗14×d14×e⃗3

dC2= A⃗21×d21× e⃗3+ A⃗22×d22× e⃗1− A⃗23×d23×e⃗3− A⃗24×d24× e⃗1

dC3= A⃗31×d31× e⃗2+ A⃗32×d32× e⃗1− A⃗33×d33×e⃗2− A⃗34×d34×e⃗1

                    (139)

Where: dij is the elementary length of the elementary surface sides. And Aij is the field vector of
A⃗ that coincides with dij.  

The boundaries are drawed by starting from the studied point M(x,y,z). Consequently, the sides of 
the elementary surfaces have elementary sides  dij in common.

The Cartesian coordinates System (x,y,z):

Fig.8 : The boundaries dC1, dC2 and dC3 of the cartesian coordinates.



In the figure 8: dS23=dy.dz                                                                                                        (140)
 and: dS13=dx.dz                                                                                                                        (141)
and dS12=dx.dy                                                                                                                          (142)
And: dC 1= A⃗11×d11× e⃗2+ A⃗12×d12× e⃗3−A⃗13×d13×e⃗2− A⃗14×d14× e⃗3                                  (143)
Consequently: dC1=−A z1

×dz−A ⁺y1
×dy+A⁺z1

×dz+A y1
×dy                                          (144)

By following the same method we prove that: 
dC2=−A x2

×dx−A⁺z2
×dz+A ⁺x2

×dx+A z2
×dz                                                                  (145)

And: dC3=A x3
×dx+A⁺y3

×dy−A⁺x3
×dx−A z3

×dz                                                           (146)

Where: A ⁺y1
=A y1

+
∂ A y1

∂ z
. dz                                                                                                (147)

and: A ⁺z1
=A z1

+
∂ A z1

∂ y
.dy                                                                                                      (148)

and also: A ⁺x2
=Ax2

+
∂ Ax2

∂ z
. dz                                                                                               (150)

and: A ⁺z2
=A z2

+
∂ A z2

∂ x
.dx                                                                                                      (152)

and also: A ⁺x3
=A x3

+
∂ Ax3

∂ y
.dy                                                                                              (153)

and: A ⁺y3
=A y3

+
∂ A y3

∂ x
.dx                                                                                                     (154)

with: A x=A x2
=Ax3

and: A y=A y1
=A y2

and: A z=A z1
=A z3

                                         (155)
because the sides of the elementary surfaces have elementary sides  dij in common.

And thus: 

dC1=−A z×dz−(A y+
∂ A y

∂ z
. dz )×dy+(A z+

∂ A z

∂ y
.dy)×dz+A y×dy

dC2=−Ax×dx−(A z+
∂ A z

∂ x
.dx )×dz+(A x+

∂ Ax

∂ z
. dz)×dx+A z×dz

dC3=A x×dx+(A y+
∂ A y

∂ x
. dx)×dy−(Ax+

∂ Ax

∂ y
.dy )×dx−A z×dz

                  (156)

Consequently:  dC1=
−∂ A y

∂ z
. dz×dy+

∂ A z

∂ y
. dy×dz=r⃗ot A⃗× i⃗×dS23                                 (157)

where: dS23=dy.dz                                                                                                                     (158)

And:  dC2=
−∂ A z

∂ x
. dz×dx+

∂ A x

∂ z
. dx×dz=r⃗ot A⃗× j⃗×dS13                                                (159)

where: dS13=dx.dz                                                                                                                     (160)

And also: dC3=
−∂ A x

∂ y
. dy×dx+

∂ A y

∂ x
. dx×dy=r⃗ot A⃗×k⃗×dS12                                        (161)

where: dS12=dx.dy                                                                                                                    (162)

We conclude finally that: r⃗ot A⃗=

−∂ A y

∂ z
+
∂ A z

∂ y
−∂ A z

∂ x
+
∂ Ax

∂ z
−∂ A x

∂ y
+
∂ Ay

∂ x

                                                                 (163)



The cylindrical coordinates system (ρ,φ,z): 

Fig.9 : The boundaries dC1, dC2 and dC3 of the cylindrical coordinates.

In the figure 9: dS23=ρ×d φ×dz                                                                                   (164)
and: dS13=dρ×dz                                                                                                           (165)

and: dS12=(ρ+
d ρ
2
)×d φ×dρ                                                                                         (166)

And: dC1=Aφ1
×ρ×dφ+A⁺z1

×dz−A⁺φ1
×ρ×d φ−A z1

×dz                                         (167)
And also: dC2=A z2

×dz+A⁺ρ2
×dρ−Aρ2

×dρ−A⁺z2
×dz                                              (168)

And also: dC3=Aρ3
×dρ+A⁺φ3

×(ρ+dρ)×d φ−A⁺ρ3
×d ρ−Aφ3

×ρ×dφ                     (169)

Where: A ⁺z1
=A z1

+
∂ A z1

∂φ
. d φ                                                                                           (170)

and: A ⁺φ1
=Aφ1

+
∂ Aφ1

∂ z
. dz                                                                                                (171)

and also: A ⁺ρ2
=Aρ2

+
∂ Aρ2

∂ z
. dz                                                                                         (172)

and: A ⁺z2
=A z2

+
∂ A z2

∂ρ
. dρ                                                                                               (173)

and also: A ⁺φ3
=Aφ3

+
∂ Aφ3

∂ρ
.d ρ                                                                                       (174)

and: A ⁺ρ3
=Aρ3

+
∂ Aρ3

∂φ
.d φ                                                                                               (175)

with: Aρ=Aρ2
=Aρ3

and: Aφ=Aφ1
=Aφ3

and: A z=A z1
=A z2

                                    (176)
because the sides of the elementary surfaces have elementary sides  dij in common.

And thus: 

dC1=Aφ×ρ×dφ+(A z+
∂ A z

∂φ
. d φ)×dz−(Aφ+

∂ Aφ
∂ z

. dz)×ρ×dφ−A z×dz

dC2=A z×dz+(Aρ+
∂ Aρ
∂ z

. dz)×dρ−(A z+
∂ A z

∂ρ
. dρ)×dz−Aρ×dρ

dC3=Aρ×dρ+(Aφ+
∂ Aφ
∂ρ

. dρ)×(ρ+dρ)×d φ−(Aρ+
∂ Aρ
∂φ

. dφ)×dρ−Aφ×ρ×d φ

                                                                                                                                             (177)

Consequently:  dC1=
−∂ Aφ

∂ z
. dz×ρ×d φ+

∂ A z

∂φ
. d φ×dz= r⃗ot A⃗×e⃗ρ×dS23                  (178)

Where: dS23=ρ×d φ×dz                                                                                                (179)

And:  dC2=
−∂ A z

∂ρ
. dz×dρ+

∂ Aρ

∂ z
. d ρ×dz=r⃗ot A⃗×e⃗φ×dS13                                       (180)

Where:  dS13=dρ×dz                                                                                                    (181)



And also:

dC3=
−∂ Aρ
∂φ

. dφ×dρ+
∂ Aφ

∂ρ
. dρ×ρ×d φ+(Aφ+

∂ Aφ
∂ρ
×dρ)×dρ×d φ=r⃗ot A⃗×k⃗×dS12  (182)

Where:  dS12=(ρ+
d ρ
2
)×d φ×dρ                                                                                        (183)

Hence: 
−∂ Aφ
∂ z

+
1
ρ .
∂ A z

∂φ
=r⃗ot A⃗× e⃗ρ                                                                                     (184)

And: 
−∂ A z

∂ρ
+
∂ Aρ

∂ z
=r⃗ot A⃗× e⃗φ                                                                                             (185)

And also: 
−∂ Aρ
∂φ

.
2

2ρ+d ρ
+
∂ Aφ
∂ρ

.
2ρ

2ρ+dρ
+
∂ Aφ

∂ρ
.

2d ρ
2ρ+dρ

+Aφ .
2

2ρ+d ρ
= r⃗ot A⃗×k⃗          (186)

We conclude finally that: r⃗ot A⃗=

−∂ Aφ
∂ z

+
1
ρ .
∂ A z

∂φ

−∂ A z

∂ρ
+
∂ Aρ

∂ z
−2

2ρ+dρ
.
∂ Aρ

∂φ
+

2(ρ+dρ)
2ρ+dρ

.
∂ Aφ

∂ρ
+

2
2ρ+dρ

. Aφ

¿

               (187)

The spherical coordinates(r,θ,φ):

Fig.10 : The boundaries dC1, dC2 and dC3 of the spherical coordinates.

In the figure 10: 

                                                                                                                                                     (188)
Consequently, by considering that: 

F(θ)=(sin(θ+dθ)+sin(θ))2                                                                                                  (189)

and:  G(θ)=(
sin(θ+dθ)2−sin (θ)2

d θ
)

2

                                                                                    (190)   

We find that: dS23=
r 2

4
×dφ×dθ×(4 F (θ)−d φ2

×G(θ))
1
2                                                    (191)

We remind that the calculations from before gave:  

                                                                                                                                                     (192)  

dS23=
h1×(r×d φ×sin(θ+dθ)+r×d φ×sin(θ))

2
=

r2

4
×d φ×d θ×(4(sin (θ+d θ)+sin(θ))2−d φ2

×(
sin(θ+dθ)2−sin (θ)2

d θ
)

2

)
1
2

F(θ)=(√2−
d θ2

2√2
)

2

×(1−cos (2θ))+
dθ2

2
×(1−

d θ2

4
)×(1+cos (2θ))+(4−3d θ2

+
3
4
×dθ4

−
d θ6

16
)

1
2×dθ×sin(2θ)



And: 

                                                                                                                                                    (193)

Also: dS13=(r+
dr
2
)×sin(θ)2×d φ×dr                                                                                  (194)

And also: dS12=(r+
dr
2
)×d θ×dr                                                                                           (195)

We have: dC1=Aθ1
×r×d θ+A⁺φ1

×r×sin(θ+dθ)×dφ−A⁺θ1
×r×d θ−Aφ1

×r×sin(θ)×d φ
                                                                                                                                                     (196)  
And: dC2=Aφ2

×r×sin (θ)×d φ+A⁺r 2
×dr−A ⁺φ2

×(r+dr )×sin(θ)×dφ−A r2
×dr             (197)

And also: dC3=Ar 3
×dr+A⁺θ3

×(r+dr )×d θ−A⁺r3
×dr−Aθ3

×r×dθ                                  (198)

Where:  A ⁺φ1
=Aφ1

+
∂ Aφ1

∂θ
. d θ                                                                                                (199)

and: A ⁺θ1
=Aθ1

+
∂ Aθ1

∂φ
. d φ                                                                                                       (200)

and also: A ⁺r2
=A r2

+
∂ A r2

∂φ
. d φ                                                                                               (201)

and: A ⁺φ2
=Aφ2

+
∂Aφ2

∂r
.dr                                                                                                      (202)   

and also: A ⁺θ3
=Aθ3

+
∂ Aθ3

∂r
. dr                                                                                               (203)

and: A ⁺r3
=A r3

+
∂ A r3

∂θ
. d θ                                                                                                      (204)

with: A r=A r2
=A r3

and: Aθ=Aθ1
=Aθ3

and: Aφ=Aφ1
=Aφ2

                                           (205)
because the sides of the elementary surfaces have elementary sides  dij in common.
And thus: 

                                                                                                                                                    (206)
Consequently:  

                                                                                                                                                   (207)

Where: dS23=
r 2

4
×dφ×dθ×(4 F (θ)−d φ2

×G(θ))
1
2                                                           (208)

And:

dC2=
∂ Ar

∂φ
. dφ×dr−Aφ×sin(θ)×dφ×dr−

∂ Aφ

∂r
.(r+dr )×sin(θ)×d φ×dr=r⃗ot A⃗× e⃗θ×dS13

                                                                                                                                                   (209)

Where:  dS13=(r+
dr
2
)×sin(θ)2×d φ×dr                                                                            (210)

And also: dC3=
−∂ A r

∂θ
. dθ×dr+

∂ Aθ

∂ r
. dr×(r+dr)×dθ+Aθ×dθ×dr=r⃗ot A⃗× e⃗φ×dS12  (211)

G(θ)=(
dθ2

4
+

1
2
)+cos(4θ)×(

d θ2

4
−

1
2
)−

dθ2

2
×cos(2θ)+

dθ
2
×√1−

dθ2

4
×sin (4θ)−d θ×√1−

d θ2

4
×sin(2θ)

dC1=Aθ×r×dθ+(Aφ+
∂ Aφ

∂θ
. dθ)×r×sin(θ+dθ)×dφ−(Aθ+

∂ Aθ

∂φ
. d φ)×r×dθ−Aφ×r×sin (θ)×d φ

dC2=Aφ×r×sin(θ)×d φ+(A r+
∂ Ar

∂φ
. d φ)×dr−(Aφ+

∂ Aφ

∂ r
. dr )×d φ×sin (θ)×(r+dr )−Ar×dr

dC3=Ar×dr+(Aθ+
∂ Aθ
∂r

. dr)×(r+dr)×dθ−(A r+
∂ A r

∂ θ
. d θ)×dr−Aθ×r×d θ

dC 1=(Aφ+
∂ Aφ
∂θ

.d θ)×r×sin(θ+d θ)×d φ−Aφ×r×sin(θ)×d φ−
∂ Aθ
∂φ

×r×d φ×dθ=
−∂ Aθ
∂φ

×r×d φ×dθ+Aφ×r×(sin (θ+dθ)−sin (θ))×d φ+
∂ Aφ

∂θ
. d θ×r×sin (θ+d θ)×d φ=r⃗ot A⃗×e⃗r×dS23



Where: dS12=(r+
dr
2
)×d θ×dr                                                                                            (212)

We conclude that: 

                                                                                                                                                   (213)
Consequently: 

                                                                                                                                                   (214)  

And: r⃗ot A⃗×e⃗θ=

∂ A r

∂φ

sin(θ)2×(r+
dr
2
)

−
Aφ

(r+
dr
2
)×sin(θ)

−
∂ Aφ

∂r
×

r+dr

(r+
dr
2
)×sin(θ)

                (215)

And also: r⃗ot A⃗×e⃗φ=
−
∂ A r

∂θ

r+
dr
2

+

∂ Aθ
∂r
×(r+dr )

r+
dr
2

+
Aθ

r+
dr
2

                                                       (216)

We conclude finally that:

                                                                                                                                                   (217)    

Clarifications:
• During the study, we should replace by the field coordinates in the curl formulas 

demonstrated above. Then, we integrate according to the studied part of the space when the 
integration is possible.

• The operator curl informs about a part of the vicinity of a studied point. This part is the part 
of the space in front of the studied point in the orientation of the coordinates system being 
used.

• If a coordinate of the curl is positive, then the  vector field A⃗ located at the studied point 
vicinity that is perpendicular to that coordinate axis is a vortex field. The vortex is 
anticlockwise around the positive coordinate axis.

• If that coordinate is negative then the vortex will be oriented clockwise. 
• If that coordinate is null whereas the field exists, then the field will be uniform in the part of 

the studied point vicinity concerned by the null coordinate.
   

r⃗ot A⃗×e⃗r=
−∂ Aθ

∂φ
×

1

r
4
×(4 F (θ)−d φ2

×G(θ))
1
2

+Aφ×
sin(θ+d θ)−sin(θ)

r
4
×(4 F (θ)−d φ2

×G(θ))
1
2×dθ

+
∂ Aφ

∂θ
.

sin (θ+d θ)

r
4
×(4 F (θ)−d φ2

×G(θ))
1
2

r⃗ot A⃗×e⃗r=
4

r×(4 F (θ)−dφ2
×G(θ))

1
2

×(−
∂ Aθ
∂φ

+
sin(θ+dθ)−sin (θ)

d θ
×Aφ+sin (θ+d θ)×

∂ Aφ

∂θ
)=

4

r×(4 F (θ)−d φ2
×G(θ))

1
2

×(Aφ×(
−d θ

2
×sin (θ)+√1−

d θ2

4
×cos (θ))+

∂ Aφ

∂θ
×((1−

d θ2

2
)×sin(θ)+√1−

dθ2

4
×dθ×cos (θ))−

∂ Aθ
∂φ

)

r⃗ot A⃗=

4

r×(4 F (θ)−d φ2
×G(θ))

1
2

×(Aφ×(
−dθ

2
×sin(θ)+√1−

dθ2

4
×cos(θ))+

∂ Aφ
∂θ
×((1−

dθ2

2
)×sin(θ)+√1−

d θ2

4
×d θ×cos(θ))−

∂ Aθ

∂φ
)

∂ Ar

∂φ

sin(θ)2×(r+
dr
2
)

−
Aφ

(r+
dr
2
)×sin (θ)

−
∂ Aφ

∂r
×

r+dr

(r+
dr
2
)×sin(θ)

−
∂ Ar

∂θ

r+
dr
2

+

∂ Aθ

∂ r
×(r+dr )

r+
dr
2

+
Aθ

r+
dr
2



4. The operator Laplacian:
Let’s consider a function of locations points: f : E→ℝ . Where E is the Euclidean space and the 
function f is differentiable and thus continuous.
The Laplacian of f is: Δ f=d i v (⃗grad f ) .
The Cartesian coordinates System (x,y,z):

∇⃗ f=g⃗rad f=
∂ f
∂ x

. e⃗x+
∂ f
∂ y

. e⃗ y+
∂ f
∂ z

. e⃗z and: d iv A⃗=
∂ A x

∂ x
+
∂ A y

∂ y
+
∂ A z

∂ z
 

Where: A⃗ is a vector field.

Consequently: Δ f=
∂

2 f
∂ x2+

∂
2 f
∂ y2+

∂
2 f
∂ z2

                                                                                  (218)

The cylindrical coordinates system (ρ,φ,z): 

∇⃗ f=g⃗rad f=
∂ f
∂ρ

. e⃗ρ+
∂ f
∂φ
×

1
ρ . e⃗φ+

∂ f
∂ z

. e⃗z

and: d iv A⃗=
Aρ
ρ +(1+

dρ
ρ )×

∂ Aρ
∂ρ

+
1
ρ×

∂ Aφ

∂φ
+(1+

d ρ
2ρ
)×
∂ A z

∂ z
 

Where: A⃗ is a vector field.

Consequently: Δ f=
1
ρ×
∂ f
∂ρ
+(1+

dρ
ρ )×

∂
2 f
∂ρ

2+
1
ρ

2×
∂

2 f
∂φ

2+(1+
dρ
2ρ
)×
∂

2 f
∂ z2

                          (219)

The spherical coordinates(r,θ,φ):

∇⃗ f=g⃗rad f=
∂ f
∂r

. e⃗r+
1
r
×
∂ f
∂θ

. e⃗θ+
1

r . sin(θ)
×
∂ f
∂φ

. e⃗φ

and: 

Where: A⃗ is a vector field.
Consequently: 

                                                                                                                                                 (220)
We remind that: 

B (θ)=−dθ×sin(θ)2+√1−
d θ2

4
×2×sin (θ)×cos (θ)=

−d θ
2
×(1−cos (2θ))+√1−

dθ2

4
×sin(2θ)

And:

D(θ)=(1−
d θ2

2
)

2

×sin (θ)+2 dθ×(1−
dθ2

2
)×√1−

dθ2

4
×cos(θ)+dθ2

×(1−
d θ2

4
)×

cos (θ)
tan (θ)

 And Also:

And: 

Clarifications:
• During the study, we should replace by the studied function f in the Laplacian formulas 

demonstrated above. Then, we integrate according to the studied part of the space when the 
integration is possible.

Δ f=(
1+

dr
2 r

r 2
×sin(θ)2

)×
∂

2 f

∂φ
2
+
∂ f
∂θ
×

1+
dr
2 r

r2
×

B(θ)
sin(θ)

+
∂

2 f

∂θ
2
×

1+
dr
2 r

r 2
×D(θ)+(

∂ f
∂ r
×(

dr

4 r2
+

1
2 r
)+
∂

2 f

∂ r2
×(

1
2
+

dr
2 r
)

2

)×
(4.F (θ)−dφ2

×G (θ))
1
2

sin(θ)

d iv A⃗=(
1+

dr
2 r

r×sin(θ)
)×
∂ Aφ

∂φ
+Aθ×(

1
r
+

d r

2 r2
)×

B(θ)
sin (θ)

+
∂ Aθ

∂ θ
×D(θ)×(

1
r
+

d r

2 r2
)+(A r×(

dr

4 r2
+

1
2 r
)+
∂ Ar

∂ r
×(

1
2
+

dr
2 r
)

2

)×
(4. F(θ)−d φ2

×G(θ))
1
2

sin(θ)

F(θ)=(√2−
d θ2

2√2
)

2

×(1−cos (2θ))+
dθ2

2
×(1−

d θ2

4
)×(1+cos (2θ))+(4−3d θ2

+
3
4
×dθ4

−
d θ6

16
)

1
2×dθ×sin(2θ)

G(θ)=B(θ)2=(
dθ2

4
+

1
2
)+cos (4 θ)×(

d θ2

4
−

1
2
)−

dθ2

2
×cos(2θ)+

dθ
2
×√1−

dθ2

4
×sin(4 θ)−d θ×√1−

dθ2

4
×sin (2θ)



• If Δf=0 then f behaves uniformly in the location that is immediately in front of the studied 
point M.

• If Δf>0 then a local minimum of f exists in the location that is immediately in front of the 
studied point M.

• If Δf<0 then a local maximum of f exists in the location that is immediately in front of the 
studied point M.

• When we are studying the Laplacian of a function f, the gradient vectors cross diagonally 
the volume made by the elementary surfaces of the divergence. 

Remark:
The results found should make the convinced readers change their vector and matrix calculations 
especially with the famous navier-stokes equations.
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