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Abstract 

   A new method of optimization by means of a redefinition of the function over a wider set and a deformation of the 

function on the initial and additional sets is proposed. 

  The method (a) reduces the initial complex problem of optimization to series of simplified problems, (b) finds the 

subsets containing the point of global minimum and finds the subsets containing better solutions that the given one, 

and (c) obtains a lower estimation of the global minimum. 

Introduction 

 The classical approaches optimization problem is following: 

Problem A. Find a minimum of the given function. 

  Together with problem A the following problems we are considered: 

Problem B. Find a smaller subset contains the all points of the global minimum. 

Problem C. Find a subset of better solutions where the function is less that given value. 

Problem D. Find a lower estimation of function. 

  These non-classical approach B,C, and D require innovative methods, different from the well-known methods. 
  The author offers the new mathematical methods for the solution of these problems. 

  The new methods have turned out to be much more general, so that while solving one of the above problems, 
another may be solved in passing, which may help in the solution of the former. Thus, if a satisfactory lower estimate 
found, it can be compared with various engineering solutions and give rise to one very close to the optimum. 

  This method is applied to many mathematical problems of optimization. For example, functions of several variable, 
constrained optimization, linear and nonlinear programming, multivariable nonlinear problems described by regular 
differential equations and equations in partial derivatives, etc. 

  One can easy get from the given method to many well-known methods of optimization, for example, Lagrangian 
multiplier method, the penalty function method, the classical variational method, Pontragin’s principle of maximum, 
dynamic programming and others. 

  At present, the most of researchers in optimization fields are using the traditional optimization problem – find a 
minimum of the given functional (Problem A). They look a single, local minimum. An engineer, however, is usually 
interested in a subset of quasi-optimal solutions. He must make sure that the optimum does not exceed a given 
value (Problem C). Also, a good estimation from below will indicate how far a given solution is from the optimum 
solution (Problem D). An addition an engineer usually has other considerations that cannot be introduced into a 
mathematical model or can lead to impractical complications. Approach C provides him with some choice. 

  Problem D is also of particular interest. If an estimate from bottom closes to the exact infimum of the function is 
found, the optimization can frequently be reduced to finding a quasi-optimal solution by trial and error. 

  Solution of the Problem B can significantly simplify the solution of any of the above problems, since it narrows the 
set containing optimal solution. 

  These non-classical Problems B, C and D require innovative methods, different from the well-known method of 
variational calculus, maximum principle and dynamic programming. This new method is general, so that while 
solving one of the above problems, another may be solved in passing, which may help in the solution of the former. 
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Thus, if a satisfactory estimate from below has been found, it can be compared with various engineering solutions 
and give rise to one very close to the optimum. 

 Our reasoning in this book is not complex. But we are using symbolic of set Theory, which many engineers forget. 
That way we are given these information in Appendix A of the book Bolonkin A.A., “Universal Optimization and its 
Application”, LULU, 2017 [1]. 
 In article, we are using the double numbering of formulae, theorems and drawings. The first figure in numbering 
formula or theorem notes the number of paragraph, the second figure is number formula or theorem in this 
paragraph. The first figure of drawings means the number of chapters, the second is the number of drawing. 

Methods of 𝜷 and 𝜸 functions 

§1. Methods of 𝜷 −functions 

1. Statement of the Problem. Main theorems. Algorithm 1. 
 

  10. Statement of the Task. Assume that the state of the system is described by element x. A series of these 

elements form the set X={x}. The numerical function I(x) (functional) is defined and bounded by its lower estimate 

over X. The relationships and limitations imposed on the system yield a subset  XX * . 

 Traditionally the problem of optimization has been set as follows: 

A. Find a point of the minimum of the function I(x) over the set X*. 
        

We shall also consider the following problems: 

B. Find a smaller subset *XM   that contains point x* of global (absolute) minimum, Mx * . 

C. Find a subset *XN  on which I(x)≤ c, where c ≥ I(x). 
D. Find the lower estimates of I(x) over X*. 
We will name the point (element) x the solution if x is resulting any presses, procedure, calculation or reasoning. 

It not means that x is point of optimum. We will tell the point x1 is better solution than the point x2, if I(x1) < I(x2) and 

the point of the same solution, if I(x1) = I(x2).  

For simplicity we assume that the point of global minimum x* exists in X*, but this is not impotent limitation. The 

most results can be obtained without this assumption. 

Let us introduce a set Y={y} and define a bounded numerical function (functional) β(x,y) over XY. We shall call it 

β-functional. 

Then we set 

).,()(),( yxxIyxJ +=  

Call our initial problem of finding x* and ** ,)(inf)( XxmxIxI ==     Problem 1 

and the problem of finding x and 

                  XxyxxIyyxJ += )],,()(inf[)),((      Problem 2 

We assume that )(yx  exist over XY.  

We deformed arbitrarily our functional I(x) by adding β(x, y). Moreover, we widened the domain of the 

deformed functional and arbitrarily defined it on the set Y. We should do so in such a way that problem 2 will be 

easier to solve. 



It might seem that this makes no sense because we must find the points of minimum of our initial functional I(x), 

i.e., solve Problem 1. But it appears that from the solution of the simpler Problem 2 we can obtain information about 

Problem 1. We can use freedom in choice of   the functional β(x,y) and the set Y for such a deformation of functional 

J(x,y) and the set Y that we solve the initial Problem 1, but in an easier way. 

20. The Fundamental Theorem. The following main theorem establishes the relationship between Problem 1 and 

2, as well as between Problems A, B, and C (The Principle 1 of Optimum). 

Theorem 1.1. Distinguishing between the sets containing: (1) The global minimum points, (2) only better 

solutions than the one given, (3) only worse solutions than one given. 

Assume )(,* yxXX   are the points of global minimum in Problem 2. Then: 

(1) The points of global minimum in Problem 1 are contained in the set 

};),),((),(:{ YyyyxyxxM =   

(2) The set  

},:{ YyIJIJxN ++=  

      contains the same or better solutions (that is over N, we have )()( xIxI   ); 

(3) The set  

};),),((),(:{ YyyyxyxxP =   

     contains the same or worse solutions (that is over P   )()( xIxI   ). 

 

Proof. 3. By subtracting the inequality 

)()()),(())((),()()),((),( xIxIgetweyyxyxIyxxIfromyyxyx ++   

over P. Point 3 of the theorem is proved. 

1. Point 1 of Theorem 1 is obvious because X=M+P and xIxI ()(  ) over P, we have Mx * . Point 1 of the 

theorem is proved. 

2. By subtracting the inequality )()( xIxIgetweIJIJfromJJ ++ over N. Point 2 of the 

theorem is proved. 
Theorem 1 is proved. 

   If in sets N and P we write the strong inequality   , then the set N will contain only better solutions and 

the set P will contain worse solutions that xI( ). 

   Theorem 1.1 is correct when X* X, but M,N,P contain elements from X*. 

Let us focus our attention on the fact that after solving the simpler Problem 2, we distinguished in our set X three 

subset: M, which contains a point of global minimum, subset P, containing the same or worse solutions, and subset 

N, which contains the same or better solutions. 

 Consequences: 

1. Element x  is the point of global minimum of the functional over the set P X. 

2. x  is the element which gives the maximum of the functional I(x) over the set N X. 

3. If X* P, then x  is the point if global minimum Problem 1 over set X*. In this case we have M={x}. 



4. If β=β(x), xX, then 

   )},()(:{ xxxM  =  )},()(:{ xxxP  = IJIJxN ++= :{ . 

   Theorem 1 is correct when X* X, but M,N,P contain element from X*. 

5. Let X* X. If X* M=, then )(xI  is the lower estimation I(x) over the set X* (because in this case we have X* 

P). 

6. Let X* X. If X* N, then )(xI  is the top estimation I(x) ≤ )(xI  over the set X*. 

If xX*, the sets M,N,P will always contain at least one element from the set X*. This element is x . 

Remarks: 

1. N M. The proof: Let us denote 
o

P =P-{ x }.  Then 
o

P  N=, because over 
o

P we have I(x)>I( x ) and over N 

we have I(x) ≤ I( x ). But N X and M=X-
o

P . Hence N M. 
2. Assume the definitions of the sets N, P (see Theorem 1) contain strong inequalities. Then the set N will 

contain on; y better solutions and the set P – only worse solutions, compared to x . 
3. We can use the dependence of the sets M,N,P from y in order to change the “dimensions” of these sets. 
4. β - functions exist and their number is infinite.  

The last statement is obvious because we can define β-functionals over the set XY in any possible way. 

   The theorem 1 gives the Algorithm 1 (a β-functional method for finding the subsets that contains the points of 

global minimum or better solutions). 

  Algorithm 1. Define βi(x,y) so that Problem 2 becomes easier to solve, and find sets Mi and Ni. Then M= Mi (that is 

not empty) is the set that contains the points of global minimum and N=Ni (if that is not empty) is subset contains 

min )}({ ixI or better solutions. 

  Note: The getting M is more “narrow” (contains less points x) subset then initial M. That means the finding x* is 

easier. The decreasing of M is especially important in a “method of dynamic programming” because it is decreasing 

the number of computations. 

  Theorem 1.2. (The lower estimate) Let us assume that β(x,y) is a defined and bounded functional over XY  then the 

lower estimate over X is 

)],(sup)),(())(([)( yxyyxyxIxI
X

 −+     for  Yy .   (1.1) 

Proof: By adding the inequalities 

),(sup),()),(()(),()( yxyxandyyxxIyxxI
X

 −−++  

           over X, we get the estimate (1.2). 

Remarks: 

      1. For case β = β(x) the estimate (1.1) is 

)(sup)(inf)( xxJxI
XX
−  ,     (1.1’) 

2. When X  X* the estimate (1.1) is correct over X*, because X* X. In this case we can use the better 
estimates: 



),(sup)(inf)(
*

xxJxI
XX
−    ),(sup)(inf)(

*

xxJxI
XX

−    ),(sup)(inf)(
*

*
xxJxI

XX
−   (1.1”) 

  When we found the set M for βi the following estimate may be used 

   ),(sup)(inf)(
*

xxJxI
MX

−      (1.1’”) 

  The proof of (1.1’), (1.1”), (1.1’”) is same the proof of theorem 1.2. 

3. Dependence of the estimate (1.1) from y may be used for its improving 

)],(sup)(inf[sup)(
*

xxJxI
xxy

−     (1.1IV) 

  When we use the estimates (1.1’) - (1.1IV) we decide the problem 
X

sup=


. It may be used for 

  Theorem 1.3. Assume X=X*, x  is point of a global minimum in the problem 
X

sup=


, 

Then: 

1) The points of global minimum in Problem 1 are contained in the set 
 

    Contains the same or better solutions. 
2) The set  

    

 

3)  The set 

 

 

Contains the same or worse solutions. 

  Here is )(xII


= . 

Proof of Theorem 1.3. 

1, 3. By subtracting the inequality 


  from 


++ II  we get II


 over set P. 

        The statement 1, 2 follow from this. 

2. By subtracting the inequality 


  from 


−− II  and multiply this result by -1,  

       we get II


 over N. The theorem 1,3 is proofed.  

Remark: 

 For proof of the theorems 1.1-1.3 the existence of  x, x , x


 is not important, but corresponding inf and sup must be 

existed. 

Example 1.1. 

Find minimum of functional 

},:{)( YyIIxyM ++= 


},:{)( YyIIxyN −−=




},:{)( YyIIxyP ++= 




−
+−

−−= − x
xx

xeI x ,
12.0

1.0
cos

2

24

,  (1.2) 

Solution. Take 

       
12.0

1.0
)(

2 +−
=

xx
x . 

Then 

2cos
4

xeIJ x−=+=  . 

  The minimum of this J is obvious: .0=x  

  From theorem 1.1 we got the point of the global minimum is in set 

M={x: 𝛽(𝑥) ≥ 𝛽(0)} 

or 

1.0
12.0

1,0
2


+− xx

 , 

  The solution of this inequality is 

0≤ x ≤0.2 . 

  It’s not difficult to find the point of global minimum in this small interval by any known method. 

     We get the lower estimate (theorem 1.2) 

101.1101.01sup)0( −=−−=− 
x

J . 

  Value I(0) = -1.100 . We see I(x) for x = 0 is very close to global minimum. 

Example 1.2 

  Find minimum 

−−+
+−

−= xxx
xx

I ,2cos44cos
102

1.0
2

  (1.3) 

Solution: We take 

xxx  2cos44cos)( +−=  . 

Then  

.1,
102

1.0
2

=
+−

=+= x
xx

IJ   

  This solution is global minimum of Problem1 over set 

P = {x: β(x) = β(1)} 

or  

32cos44cos +− xx  . 



  We transform this inequality in 

-8sin4πx ≤ 0 . 

  We see P ={x: x<}. Therefore P=X*. That means (see Consequence 1) x =1 is point (and alone) of global minimum 

of the functional (1.3). 

Example 1.3 . 

  More full, we are demonstrating the new method on following simple functional. 

  Find the absolute minimum of the functional  

     I=2x4+x2-2x+1  on the set X*={x: x<} .    (1.4) 

   It is a simple example, which can be solved using well-known methods. For example, take the first derivative, make 

it equal to zero. Solve an algebraic 3-d order equation (it may not be a simple task) and then analyze the points so 

found with respect to maximum and minimum. 

  We shall try to solve this example by the above method as it follows from algorithm 1. 

 Let us introduce a series βi(x). As follows from Theorem 1.1 we have the sets Mi: 

1) Take β1=2x. Then }0:{havewefrom,0,12 1

24

1 ==++=+= xxMxxxIJ  . 

As we see the domain which contain a global minimum have become less in two times. 

2) Take β2= -x2+2x. Then 

}20:{havewefrom,0,12 1

4

2 ==+=+= xxMxxIJ  . 

Our interval contained a global minimum is only 0≤x≤2. 

  For given β2 we can use an estimation of the functional which follows from Theorem 1.2. 

011)2(sup1)(sup)()( 2

2 =−=+−−=− xxxxJxI
XX

 , 

where the point of supreme of β is 1=x


. 

 From theorem 1.3 we have the additional set M: 

}1:{)}()(:{ 33 == xxMorxJxJxM


. 

 As we see the set  }10:{32 == xxMMM , The global minimum of this problem is in the interval 0≤x≤1. 

3) Take 5.022 2

3 −+= xx . Then 5.02 24

3 −−=+= xxIJ  . From inf J we have 5.02,1 =x . 

4) Find for point x1 set M: 

}5.15.0:{,5.0 41 −=−= xxMx , 

}5.05.0:{,5.0 52 == xxMx  . 

  The estimation gives I(x )≥ 3/8 – 0 = 3/8 . 

  We see that the diameter of the set M= Mi decreases until reduces in the point 5.0=x . Therefore this point is 

one of the absolute minimum of the Problem 1 and I(0.5) = 3/8 . 

 



50. The geometric illustration of Theorem 1.1 is given in fig, 1.1 for single variable. The curves I(x), J(x), β(x), I(x)+0.5 

β(x) and point x  are drawn. There are the sets M, N, P.  P is set x, where  

)()( xx   , M is set X\P and N is set x, where )(5.0)()(5.0)( xxJxxJ  ++ . 

  We can see that N M.  

In fig.1.2 we see sets M, N, P for the case when I(x1,x2) is function of two variables x1 and x2. 

                  

 

                 Fig. 1.      Fig. 2. 

 

Fig.1.1. Geometric illustration of Theorem 1.1 for case of single variable. 

Fig.1.2. Sets M, N, P for case of two variable. 

2. About Convergence of Algorithm 1. 

 Consider condition of convergence **),(inf),(inf
8

xtoxandXxxJtoXxxJ
XxXx




  for Algorithm 

1. when we have the succession βi(x), I = 1,2,…  This succession gives the succession of the sets Mi, Ni and values of 

functionals )( ixJ . 

  The succession )}({inf ixJ  

For i →  is monotonous decreasing and bounded of bottom, that’s way it has a limit. If this limit equals one of 

lower estimates, that )()( *xIxJ =  . 

  Let us to consider now convergence of diameter d(M), d(N) of sets M= Mi, N= Ni for i→. 

This convergence is also monotonous decreasing and bounded of bottom: d ≥ 0. Therefore, it has a limit. 



  We have got the following simply criterion of convergence 

  Theorem 1.4. Assume, the point of the absolute minimum of functional I(x) over set X=X* is single. 

     If d(M)→0, than x=limM(i)=x*, i→. 

  In this case the set contained of point of global minimum M= Mi decrease in point. Therefore, this point is the 

point of the absolute minimum of Problem 1. 

  Let us take succession of function Ws(x), s =1,2,… . Take )(xi  as  

)(
1

xWc s

i

s

si 
=

=      (1.5) 

where cs is constants. 

We will take these constants cs from condition 

)](sup)(inf)([min xxJxI i
XX

ii
c

i +−= . 

  The value ∆I is difference functional from its lower estimate. Other words value ∆ show how much value )( ixI  

differs from optimum. We name this number ∆-estimate (delta-estimate). It is obvious that succession {∆i} is 

monotonous decreasing because every next sum (1.5) contains previous sum. It is also limited of bottom (∆i≥0). 

Therefore the succession {∆i} converge.  

  From destination ∆i  we get the following 

Theorem 1.5. If ∆i →0, then )(inf)(inf
*
xIxJ

XX
→ .       

Theorem 1.6. Assume X=X*, βi=ciβ(x), I(x), β(x) is continuous and β(x) is limited on X. 

Then, if ci→ 0 we have J(x)→ m = inf I(x) over X*.  

  Statement of Theorem 1.6 follows from continuous J(x). 

  This theorem may be useful for finding of the local minimum of I(x) by way of methods of successive 

approximations. Assume c1=1 and problem inf J(x) can decided simply. Because functional J(x) is continuous, we can 

wait, that small change of c gives small changing (moving) x . 

  Therefore x  is good the initial approximation for c2 < c1. It is known, that a good initial approximation is very 

important for speed of convergence. We come to x* by decreasing c to 0. 

  These criterions of convergence may be used for solutions Problem A, B, C, D (see §1,A). 

3. Modification of the Theorem 1.1 
 

  Over we have considered the case, when we are looking for the additional function  (x,y) such us the problem 2 

became simpler for solution. 

  But sometimes it's more comfortable to take such function J(x,y) that the problem ),(inf yxJ
X

 became easy for 

solution. 

 In this case Theorem 1.1. better to write as following 



Theorem 1.1'. Assume )(,
_

yxXX •  is the point of global minimum in Problem 2 .
     

                                                        
).(inf

_

yxJ
X

J=
   

 

Then  

1) The points of global minimum in Problem 1 are contained in the set 

   },:{)(
__

YyIJIJxyM −−= . 

2) The set 

   },:{)(
__

YyIJIJxyN ++=  

 Contains the better or same solutions. 

3) The set 

   },:{)(
__

YyIJIJxyP −−=  

 Contains worse or same solutions. 

 

This Theorem is correct if J = kJ1, where k = const > 0. 

4. Method of big steps in set of better solutions. Algorithm2. 
 

   From the Theorem 1.1 we can get the following  

Algorithm 2 (Method of big steps in set of better solutions) 

  Take any point x1 from X* and such function J1(x) that point x1  is its minimum. Find the set N1  of better solutions. 

Take from this set a point x2 and such function J2(x) that x2 is its minimum. Find the set N2 and so on. 

  It is obvious that ...
321
 NNN  . Let us suppose that result of this process is following - set Ni  become point 

xN . 

Theorem 1.7. Assume X* is open set, I(x), Ji(x) are continuously and differential (of Freshe) on X*. 

Then point xN  is a stationary point of the function I(x) over X*. 

Proof in Appendix 4o.           

Theorem 1.8. If in point xN  we have   

)],()(sup[
*

)()( xIx
X

NN
xIx −=−   

Then xN  is point of global minimum of Problem 1.                                                                     

Proof is in Appendix 5o. 

   If conditions of Theorem 1.8 is executed only in small sphere around point xN then xN  is point of local minimum of 

Problem 1. 

  The example for illustration of this method (for tests of constrained minimum) will be given in § 4 (remark 4.3). 



  We can get the direction in the set N, if we calculi a gradient of function in N. 

 The advantages this method with comparison of gradient method is big steps. When you are in set N, you have not a 

danger of to get worthier solution than given one. This can substantially decrease amount of calculation. 

5. Method of  - function for Problems with constrains 

A) Assume I(x) is function by its lower estimate over set X. The subset X*  is separated from X by functions 

qjxkixF
ji

,...,2,1,0)(,,...,2,10)( === ,   (1.6) 

where x - is n - dimensional vector of numerical values. 

  Take  -function as following (we have a sum for lower index i,j) 

)(),()(),(),( xyxxFyxyx
jjii

+=  , 

where i(x,y), ),( yx
j

  are functions of x,y, yY, .0),( yx
j

  

  Write J-function  

)(),()(),()(),( xyxxFyxxIyxJ
jjii

++=  .    (1.8) 

  Theorem 1.9. Assume exist x*X*, y is fixed. 

In other x  to be a point of global minimum of function I(x) over X* necessary and enough to exist of function  (x,y) 

such as  

0),()4,0),()3,)2),,(inf
*

),()1 =


= yxXoveryxXxyxJ j
Xx

yxJ  ,       (1.9) 

  The proof in Appendix 6o. 

 

Theorem 1.10. (The lower estimation) 

 Assume y is fixed, x is point of minimum (1.8) for conditions  0),( yx
j

 . 

Then ),( yxJ  is lower estimation of function I(x) on X*. 

Proof: On set X* we have 0,0 
jjii

F   (that is )0),( yx . Since over X* we have )(),( xIyxJ  . Theorem 

is proved. 

 Likely a common case for  - function we can get the sets 

}:{},:{},:{  =++== xPIJIJxNxM   

and in this case. 

  Freedom in choice of y we can use for improvement of estimation and decrease sizes of sets M, N. Remark only that 

)(yxx = and for every y corresponding  x  you must find  inf J(x,y), xX.  

Remark:  We can take -function  (1.7) in form 



 
= =


+=

k

i

q

j

x

i

jaxFax
1 1

)(2 )(
2

1
)( . 

It is possible to show for some conditions:  [I(x), j(x), Fi(x) are continuous, x is compact set, x* is close set and don't 

contain separated points; x*X* and exist], when a → ,  we have *, xxmJ =→ . 

B) Assume Fi(x) = 0 in (1.6) absent, i.e. the Problem is  

qjxxI
j

,...,2,1,0)(min,)( ==  

 For solution of this problem we can use following algorithm: 

1. Take any functions  (x,y) (it's may be less zero) and find the point )(yx of global minimum (one may be implicit 

form 0),( =yx  ) of general numerical function 

  += XonxyxxIJ
jj
)(),()(  .    (1.12) 

2. Solve equations 

qjxyxyx
jj

,...,2,1,0)(),(,0),( ===      (1.13) 

3. Select from these solutions such which satisfy inequalities 

        qjyx
j

,...,2,1,0),( = .     (1.14) 

 These are points of global minimum of Problem (1.11) because all request the theorem 1.4 is satisfy. 

  We can solve (1.13) by different ways. For example, find x from equation 0),( =yx  and substitute in the last 

equations (1.13) 

   qjyxyyx
jj

,...,2,1,0))(()),(( ==     (1.15) 

Find y from this system of equations. Select from these solutions such which satisfy inequalities  

   qjyyx
j

,...,2,1,0)),(( = ,     (1.16) 

or we can find y from 0),( =yx  and substitute in the last equations (1.13) and find x . 

  6. Application the method of  - functions to linear programming. 

  The Problem of Linear Programming is 

   mkbxaxcI
k

n

j
jkji

n

i
i

,...,2,1,0min,
11

=−== 
==

   (1.17) 

Here kkji
bac ,,  are constant. 

  Take ij
y= . Then equation (1.13) are 

    mkbxay
k

n

j
jkjk

,...,2,1,0)(
1

==−
=

    (1.18)  

    niyac
j

m

j
iji

,...,2,1,0
1

==+
=

     (1.19) 



  Selective from (1.18) l equations max),,( = lmlnl and l variables xj such that determinant 0kja . Find j
x~

from these l linear equations (1.18) (corresponded yk0). 

   If this solution don't satisfy inequalities (1.17), we take l other equations and repeat this procedure (process) while 

we find j
x~  which satisfy (1.17). If these equations absent, we take l -1 equations (1.18) and repeat process, than l - 2 

equations and so on, while we get l = 0. 

  If solution, which satisfy (1.17), absent that inequality (1.17) is conflicting (incompatible) and cannot be solved.  

  Assume that by using this procedure we find the solution j
x~ , that satisfy (1.17). Take in (1.19) all yj, which don't 

belong the taken questions (1.18), equal zero and find y from equation (1.19). If all 0~ 
j
y   then j

x~  is point of 

minimum of problem (1.17). If part of 0~ 
j
y , then we change corresponded equations (1.18) by other and repeat 

this process while get all 0
j
y . 

  We can suppose that this process makes all 0~ 
j
y . Inequality 0~ 

j
y  means that anti-gradient has direction into 

internal of the corresponding constraints. Because our problem and constrains are linear, anti-gradient, which has 

direction into constrains, will has this direction in any point of corresponding hyper plate (1.17). It means that this 

procedure will increase the amount of 0
j
y . 

  Example 1.4.  

  Find minimum of Problem 

   01,01,0,0,
212121

−−−−+= xxxxxxI .  (1.20) 

The equations (1.18),(1.19) are 

    
.01,0)1(,0

,01,0)1(,0

422422

311311

=+−=−=−

−+−=−=−

yyxyxy

yyxyxy
   (1.21) 

 Chose equations 01,01
21

=−=− xx . From solution of them we have .1~,1~
21
== xx  They satisfy (1.20). From the 

first column of (1.21) we get y1 - y2 = 0, and from the last column (1.21) we find y3 = y4 = -1. Inequality yi  0 is not 

satisfied. Change equalities by others 0~,0~
21
== xx . We get 01~~

21
== yy . Hence 0~~

21
== xx  is point of the 

global minimum. 

  Example 1.5. 

  Find point of global minimum in Problem 

     0,
2121
+−−= xxxxI . 

Solution. Write equations (1.18),(1.19) 

,1,0)(
21

yxxy +−=+  

From 0
21
=+ xx  we get 

21

~~ xx −= . From  -1+y = 0 we get y = 1 > 0. Sense any 
21

~~ xx −=  is optimal. 

7. Application of method  -function to quadratic programming. 

This problem is following: 

  mkbxaxxcI
kjkjji

n

j

n

i
ij

,...,2,1,0,
1 1

=−= 
= =

.       (1.22) 



  Assume that quadratic form in function (1.22) is positive. If don't consider constraints in (1.22), it is obvious the 

point of minimum in this problem is .0* =
j
x  If this point satisfies inequalities in (1.22), the process of solution is 

finished. In particular, we have this case when all bk  0. We consider not triviality case. Take 
jj
y= . Equations 

(1.13) and (1.14) are: 

  0,0;,...,2,1,0)(
111

==+==− 
===

kjk

m

j
lj

n

j
ijk

n

j
jkjk

yayxcnkibxay .  (1.23) 

  Later procedure is analogous of the Linear Programming.  

Example 1.6.   

 Problem are:  

    01,01,01,5.05.0
2121

2

2

2

1
−−+−−+= xxxxxxI .  (1.24) 

 The equations (1.23)  

   
0,0

0)1(,0)1(,0)1(

212211

2212121

=+−=+−

=−=−=+−−

yyxyyx

xyxyxxy
   (1.25) 

  Take the 2-nd and 3-rd equations. We get 1~~
21
== xx . The inequalities (1.24) are satisfied, but from two the last 

equations (1.25) for y1 = 0 we have 1~~
32

−== yy . It is contrary the request 0~ 
i
y . 

  Take the 1-st equation in (1.25). We have 
12

~1~ xx −= . Solve it together with equations 0~~,0~~
1211
=−=− yxyx  we 

get 02/1~~,2/1~~
2121

==== yyxx . Hence x1=x2=1/2 is point of global minimum. 

Appendix to #1. Proof of Theorems.  

1o. Proof of Theorem 1.1. Proof of: 

Statement 3. By subtracting the inequality )),((),( yyxyx    from )),(())((),()( yyxyxIyxxI  ++  we get 

PxIxI over)()(  . Statement 3 of the Theorem 1.1 is proved.  

Statement 1 of the Theorem 1.1 is obvious because X=M+P and PxIxI over)()(  , we have .* Mx  Statement 

1 of Theorem 1.1 is proved.  

Statement 2. By subtracting the inequality IJIJJJ ++ from  we get NxIxI over)()(  . 

Theorem 1.1 is proved. 

2o. Proof of Theorem 1.2. By adding the inequality 

)),(())((),()( yyxyxIyxxI  ++  and  ),(sup),( yxyx
X

 −−  over X, we get the estimate (1.2). 

3o. Proof of Theorem 1.3.   Statements 1, 3. By subtracting the inequality  ˆ  from  ˆˆ ++ II  we get II ˆ

over set P. Statement 1 follow from this. 

Statement 2. By subtracting the inequality  ˆ  from II ˆˆ −−  and multiply this result by -1, we get  II ˆ over 

N, The theorem 1.3 is proved. 

4o. Proof of Theorem 1.7.  Assume 
N
x is point of the minimum of the objective function J(x).Therefore 0)( =

N
xJ  

because J(x) is continuously and differential, 
N
x is single point Ni on set X* since this is (see Theorem 1.1') 



)()()()(
NN
xJxIxJxI ++ . 

This means that )]()([inf)( xJxIxJ
X

Ni
+= . The function I(x), J(x) are continuously and differential, hence 

0)()( =+
NN
xJxI . But 0)( =

N
xJ , therefore 0)( =

N
xI . Theorem 1.7 is proved. 

5o. Proof of Theorem 1.8. By subtracting the inequality 
N

  from  
NN
II −−   we get 

N
II  over set X*. The 

Theorem 1.8 is proved. 

6o. Proof of Theorem 1.9.  

Sufficiency. From "1)" of (1.9) we have 

jjiijjii
FIFI ++++  . 

From this and "4)" (1.9) we get IFI
jjii
++  . Look it inequality over X*. On X* we have 0,0 =

jjii
F   

hence )()( xIxI  . Because *Xx  hence x  is the point of global minimum of I(x) on X*. 

Necessity. (Method of designing). Assume that Xx *  exists. Design  (x,y) following way. Take *on0 X
i
 and 

take functions 0, 
ji

  such us  *\)( XXsetonmxJ  . Then we have as the result of our design 

0,0,),(inf)( ***

*
==


 j

Xx
XxxJxJ . 

The theorem 1.9 is proved. 

§2. Method of combining of the extremes. 

  Let us to have the problems: 

Problem 1    ** ),(inf)( XxxIxI = ; 

Problem  2 XxxxIxJ += )],()(inf[)(  ; 

Problem 3 .),(sup)ˆ( Xxxx =   

  Assume that all points xxx ˆ,,*  are exist. 

Theorem 2.1. Let X=X*, then  for every couple )ˆ,(
ii
xx which satisfy the condition 

ii
xx ˆ=  we have  

                                                                   *ˆ
iii
xxx == . 

 Proof . Let 
ii
xx ˆ=  Then 

   )()()()()()()(sup)(inf
iiiiii
xIxxxIxxJxxJ =−−=−=−  . 

 But with other side from Theorem 1.2  we have IxxJ inf)(sup)(inf −  . That is )()( *xIxI
i
 . As x* is point of 

global minimum and X=X* hence must be only )()( *

ii
xIxI = . As far as 

i
x  and *

i
x exist we can find the point of 

minimum *

i
x such that *

ii
xx = . Theorem 2.1 is proved. 

Theorem 2.2. Let X=X*. If exist at least one of the couple )ˆ,(
ii
xx  such that 

11
x̂x = , then in every point *

i
x we have 

1) 
iiii
xxxx == ** )2,ˆ . 



Proof.  1. Assume the contrast: *

ii
xx  . Than summarize )ˆ()()()()( **

iiiii
xxxandxIxI  ==   

     we get )()( *

ii
xJxJ  . This contrast )(inf)( xJxJ

i
= . 

2. Add )ˆ()()()()( **

iiiii
xxxandxJxJ  ===  we get )()( *

ii
xJxJ = , hence 

ii
xx =* . Theorem  

    2.2 is proved. 

 

 From Theorems 2.1, 2.2 we have 

Consequence: 

 If we want to find all points of minimum of Problem 1 it necessary and sufficiently to find all corresponding couple 

)ˆ,(
ii
xx . 

  We shall call the Problems 1 and 2 equivalents if all correspondent points of minimum of these Problems are 

coincided.  

  From Theorem 2.2 we have: 

1. For equivalence of Problems 1, 2 is sufficient to exist one couple such that 
ii
xx ˆ= . 

2. Let exist  -functional and although one of couple )ˆ,(
ii
xx  such that 

ii
xx ˆ= . 

   Then any points of minimum of Problem 2 and point of maximum of Problem 3 is point of minimum of Problem 1, 

and back, any point of minimum of Problem 1 is point of minimum of Problem 2 and point of minimum of Problem 3. 

  Remarks: 

1. If )(inf)(infthen,0)( xIxJx == . 

2. If xx ˆ= , then the lower estimate (1.1) in §1 coincide with infimum of the functional I(x). 

  From consequence 1 §2 we have the following 

Algorithm 3. (Method of combining the extremes) 

 Let us take some bounded functional  (x,y) where y is an element of the set Y. We solve this problem  

*)],,()(inf[ XxyxxI +   

and find the point of minimum 

)(
11
yxx = . 

From  

),(sup yx  

we find  

)(
22
yxx = . 

After this we equate 

    )()(
21
yxyx =     (2.1) 



and from this equation of the combination of extreme we find the roots yi.   

  These roots are the points of minimum for Problem 1: 

)()(
21 ii
yxyxx ==  

  Since the Problem of finding of minimum is reduced to Problem of finding at least one root of equation of the 

combination of extremes (2.1). 

  The exist and difficulty of finding of roots depend from choose of  -functional, from freedom of its deformation, 

which give the "y" relation. 

  Note that is differ from the regular method of finding of minimum. In the usual method we take partial derivatives, 

equal its zero, get the set equation and from them we find only the stationary (extreme) points. They may be points 

local minimum, maximum, or inflection. By this method we find points of global minimum. 

  Thus, we find the connect two various (different) problems. 

  The existence of solution in equation of the combination of extremes is sufficient condition for the existence of 

absolute minimum of functional in Problem 1. 

  The mathematic has good achievements in the field of existence of solution of equations. And equation (2.1) give 

connection between these problems and give some opportunity in solving of optimal problems. 

 Note also that equation (2.1) not requests that functional was continuous and differential function, hence it has 

wider domain for application. 

 If point of minimum cannot be getting in explicit form than we can write this equation in form  

0),(,0),(
21

== yxyx  ,                                           (2.1') 

where function 1, 2 are got from 

),(sup),,(inf yxyxJ
XX
 . 

Example 2.1. Find a point of minimum of functional 

−+−+= xxxxI ,122 24  

Solution: Use algorithm 3. Take 

xyx 22 +−= . 

Than 

1)1(2 24 +−+=+= xyxIJ  . 

Denote x2=w and substitute in J: 

𝐽 = 2𝑤2 + (1 − 𝑦)𝑤 + 1. 

Find point of minimum this functional 

                                              )1(
4

1
,0)1(4 2

1
−===−+= yxwywJ

w
 



 and point of maximum functional : 

                                           yxyxxyxx
x

/1,022,2)(
2

2 ==+−=+−=  . 

Equate 
21

to xx  

)1)(2(4,
1

)1(
4

1 223

2

2

2

2

1
++−=−−=−= yyyyy

y
yxx  

 This equation has only alone root 2=y . Since 
2

11
==

y
x . 

§3. Remark about -functional 

A) Let us take  
     )(]1)([)( xIxx −=                                                     (3.1) 

then 

)()()( xxIxJ = . 

  This form of common functional is sometimes more comfortable because we can chouse the multiplier to I(x) 

which make J(x) simpler. 

  Using  our results about -functional for this case we get following: 

If X=X* and we finding the point of global minimum Problem 2: 

     )]()([inf)(inf xxIxJ
XX

=                             (3.2) 

than 

1) Set 

},:{ XxIJIJxM −−=  

   contains the point of global minimum of Problem 1; 

2) Set 

},:{ XxIIIIxN ++=   

contains the better or same solutions than x  (that is over N, we have )()( xIxI  ); 

3) Set 

},:{ XxIJIJxP −−=  

contains the worse or same solutions than x (that is over P, we have )()( xIxI  ). 

 

  All these statements follow from (3.1) and Theorem 1.1. 

Lower estimate (from Theorem 1.3 and (3.1) look as  

    )(supinf)( IJJxI
XX

−− .                                           (3.3) 



Condition of equivalence of Problem 1 and 2 (theorem 2.1) in this case (X=X*) is: 

x and x̂ , which are founded from problems  

)]()([sup)(inf
8

xIxJandxJ
XX

= , 

must equal respectively.  

  Algorithm 3 (Method of combining the extremes) is used for this case without change. 

 

B) However, for this case we get some new results.  

Let define functional (x,y)  0 over set XY. We call it as -functional. Take functional 

),()(),( yxxIyxJ =  

Theorem 3.1. 

Assume X=X*, x is point of global minimum of Problem 2: 

)()(,),(inf xxIJwhereXxxJ = , 

Then: 

1) Set 
}0:{  = xP  

   contains worth or same solutions of Problem 1 (that is )()( xIxI   over P); 

2) Set  

}0:{  = xN  

  contains better or same solution of Problem 1 (that is )()( xIxI   over N); 

3) The point of global minimum is in set }0:{,\  == xPwhereXM
o

. 

Proof: 1. From inequalities    0,II  we have      1/,/  II . That is II  . 

2. From inequalities   0,II  we get 1/,/  II . That is II  . 

3. Because X=M+P and 0
o

PM , we have 
o

PXM −= . Theorem is proved. 

Theorem 3.2. Assume 0sup 
X

. Then we have the lower estimation 

    Xon
J

xI
sup

)( = .     (3.4) 

If  Yyforyx
X

 0),(sup , we have the lower estimate 



   


















X

Y X

J
xI

sup
sup)( .     (3.4)' 

Proof: 1) For written conditions from  II  we got 
X

JIandJI sup//  . 

2) Take this estimate by y, we get expression (3.4)'. 
 

Example 3.1. Find the lower estimate for functional 

   −+−= − xexxI x 2)1(2 )1cos( . 

Take 

     
2)1( −−= xe . 

Then 

     1cos2 +−= xxJ . 

If it is obvious the point of minimum this functional  

    1sup,01,0 === 
X

x . 

Use the estimate (3.4) we get 0)( xI . But for x = 0 we have I(0) = 0. That way x = 0 is point of global minimum. 

§4. Application  - function to the multi-variable nonlinear problems of constrained 

optimization and to problems described by regular differential equations. 

A) The first problem is following. Find minimum of functional 
      I=fo(x) ,      (4.1) 

Where x-n-dimensional vector, which satisfy independent equations 

     nmixf
i

== ,...,2,1,0)( .    (4.2) 

Functions f(x) is defended in the open domain n-dimensional vector of space X. The admissible set X* separate from 

X by equations (4.2). 

  Let us take some functional  (x), such that to find 

     *

0
on)]()(inf[ Xxxf = . 

It is easier to solve. 

 Then from solution of Problem 2 in accordance with theorems of §1 we get the following information about 

Problem 1: 

1) The point of global minimum is in set )}()(:{ xxxM  = ;  

2) The set }22:{
00

 ++= ffxN  contains better and same solutions (that is Nxfxf on)()(
00

 ); 

3) The set )}()(:{ xxxP  =  contains worth and same solutions (that is Pxfxf on)()( 00  ; 

4) If  X=X*P, that x is point of global minimum of problem 1 (consequence 3 of §1). 
 



Let us assume we widen the set X* for simplification of solution. For example, we reject the part of constrains (4.2). 

Then we have  

5) If  =MX * , then )(xJ  is lower estimation f0(x) on X* (consequence 5, §1). 

  It is more comfortable some times to take the suitable J(x) at first and find the point minimum of problem inf J(x) on 

X*. 

 Then the corresponding sets will be (from theorem 1.1') 

  }:{ IJIJxM −−= ,  }:{ IJIJxN ++= ,  }:{ IJIJxP −−= . 

If we solve the problem *)(sup)ˆ( XXonxx =   we get the additional lower estimate 

    )ˆ()()()(
00

xxxfxf  −+ , 

(theorem 1.3) and set 

  }ˆˆ:{
00

 ++= ffxM ,  }ˆˆ:{
00
ffxN −−=  ,  }ˆˆ:{

00
 ++= ffxP . 

(theorem 1.4). 

  Take series i we can get the solution of one from Problems of §1 or to facilitate the solution of Problem 1. 

  The example for case X*=X was over (see Examples 1.1-1.3). Explain by simple examples (how you can apply the 

method -functional for case, when X*X that is problem with constrains. 

Example 4.1. Find minimum of functional  

0122 =−+= yxonxI  . 

Take any admissible point, for example  )(0,1
00

xJandyx ==  functional as 

( )2
01
xxJ −= . 

  The point of minimum of this functional is obvious 
0
xx = . The set M, containing the point of global minimum, is 

( ) 2/32/311,
2

11
−−−−−− xorxxisthatIJIJ  

 The boundaries of this inequality together with admissible subset (circle) draw on fig.1.3a. We see the point of 

absolute minimum is in left half of circle. 

  Take now the admissible point 0,1
0

=−= yx  and J -functional in more common case as 

( ) 0,
2

02
−= cxxcJ . 

 Then M set is  

122 −++ xccxcx . 

Take c = 0.5. Then we get 1x  (fig. 1.3b). 

  Set M contain only two admissible point: x1=1 and x2= -1. But point x1=1 from the J1 cannot be the point of absolute 

minimum. Since the point of global minimum is 0,1 =−= yx . 

 



                                

      Fig. 1.3 

Example 4.2.  Find the point of global minimum of functional with constrain   

( ) 01ln,1222 =−−+−+−= xxyyyxxI . 

 Take J functional 

( ) ( )2
0

2

0
yyxxJ −+−= . 

The set M is separated by inequality 

( ) ( ) axxyyorIJIJ +−−−− 1212,
00

, 

where 

2

00

2

00
222 yyxxa −+−− . 

  Take the admissible point 0,1
00
=−= yx . Then 

    








−=
2

1

2

1
:, xyyxM       (Fig.1.4). 

 From drawing we see M is small domain and find the point of global minimum no difficult. 

 

                                  

 

    Fig. 1.4,         Fig.1.5. 

 

Example 4.3.  Given functional and constrains is 

yyxyxI ==+= 2ln,22  

Take 

( ) ( )2
0

2

0
yyxxJ −−−= , 



where couple x0, y0 is admissible point. 

  The set N is separated with according Theorem 1.1 by inequality IJIJ ++ , that is  

( )  ( )  211
2

0

2

0
−++−− yyxx . 

  This is interior of the circle (fig.1.5). 

 Assume that a center of this circle is located in the point A. The set N intersect with admissible curve ln x = y2 - y. If 

we take a point x0, y0 from this intersection, we will descent along this curve whole the set N become by point. This 

take place in point B, where the tangent to permissible curve has the angle  -450 (because the center of the circle is 

located from point x0,y0 from  -1, -1, that is the angle +450, (fig. 1.5). Any moving from this point will return us to it. 

  May be shown that the point B is the point of global minimum.  

  Take into consideration when we have used the methods of  -functional we have not used in continuously and 

differ of functional (4.1) and constancies (4.2) unlike from known methods (for example, theory of extreme 

functions).  

B) Consider how we can apply the methods given in §1 to optimization problems are described by regular differential 

equations. Below we write the statement of problem, which we widely use in future.   

  Assume that the moving of object is described by set of independent differential equations 

   ].[,,...,2,1),,,( 21 ttTtniuxtfx ii === ,    (4.3) 

where x(t) is n - dimensional continually piece-differential vector-function of the phase coordinates, xG(t); u(t) is n - 

dimensional function which continuous on T except the limited number of point where it can have discontinuities of 

the 1-st form, uU is an independed variable. Boundary values t1, t2 is given, x(t1)G(t1), x(t2)G(t2). 

  The aim function is     

   )(),(,),,(),( 2211021
2

1

txxtxxdtuxtfxxFI
t

t
==+= .  (4.4) 

  Functions F(x1,x2), fi(t,x,u), i = 0,1,…,n are continuous over TGU. Set of continuous, almost  

everywhere differentiable functions x(t)G(t) we denote D. Set of pies-continuous functions x(t)U, we denote V. 

Set of couple x(t), u(t) which satisfy these requirements and almost everywhere comply with equations  (4.3) we 

shall call admissible and denote Q,  Q  DV. 

  Consider the problems: 

a) Find the couple u*(t), x*(t)D, which give the minimum of function (4.4) (Traditional statement). 

b) Find sup-set N  GUT such that any admissible curve from N we have I(x)  c, where c is constant. 
c) Find the lower estimate of I(x) over Q. 

 

Take the function 
2

1

),,(
t

t
dtuxt , where  (t,x,u) is a definite and continuous function on TGU. 

  Theorem 4.1. Let us assume that F 0 and Problem 2 is solved. That means 

    QuxJuxJ on),(inf),( = , 

where 



     += 2

1

)],,(),,([ 0

t

t
dtuxtuxtfJ  . 

Then: 

1) Set 

   },22:,,{ 00 TtffuxtN ++=   

   contains the same or better solutions of Problem 1. 

3) Set  

     },:,,{ TtuxtP =   

   contains the same or worse solutions of Problem 1. 

 

Proof: 1. On set Q from N we have 

    dtfdtf
t

t

t

t
)2()2(2

1

2

1
00  + + . 

Subtract from this inequality following    

    dtfdtf
t

t

t

t
)()(2

1

2

1
00  + + ,                                                       (4.5) 

we get over Q from N 

dtfdtf
t

t

t

t 
2

1

2

1
00 . 

2. By analogy with above, subtract from inequality  

      dtdt
t

t

t

t 
2

1

2

1

  

the inequality (4.5) we get over Q from P 

dtfdtf
t

t

t

t 
2

1

2

1
00 . 

The Theorem 4.1 is proved. 

  

     Sets N, P not empty. They contain at least one curve from Q. This curve is .)(),( Qtutx   

  If we solve the additional problem 

      
2

1

sup
t

t
Q

dt , 

we get additional information about sets N, P and lower estimate. It is following 

   Theorem 4.2.  Let us assume F  0   and solved the Problem 

    
2

1

on),,(sup
t

t
Qdtuxt . 



Then 

1) Set 

    },ˆˆ:,,{ 00 TtffuxtN −−=   

 contains the same or better solutions: 

2) Set 

    },ˆˆ:,,{ 0 TtffuxtP ++=   

 contains the same or worse solutions. 

  Here  )(ˆ),(ˆ),ˆ,ˆ,(ˆ
00 tutxuxtff =  is curve of extreme  

     
2

1

on)(sup
t

t
Qt .      

Proof: 1. Over Q from N we have 

     − − 2

1

2

1

)ˆˆ()( 00

t

t

t

t
dtfdtf   

Subtract from this inequality the following 

      
2

1

2

1

ˆt

t

t

t
dtdt  , 

we get 

dtfdtf
t

t

t

t 
2

1

2

1
00

ˆ̂
. 

2. By analogy, subtract  dtdt
t

t

t

t 
2

1

2

1

ˆ̂
 from  

     dtfdtf
t

t

t

t
)
ˆ̂ˆ̂

()(2
1

2

1
00  + +  

we get 

      dtfdtf
t

t

t

t 
2

1

2

1
00

ˆ̂
. 

The Theorem 4.2 is proved. 

 

Theorem 4.3. (Lower estimation). 

Assume F  0, the ends of x(t) are fixed,  (t,x,u) is defined and bounded on GUT. 

Then there is lower estimate of Problem 1: 

   dtuxtuxtuxtfuxI
T

)]ˆ,ˆ,(),,(),,([),( 0  −+    (4.6) 

Proof:  Subtract  T T
dtdt  sup from inequality  

     dtfdtf
T T

)()( 00  + +  



we get (4.6). The theorem 4.3 is proved.  

 

Consequence 1: Couple ux,  is curve of absolute minimum of Problem 1 over set N. 

Consequence 2: If set PTGU (or accessible) than ux,  (or  ux ˆ,ˆ ) is curve of global minimum of problem 1 over Q. 

  Similar results we can get for case, when F  0 and ends of x(t) can move. 

Example 4.4. Assume the problem is described by conditions: 

  .0)1(,1)0(,1,,)(
1

0

2 == =+= xxuuxdtexI u   

Use the theorem 4.1. Take ue+−= . We get the problem 

   .0)1(,1)0(,1,,
1

0

2 == == xxuuxdtxI   

Its solution is .10,1, −=−= tutx  

 Find set P:  1,. 1  − ueeisThat u . 

 But value u < -1 is not acceptable. Since P is cover all admissible set points t,x,u. That way tx −= . 

Is the curve of global minimum (see Consequence 2). 

Example 4.2.  Find of minimum in problem 

  .0)2(,1)0(,1,,)5.0(
2

0

2 == =+= xxuuxdtxxI   

We have here undifferentiated function in integral. Known methods us variational calculation or principle of 

maximum are not been used. 

  Change this problem following "good" (easy) problem: 

  0)2(,1)0(,1,,5.0
2

0

2 == == xxuuxdtxI   

and find 

     L
tx )(

sup . 

  The solution is shown in Fig. 1.6. 

                                               

     Fig. 1.6. For Example, 4.5. 

 



 By according the theorem 4.2  

     }:{ xxxP = , 

that means set P cover all accessible domain. Since obtained, solution is curve of global minimum of Problem 1. 

5. Method of  - function in minimizing sequences 
 

A) The sequence {xs} such that  )(inf)( xIxI
s

s →
→

 on the set X* is named as a minimizing sequence (for 

Problem 1). 
   We must design these sequences in the successive approximation methods and in case, when extreme is 

absent in an allowable (admissible) subset. 

Theorem 5.1. Assume  (x)  0 on X* and there exists sequence {xs}X* such, that 

   XsJxJ s onforinf)( →→     (5.1) 

Then: 1) *)(inf)( XonxImxI
s

s =→
→

; 

2) Any sequence {xs}X, which satisfy (5.1) or JxI
X

s inf)( → , minimize I(x) on X*, minimize  

   and  J(x) on X. 

 Proof: 1. Because  (x)  0 on X*, we have .infinfisThat).(inf
*
JJxIJ

XXX
  From {xs}X* and (5.1) we 

have that 

     IJ
XX *
infinf = .      (5.2) 

That is I(xs) → m. 

2. From (5.1) and (5.2) we have the statement 2 of the theorem. 

3. From mxI
s

s
→

→)(  and (5.2) we have XsJxJ s onforinf)( →→ . Theorem is  

    proved. 

Remark. The requirement  (x)  0 on X* of the theorem 5.1 we can change by the requirement 

*on0sup
*

X
X

   because from sup   0 on X* we have (x)  0 on X*. 

  Theorem 5.2. Assume there exist the sequence {xs}X* such that 

  *)or(onsup)(and*)or(on)(inf)( XXxXXxJxJ s
s

s  →→
→

 (5.3) 

Then this sequence is minimized. 

Proof: From  supinf)(thatgetwesup)(andinf)()( −→→→+ JxIxJxxI ssss . Because 

 supinf)(*}{supinf)( −=→− JmxIhaveweXxexistthereandJxI sss .    Q.E.D. 

Remark: From (1.1) and (1.1') we see that X and X* in (5.3) we can take in any combinations. 

B) Let us consider a case now, when we have both a sequence of elements {xs} and a sequence of functions {i 

(x)}. 



Theorem 5.3. In order that a sequence *}{ Xxs   minimize function I(x) on set X*. It is sufficient that there exist 

a sequence of functions {i (x)} such that 

(1) i (x)  0 over X* for all i; 

(2) There exist numbers i
i

i
X

i qqJq
→

== lim,inf ; 

(3) J(xs) → q  or  I(xs) → q  if  s → . 

  This theorem may be proved easy, because q = inf I over set X*. 

From theorems 2.1, 2.3 we have next statement: 

  If there exist one sequence which satisfy theorem 2.3 than any other sequence which belong to set X,  

Xxs }{ and satisfy the condition I(xs) → q  or J(xs) → q  is minimize for Problem 1. 

Appendix. 

1. Operations with signs inf and sup. 
  Below there shown the characteristics of signs inf and sup, which can be useful for solution of problems. The 

proof is simply and no given. We assume that are shown constrains have place in domain of definition of 

function. 

.0)(if
)sup(

1

)(

1
inf.4

),(inf)]([inf.3

.0if)(inf)(inf

;0if)(inf)(inf.2

).(inf)](sup[),(sup)](inf[.1

=

+=+

=−=

==

−=−−=−

xf
xxf

xfcxfc

constcxfcxcf

constcxfcxcf

xfxfxfxf

 

5. If  )(tx  can have breaks and ))(,( txtf  has integrality then 

    dtxtfdttxtf
t

t
x

t

t
tx

),(inf)](,[inf 2

1

2

1)(
= . 

6. Assume f() is monotone function,  /f  is continuous. Then 

  ,0/)](inf[)]([inf =  fifxfxf
X

 

   0/)](sup[)]([inf =  fifxfxf
X

. 
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