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Abstract. Quantum gravity traditionally begins with path integrals for four dimensional
spacetimes, where the subtlety is in smooth structures. From a motivic perspective, the same
diagrams belong to ribbon categories for quantum computation, based on algebraic number
fields. Here we investigate this divide using the principle of the neutrino CMB correspondence,
which introduces a mirror pair of ribbon diagrams for each Standard Model state. Categorical
condensation for gapped boundary systems extends the modular structure to encompass Kirby
diagrams.
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1. Introduction
In motivic gravity we study the localisation to four dimensions from a categorical perspective,
which is radically different from the traditional one. From this viewpoint [1][2], physical axioms
become increasingly complex, beyond the knot and ribbon categories [3][4][5] in dimension
3, which underlie topological quantum computation for anyon and gapped boundary systems
[6][7][8][9][10]. We permit additional time directions, since every string in a quantum circuit
is permitted to twist in its time domain, prior to the consideration of a global spacetime. In
six dimensions, three times for mass generation are localised to a single time coordinate by the
neutrino CMB correspondence [11][12], which associates one right handed neutrino mass to the
present day CMB temperature. This thermal gravity is potentially evidenced by experiments
on the topological thermal Hall effect [13][14].

In the gauge theory setting, the Jones polynomial appears [15] with Wilson loops for the
Chern-Simons action. Inspired by a holographic principle for a computational mirror, or
Majorana holography [16], we study Witten’s tower of dimensions [17][18] using categorical
algebra and number theory. The Jones invariant [19] is interpreted [17] in 4D using electric
magnetic duality, and this is extended to 5D with categorification for Khovanov homology
[20][21].

Electric magnetic duality is associated to the dyonic structure of ribbon particle states, which
appear as mirror pairs. In the basic scheme, B3 diagrams in S3 acquire a U(1) ribbon twist to give
an SU(2)× U(1) compactified Minkowski space as an emergent feature of discrete SU(2) braid
group representations. Since the gauge groups determine the spacetime, a complexification of
the Chern-Simons action immediately suggests a six dimensional setting. Motivic gravity starts
here [2] with two copies of CSFT: one for QCD and one for the IR scale of neutrino mass [22][23].

Topology change is morally a topos theoretic concept [24]. Exotic structures on 4-manifolds
are defined by the integral form and associated knot and link diagrams [25]. In quantum topos



theory, real analysis is not a good starting point for emergent geometries in low dimensions, and
one expects the axioms to merge algebraic number theory and combinatorics, just as Feynman
amplitudes are evaluated in a ring of periods rather than C. The appendix shows how algebraic
number theory is linked to basic observables in quantum mechanics. We insist that observables
dictate algebra, in order to minimise the analytical baggage that must be carried around, and
analysis should be re-axiomatised in quantum logic.

The associahedron [26][27] polytope is an axiom for an n-category. In this paper we explain
how the associahedra are closely related to knots. The connection between instanton moduli
and knots is studied using fermion condensates [28], both for (supersymmetric) QCD and an IR
counterpart, which we attribute to neutrino gravity [2]. Knots are extended to ribbons, which are
the building blocks of template diagrams. All diagrams are interpreted category theoretically,
focusing on Fibonacci anyon categories and condensation algebras, which we relate to the Kirby
calculus.

The essential claim is that mass generation in gapped boundary systems has an abstract
analog under the neutrino CMB ansatz, which is the true origin of inertial mass in quantum
gravity. Here we do not discuss entanglement measures, black holes or AdS geometries, although
obvious connections exist.

2. Towards 4-manifolds
2.1. The golden ring and Fibonacci categories
Experimental precision does not actually require R or C, except in axiomatic questions of
computability. Like the adeles, where R appears as the infinite prime, we imagine real manifolds
emerging in infinite dimensional computations, whereas a qudit state space makes do with
algebraic numbers, canonically selected by the quantum mechanical question.

Consider the various triangles in the pentagram of the appendix. The little blue triangle
below the bisected top spike of the pentagram is equivalent to the top blue right angled triangle,
with an angle of 18◦ = tan−1(φρ)−1, with φ = (1 +

√
5)/2 the golden ratio and ρ =

√
φ+ 2 the

diagonal of the golden rectangle. The little 18◦ bisects the 36◦ at the red chord, which is a piece
of a smaller red pentagon, initiating a discrete zoom-in quasilattice of pentagonal coordinates
for the plane. In [29] it is shown that the 8 dimensional rational half integers Z8/2 may be
embedded in C using the golden ring Z[ρ] (see the appendix). One basis of R ⊂ C is given by

x = x0 + x1φ+ x2ρ+ x3φρ (1)

for integral xi. Eight dimensions, in the form x+ iy, is an obvious setting for the e8 lattice and
its intersection form.

There are four types [30] of Fibonacci ribbon category that use golden geometry: two based on
minimal models and two for the affine chiral algebras G2,1 and F4,1. Note that G2,1×F4,1 ⊂ E8,1.
The affine VOAs correspond to a central charge

c =
k dim(g)

k + h∨
(2)

at level k, and in general the deformation parameter u is given by

u−1 = eπic/2. (3)

For φ(u2 + 1) = −u, we have the usual Fibonacci objects I and X with the quantum dimension
of X equal to φ. The Yang-Lee model at the tenth root u = eπi/5 is the representations of the
model M(2, 5) with c = −22/5. In the modular categories, for a unitary VOA, the ribbon twist
is given by the conformal weight. The modular matrices here take the form

S = ρ−1
(

1 φ
φ −1

)
, T = u1/6

(
1 0
0 u2

)
. (4)



For G2,1 at u = e3πi/5 the phase u1/6 in T is still golden, and similarly for F4,1.
If we wanted a basic deformation of ω = (−1 +

√
−3)/2 for the Eisenstein integers, we would

require c = 6, which appears in a (4, 4) superconformal theory for Mathieu moonshine.
We do not use gauge theory to evaluate knot invariants. The Jones or HOMFLYPT

polynomials are evaluated using skein relations, and the Khovanov complex is defined as usual
using smoothings. Since our link strands are not geometric in the classical sense, what matters
is the information content, or complexity, of a diagram.

2.2. The role of e8
A 4-manifold is characterised by its integral form [25], and a key component in the classification
of integral forms is the e8 form

E8 =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 1
0 0 0 0 1 2 1 0
0 0 0 0 0 1 2 0
0 0 0 0 1 0 0 2


. (5)

But an e8 manifold cannot be smooth because the form does not diagonalise over the rational
integers. It does, however, diagonalise [31] over the golden integers Z[φ], where φ = (1 +

√
5)/2

is the golden ratio. As is well known, E8 is positive definite, even and unimodular for closed
manifolds. Let σ(Q) be the signature of the form Q and r(Q) its rank. All such quadratic forms
take the form [25]

Q =
σ(Q)

8
E8 ⊕

r(Q)− |σ(Q)|
2

(
0 1
1 0

)
, (6)

where the 2×2 factors are forms for either the torus T 2 (for H1(T
2,Z2)) or S2×S2 in dimension

4. This ambiguity will matter later on.
One important smooth space, which contains a topological component that cannot be

smoothed, is the Kummer (or K3) surface, with its 22 dimensional form

QK3 = E8 ⊕ E8 ⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
. (7)

The construction uses a connected sum of three copies of the 4-manifold S2×S2, corresponding
to the triple of σX flip matrices. A quotient of this sum by a certain embedding, related
to the Kummer surface, yields a fake version of R4, wherein a theorem of Freedman [32]
characterises good copies of R4 by the conditions: simply connected, non-compact, without
boundary, H2(M,Z) = 0, homeomorphic to S3 × [0,∞). It turns out that there are an
uncountable number of inequivalent smooth structures on R4, and this complexity is unique
to dimension 4 due to surface knotting.

The elliptic genus for the K3 surface [33] is

ZK3(τ, z) = 8[(
θ2(τ, z)

θ2(τ, 0)
)2 + (

θ3(τ, z)

θ3(τ, 0)
)2 + (

θ4(τ, z)

θ4(τ, 0)
)2], (8)

for θi(τ, z) the Jacobi theta functions. Nowadays it is written in terms of dimensions of
irreducible representations [34] for the Mathieu group M24, in Mathieu moonshine [35] and



its umbral generalisation [36]. Moonshine for the Monster group uses the j-invariant, which is
analogously defined by

j(q) = 32
(θ2(0, q)

8 + θ3(0, q)
8 + θ4(0, q)

8)3

(θ2(0, q)θ3(0, q)θ4(0, q))8
. (9)

The associated Eisenstein series E4 counts vectors in the shells of the e8 root lattice. The
lattices underlying modular forms are fundamental. Whenever we see a triplet of terms, as in
(9), we think of some form of triality. In the Jordan algebra J3(O), triality acts on the three
off-diagonal copies of O, and this extends to generalised 3× 3 algebras for ribbon categories.

How about the physics? As in table 1, the exact gauge symmetries U(1)Q and color SU(3)C
are directly associated, respectively, to ribbon twists and a triplet of ribbon strands, so that
the 8 negative electric charges for {ν, e−, d, u} lie on the vertices of a 3-cube [37][38], whose
directions label ribbon strands. Such a 3-cube, in figure 1, determines a basis for the octonions O.
Complexification brings in antiparticles, for a total 4-cube of charges, and complex conjugation
is charge conjugation in the C ⊗ O ideal algebra, which extends to crossing flips in the ribbon
picture. A 7-cube introduces magnetic data with 7-stranded ribbon diagrams, and in general
the extended M theory dimension equals twice the number of ribbon strands.

Electroweak symmetries are broken back-to-front: the Higgs mass emerges from the inverse
see-saw rule [2], which pairs the Planck scale and IR neutrino mass scale at 0.01 eV. There is no
need to introduce further local states beyond the SM, because the new RH neutrino is associated
to a cosmological scale.

2.3. The Kirby calculus and electric charge
An axiomatic approach to invariants constructs state sums from categorical data. Barrett et
al [39] consider a functor from a spherical fusion category into a ribbon fusion category for the
2-handlebody of the 4-manifold, in order to define smooth invariants by weakening the sliding
law in a ribbon category. A 4-manifold is determined up to diffeomorphism by its 2-handlebody
attachments, where a 2-handle piece is essentially a framed knot in the S3 boundary of the
0-handle.

For a 2-handle in 4 dimensions, the framing classes are characterised by π1(O(2)) = Z [25],
whereas in 3 dimensions the only framings are 1 or θ1/2, where θ represents a full ribbon twist.
This distinction is crucial here, because quantised electric charge is given by ribbon twists.
Three dimensions only permits two charges, whereas physics requires three values 0,±1. Often
we denote these charges [1] by the cubed roots of unity 1, ω and ω, when θ behaves like a phase.
To obtain this Z3 we have to go to four dimensions, and quotient out by the natural 3Z: a triple
of half twists θ3/2 equals −1 under the cubed root representation, while B2 = Z represents −1
by a single half twist. In other words, electric charge appears with the holographic extension of
2 + 1 dimensions through the Kirby interpretation of diagrams.

A Kirby diagram [40] of knots and balls accounts for all the attachments in R3 for a 4-manifold
(there are really no real numbers; just diagrams). A single knot in the Kirby diagram will cancel
a 1-handle (two balls in R3) if it has ends attached to each S2 boundary. In an Akbulut diagram,
the balls of a 1-handle are replaced by marked circles, so that the entire 4-manifold is specified
by a diagram for a ribbon fusion category [5]. Let us stress, we wish to replace the S2 ∪ S2 by
S1 ∪ S1, introducing gapped boundary structures.

To start with, we consider modular ribbon categories, which have a finite number of
isomorphism classes of simple objects, and an invertible matrix sij defined by Hopf links on
the objects i and j. Kirby framed link diagrams are associated to ribbon vertices, and we see
how simple ribbon pictures may give rise to complicated links.



Figure 1. Octonion units on a cube

3. Knots and gravity
3.1. Electric magnetic duality
Categorical axioms lie at the foundation of both condensed matter physics and computer science.
It turns out that topological insulators, for instance, are a good intuition for the dyonic mirror
[41] that defines holography in the ribbon particle scheme. Every diagram is interpreted
categorically, so that a cube exists in the same sense as an associahedron, which appears as
an axiom for an n-category. On the one hand we have polytopes, and dually we have generalised
string diagrams. This emphasis is different from 4-categories for geometric quantisation based
on symmetry [42], but we still have to consider arrows in dimensions 0 and 1, which are trivial
for a braided monoidal category. The idea is to associate geometric duality to cohomological
duality, where the mirror ribbon category occupies the dual dimensions.

The electric charges of the (massless) Standard Model are listed in table 1, as ribbon diagrams
on three strands, built from Dirac strings. The mirror set of diagrams introduces the extra
magnetic degrees of freedom, so that particles on either side of the mirror carry dyonic charge.
Observe that all neutrino helicities occur, but there are no additional local particle states beyond
the SM.

The Chern-Simons action is applied to gravity in 2 + 1 dimensions [43] using the Monster
CFT of central charge 24. In motivic gravity, we build a mass gap for neutrinos, and there is
a second CSFT for QCD and the strong CP problem [22][23]. The partition function of [43] is
the modular j-invariant. Recall that this invariant is defined in terms of the Eisenstein forms
E4 and E6, where E4 counts roots on the e8 lattice. The j-invariant itself counts irreps for the
Monster moonshine module, and its special real values include the golden ratio φ = (1 +

√
5)/2

[44].
Compare the factor of 32 in (9) with the common normalisation of 1728 = 64 × 27. The

2048 = 64 × 32 equals j(±φ), and the set {±φ,±φ−1} is included in the critical set of real
values of j. The conjugates of φ solve the quadratic in x which results from insisting on (i) the
geometric sequence Fn+1 = xFn and (ii) the Fibonacci recursion Fn+2 = Fn+1 + Fn. Thus φ is
a placeholder for all rationals Fn+1/Fn.

To understand duality, we need to look at combinatorial degrees of freedom. Braids will be
related to the associahedra. Two copies of e8 have 480 roots, in

496 = 2(28 + 28) + 2(8× 8 + 8× 8 + 8× 8) (10)

dimensions, giving 8 copies of 14 in the adjoint part. These are our basis associahedra. The
octonion factors of 8 will be associated to 3-cubes, so that everything is encoded in dimension 4,
since the tensor product corresponds to a sum of basis cube dimensions. More conventionally,
the 14 trees denote a 14 dimensional theory associated to the 3-time grading [45]

e8(−24) = 14 + 64 + (SO(11, 3) + 1) + 64 + 14. (11)



Here the 64 = 35 + 21 + 7 + 1 counts the ordered subsets of up to three distinct units in
e1, · · · , e7, and another 64 counts the subsets of size ≥ 4. That is, we have a 3-brane and
magnetic 7-brane and the usual SO(9, 1) ' SL2(O) embeds in SO(11, 3). As noted above, 7
dimensions means 7 ribbon strands, for a total of 14 braid strings. One may extend [45] this
further to a (19, 3) theory in the tower of exceptional periodicity. Eventually we find SO(28, 4)
breaking to SO(3, 3) × SO(25, 1), where 32 dimensions is high enough to obtain four copies of
the integers Z8/2, used to define entries in GL2(C).

Note that all higher dimensional associahedra are products of the polytopes in dimension 2
and 3 [46]. The three dimensional associahedron of figure 12 is a model for the sheaf cohomology
of RP2. As is well known, the associahedra also describe the compactification of the genus zero
moduli spacesM0,n for Riemann spheres. At very high genus, which is relevant for H2 homology
in the smooth category, the moduli M∞,1 has a completion M+

∞,1 [47] such that

π3(M+
∞,1) = Z24 +G, (12)

for some G. Recall the stable group πn+3(S
n) = Z24 for n ≥ 5. Baez [47] describes Z as the

decategorification of a category of tangles, where the objects are strings of n ± signs. Recall
that 24 signs is the setting of the Golay code, underlying the Leech lattice [48][49]. Signs for
tangles exist whenever duals are present, which is the case for all our categories.

Below we put braid group generators directly on the vertices of an associahedron. But there
is another deep connection between links and the associahedra, as follows. Given any pair of
rooted, binary trees t1 and t2 on d leaves, there is a pairing h(t1, t2) which defines an element
of Thompson’s F group [50][51]. A traced pairing diagram built from t1 and t2 is a trivalent
planar graph, whose edges may be colored with 3 colors such that each vertex carries one edge
of each color. A ± sign is then attached to each vertex, as in figure 2, depending on whether
the permutation of (123) is odd or even. The sign determines a link crossing when a trivalent
vertex is extended to the crossing piece [51]. It turns out that all links may be obtained this
way.

Figure 2. Trivalent vertex maps to link crossing

The four color theorem for planar maps is closely related to these questions, and the
connection between this theorem and pentagons has a very long history. We show a 3-coloring
of an associahedron in figure 11.

3.2. Qutrit rest mass eigenvalues
A loop is a quasigroup with an identity, in analogy to a category with a nonassociative product
and noncommutative braiding. For example, the integral octonions form a finite nonassociative
loop. Product tables for finite loops are Latin squares. Two simple examples of order 3 are the



left unit loop and the idempotent loop,

Llu =

1 a b
b 1 a
a b 1

 , LI =

1 b a
b a 1
a 1 b

 , (13)

which are 1-circulant and 2-circulant symmetric, respectively. In general, an order 3 table is
selected [52] from 9 points in the Hamming graph H(3, 3), which is the 27 points on the qutrit
3-cube (see below) of length 3 words on three letters {1, 2, 3}. For example, the pure state 221
puts a 1 in both the second row and second column of Llu.

Hermitian 3× 3 matrices in a generalised Jordan algebra are the natural place for rest mass
triplets in the low energy regime. They are necessarily 1-circulants, belonging to a group algebra
FS3 on the three object permutations, and diagonalised over C by the quantum Fourier transform
(15). Similarly, a real 2 × 2 circulant has basis {1, σX}, where σX is the flip Pauli matrix of
signature (1,−1). We view either spacetime or momentum space [2] as a six dimensional entity,
based on three 2× 2 circulants, because under the action of the Lorentz group cover SL2(C)

Q =

(
n m
p q

)(
a b
b a

)(
q −m
−p q

)
=

(
t+ z x+ iy
x− iy t− z

)
(14)

is a vector (t, x, y, z) in Minkowski spacetime, with determinant t2 − x2 − y2 − z2. Clearly it
must be tripled to obtain the full (x, y, z) degrees of freedom.

When our ring R is eight dimensional over Z, as above, three dimensional spaces are secretly
24 dimensional. We therefore expect to encounter fundamental phases like π/4 and π/6 [2].
These phases appear automatically in mutually unbiased bases [53][54][55] for qubits and qutrits.
In a prime power dimension d = pr there are d+ 1 MUBs and d− 1 mutually orthogonal Latin
squares, like the pair above for d = 3. More general Gauss sums for modular categories appear
in [56], and the connection [57] to Frobenius algebras is discussed below.

Let ω = (−1 +
√
−3)/2 be the cubed root of unity. The qutrit Fourier transform is given, up

to permutations, by

F3 =
1√
3

1 1 1
1 ω ω
1 ω ω

 . (15)

Its columns form one basis in a set of four MUBs for qutrits. The other 3 bases form a cyclic
group C3 ⊂ S3, and a cyclic group Cd appears in any prime power dimension d = pr [55]. The
density matrices of these columns are the idempotents

B =
1

3

1 ω ω
ω 1 ω
ω ω 1

 , C =
1

3

1 ω ω
ω 1 ω
ω ω 1

 , A =
1

3

1 1 1
1 1 1
1 1 1

 , (16)

and a Hermitian mass operator is a combination of these idempotents. Let
√
M = aA+ bB + cC (17)

for a, b, c real. Our masses are the squares of the three eigenvalues of
√
M , accounting for the

chiral components of our mass states. Without loss of generality, fix a mass scale by the rule
(a + b + c)2 = 1. The Koide rule [58][59] follows from the eigenvalues of the charged lepton
matrix

√
M =

√
µ
√

2

√2 θ θ

θ
√

2 θ

θ θ
√

2

 , (18)



where the scale µ = 4/3 follows from (a + b + c) = 1. For charged leptons, the 4 in µ rescales
to the mass of the proton, and the observed value of θ is close to 2/9. The quarks have mass
matrices whose phases are 1/3 and 2/3 of this value. The observed neutrino scale is around 0.01
eV, and its phases are 2/9± π/12 [2][60].

We embed our Hermitian elements from J3(C) in a higher dimensional exceptional Jordan
algebra [2]. The 2/9 Koide parameter is associated to the charge U(1)Q in the C⊗O algebras,
so that we can start with the fundamental ±π/12 neutrino phases in J3(C) ⊂ J3(O). Recall
that triality acts on the three off-diagonal copies of O in a 3× 3 element of this algebra, and all
circulants belong to a group algebra for the permutations S3, which is our basic Hopf algebra
[61]. Mass matrices use the cyclic group C3 ⊂ S3, and diagonal mass triplets are functions on
C3, so that under the Fourier transform the quantum double D(S3) of S3 looks like an algebra
FC3 ⊗ FC3, in which electric magnetic duality will become completely transparent.

The Fibonacci B3 representation is 2×2, fitting in three ways into our generic 3×3 matrices.
A circulant mixing factor is automatically in SU(2)×U(1), and the product of F3 and the real
form of the tribimaximal matrix gives a 3× 3 representation [60] of the arithmetic phase π/12.
Fibonacci categories also have doubles, which are a natural setting for mirror pairs.

Table 1. Standard Model electric braid states

L R (1) (2) (3)

ν σ1σ
−1
2 σ−12 σ1

ν σ−11 σ2 σ2σ
−1
1

e− (−−−)
e+ (+ + +)
u (−− 0) (0−−) (−0−)
d (−00) (0− 0) (0−−)
u (+ + 0) (0 + +) (+0+)

d (+00) (0 + 0) (00+)

4. The categorical perspective
4.1. Beyond set theory
Axiomatically, quantum gravity is about categorical logic for propositions involving the quantum
vacuum, whose structure begins with the cosmological neutrino ansatz [1][2]. Recall that classical
logic employs sets and distributive lattices, where Stone’s theorem [62] states that the space
associated to a lattice is Hausdorff if and only if the lattice is Boolean, defining a category of
Stone spaces, which is a special limit of the category of finite sets. Ordered Stone spaces are
essentially coherent spaces, and coherent locales are essentially locales of ideals in a distributive
lattice. Distributive lattices are Boolean only if all prime ideals are maximal. In short, classical
spaces are derived from lattice algebras with a number theoretic flavour.

Quantum mechanics immediately requires nondistributive lattices, and axioms for higher
dimensional categories [63][64]. The polytopes of scattering theory [64] associate particle number
with dimension, naturally introducing infinite dimensional categories, starting with the 1-operad
of the associahedra. The category of Hilbert spaces for quantum mechanics is a symmetric
monoidal category, but for gravity we permit a non trivial braiding.

Replacing the Boolean truth values {0, 1} with R takes us from Stone duality to either Gelfand
duality (for commutative rings) or R/Z = S1 in Pontryagin duality. But we need not give S1



a real structure immediately when algebraic number fields are in play, so long as we note that
S1 should contain a copy of every cyclic group. Quantum mechanical propositions localise to
definite rational prime powers, like p = 22 for two qubits. Only a maximal category of all
possible state spaces would require a notion of real number. Thus our braid loops are not at all
S1 spaces in the usual sense.

For nonperturbative structures, we need a monadic connection between algebra and geometry,
defining endofunctors on true categories of motives. If a ring R is commutative, its set of
idempotents forms a Boolean algebra, and any commutative R is a ring of global sections for
a sheaf on a Stone space [62]. The canonical such sheaf is the Pierce sheaf, based on the
Stone space spec I(R), where I(R) are the idempotents of R. Pierce decompositions extend to
noncommutative and nonassociative algebras based on H and O. In particular, the integral part
of the exceptional Jordan algebra J3(O) plays a key role in motivic gravity [2][45][65].

Nondistributive lattices in ordinary quantum mechanics are usually commutative, because for
vector spaces the unions V ∧W are commutative. Tensor products are also weakly commutative
in the symmetric monoidal structure, just as Cartesian products are for sets. Our braidings
break this symmetry, and this braiding characterises the particle spectrum of the Standard
Model. Distributivity is discussed further in the last section.

4.2. Frobenius and Hopf algebras
Mutually unbiased bases [53][54][55] and related observables in ordinary quantum mechanics
are associated to algebra objects in a symmetric monoidal category. A pair of complementary
observables [57] determines a pair of interlaced Frobenius algebras, which form Hopf algebras as
follows.

A dagger symmetric monoidal category has an involutive functor Co → C which equals the
identity for objects, and an arrow f is self-adjoint if f † = f . In a strict monoidal category C,
we consider the subcategory P generated under ⊗ by a single object. For example, take all
qubit spaces in the category of finite dimensional Hilbert spaces. Since the objects in such a
subcategory are labelled by N, it is called a PRO. A strict monoidal functor P → C will be called
a P-algebra (the usual term is T -algebra, but this has multiple meanings for us). If there is a
symmetric group action, a PRO is known as a PROP.

Now consider a PROP for commutative monoids, generated by an object P . There are
multiplications µ : P ⊗ P → P and unit maps η : 1 → P , where as usual µ is depicted as a
trivalent vertex and associativity holds. Anything can be weakened in higher dimensions, but
this is a reasonable setting for quantum mechanics. The cocommutative comonoids have upside
down diagrams, with a coproduct δ : P → P ⊗ P and counit ε : P → 1.

We care about the PROP [57] for commutative Frobenius algebras. These are bialgebras
(µ, η, δ, ε) such that string duality holds on the 4-valent diagrams δµ : P ⊗ P → P ⊗ P . If it is
also the case that µδ = 1, the algebra is special. For the special commutative Fronenius algebras
in a dagger category, the spider theorem [66] says that all tree components (both upward and
downward pointing arrows Pn → Pm) collapse to a single vertex, so that the fusion trees are
unimportant. This PROP is equivalent to the category of cospans on finite sets.

It turns out that we have a dagger special commutative Frobenius algebra exactly when an
orthonormal basis {pi} for P satisfies

δ1 : pi 7→ pi ⊗ pi, ε1 : pi → 1 (19)

for all i. That is, a basis vector is grouplike for the coproduct, meaning that it is copied like a
classical operation. Our quantum monad for gravity is motivated by this concrete description
of measurement, which singles out set like objects in a basis. For a Hilbert space of dimension
n, let i, j ∈ 0, 1, · · · , n− 1. Then there is an algebra with µ2 : pi⊗ pj 7→ pi + pj and η2 : p0 → 1.
It is only weakly special, as µδ = n · 1, bringing in the normalisation factors for MUBs.



Another important coproduct, written here for a finite abelian group, is δ2 : g 7→
∑

a+b=g a⊗b.
The pair (µ2, δ2) form a Frobenius algebra. For quantum complementarity, the trick is to mix
up the algebras and coalgebras on a Frobenius diagram, because with a Fourier transform, we
are interested in interacting observables. So we color the µ vertex differently from the δ vertex,
and the two mixed algebras (µ1, δ2) and (µ2, δ1) are Hopf algebras. For example, for a finite
abelian group, (µ2, δ1) is the group algebra and (µ1, δ2) applies to group characters. Coproducts
of the form δ2 underlie the construction of Jordan algebra pairs. In these commutative Hopf
algebras, the antipode always satisfies S2 = 1.

For condensation in gapped boundary systems, where fusion becomes important, we permit a
weakening of such structures, but the algebra object remains commutative, as we would expect
for an observable that manifests itself in classical reality.

4.3. The pentagon of trees
Let us return to the basics of polytopes and braids. A finite dimensional module over a ring
R typically has a basis set. For example, figure 1 is the lattice of subsets for a three element
set {I, J,K}, which form a basis for space. Here we have reduced the 8 dimensions of O to a 3
dimensional object, whose seven non trivial units give the Fano plane. Given a three element
set {I, J,K}, its subsets are generated by the polynomial

(x+ I)(x+ J)(x+K), (20)

and similarly for any n point set. Setting I = J = K = 1 recovers the binomial coefficents, which
generalise to the Gaussian polynomials when I = 1, J = t2, K = t−2. For four variables, the
Gaussian polynomials come from {t−3, t−1, t, t3}, and so on. Thus polynomials in more variables
may be obtained when I, J and K are not fixed in the usual fashion.

For quantum logic, elements are initially lines, rather than points. In figure 3, we replace
words by line configurations. Each letter represents an intersection point, so if we look at the
intersection points on the lines, the double letters (IJ etc.) disappear from the cube, leaving a
5-cell of five points. Such 5-cells often appear in higher dimensional lattices.

Figure 3. 5-cell from three lines

A planar projection of a 5-cell is a pentagon. The pentagon of figure 4 carries a variety of
labellings. As the first polytope in the sequence of associahedra, it’s vertices are the binary rooted
trees with five leaves, including the root. The noncommutative forests are easily derived from
the trees by looking at the areas between the tree edges. These labels exist for the associahedron
in any dimension.



Figure 4. The pentagon vertices as (i) binary rooted trees (purple) (ii) noncommutative forests
(brown) (iii) non-crossing partitions (orange)

Another natural labelling of the pentagon uses elements of the braid group B3, which has
generators σI and σJ satisfying the group law

σIσJσI = σJσIσJ . (21)

Observe how the blue words on the pentagon match the non-crossing partitions of the dot
triangle, when the vertices on the triangle are labelled I, J,K. Now we use the letters I, J
and K to represent elements of B3 and include other elements of B3 to cover all vertices of the
pentagon. A non-crossing partition indexes a braid [67][68] when the partition is assigned a
permutation in S3, such that the identity 1 is the source of the pentagon, as shown. Given 3
points in a disc, the permutation looks at the triangle defined by the 3 points and says where
the braid will send each point around the triangle.

In this way, the braid group Bn in any dimension is mapped to the vertices of the
associahedron in dimension n − 1, and the generators of Bn are mapped to initial directions
on the polytope. Our ribbon charges correspond to vertices on the cubes, and we combine all
relevant polytopes in a higher dimensional operad for ribbon diagrams.

4.4. Fibonacci braids and condensation
An example of a cyclic B3 representation in H is [69]

σ12 =
1√
2

(1 + i), σ23 =
1√
2

(1 + j), σ13 =
1√
2

(1 + k). (22)

The pentagon also includes the identity 1 and the product σ12σ23σ13. Under the Pauli matrix
representation for H we have

σ12σ23σ13 =
i√
2

(
1 1
1 −1

)
, (23)

which is the Fourier transform. A rotation of this representation in SU(2) takes us to the
Fibonacci anyon representation, which is 2 × 2 for B3. Consider now the closely related 3 × 3
cyclotomic representation of the four strand braid group B4 in [70], namely

σ1 =

e3πi/5 + φe−3π/5 0 0

0 e3πi/5 0

0 0 e3πi/5

 , (24)

σ2 =

e3πi/5 + φ−1e−3πi/5 0 φ−1/2e−3πi/5

0 e3πi/5 0

φ−1/2e−3πi/5 0 e3πi/5 + e−3πi/5

 ,



σ3 =

e3πi/5 0 0

0 e3πi/5 + φ−1e−3πi/5 φ−1/2e−3πi/5

0 φ−1/2e−3πi/5 e3πi/5 + e−3πi/5

 .

A similar representation exists for all Bn with n ≥ 3 in a dimension given by the corresponding
Fibonacci number, and is universal for quantum computation. The qutrit components for the
Fibonacci anyon are labeled by the words IX, XI and II, where I and X are the two objects
and X ⊗X ' I +X is the non trivial fusion rule.

Fibonacci fusion is an example of near-group fusion [71] on a not necessarily invertible object
X, namely

X ⊗X ' G+ kX, (25)

for a group G and ordinal k. For |G| = k+1, the category exists only when G is the multiplicative
part of a finite field, the cyclic group Cpr−1. Examples of interest include (G, k) = (C2, 1), which
has three ⊗ structures [71], and (Cp−1, p − 1) for a prime p, which defines a sequence Fibp of
Fibonacci categories, starting at p = 2. At p = 3 we obtain the rule

X ⊗X ' I1 + I2 + 2X, (26)

where we write I1 and I2 for the objects in G. This is known as the e6/2 rule. The prime
p corresponds to the qudit dimension of the discrete cubes, where the usual parity cubes give
qubit states. Thus the trit at p = 3 gives a cube whose dimension is fixed by the number of
X letters in a word. For example, the 9 point square holds all words with only one X, such as
I1XI1 at 11 or I2X at 20.

Hopf algebras graded by G generalise supersymmetry [72], which we see here at p = 3. Here
the object I1 + (I1 + I2) in the category of vector spaces has a unique C2-graded Hopf structure
which is a quotient of C[x, y] with an antipode S(x) = x and S(y) = −y. The category of C2

graded vector spaces is thought of as a condensation of the modules for the Hopf structure,
which happen to give the category of representations of the permutation group S3. Recall that
the double D(S3) governs electric magnetic duality, as discussed below.

The ordinary Fibonacci category Fib2 is a condensation of its double category, with special
object 2I +X [72]. In this case we have an unconventional antipode satisfying S10 = 1, where

S = 1I1 + 1I2 −
φ−1 + ρi

2
1X , (27)

with ρ =
√
φ+ 2.

By definition [72], an algebra object A in a braided fusion category is condensable if (i)
mσUV = m is commutative (ii) Hom(1, A) is equivalent to the underlying field, and (iii) the
multiplication m comes with a splitting map A → A ⊗ A. Compare this to the commutative
Frobenius algebras. The only new thing is connectedness, condition (ii), which is true for Hilbert
spaces by linearity. A condensation functor C → CA has a right adjoint, and the composition
of adjoints is a Hopf comonad. Thus condensation is the correct setting for the quantisation of
classical monads, such as the power set monad for classical logic.

A monad T with its structure map T 2 → T is the ultimate generalisation of an idempotent
for measurement. Abstract condensation is encoding the collapse of the wave function. Observe
how the Fibonacci fusion rule X ⊗X ' X ⊕ I may be interpreted: as a projective idempotent
of the form X2 = IX.

For the Fibonacci anyons, φ is the quantum dimension of X. Including a mirror, we
obtain both electric and magnetic diagrams, forming dyonic matter at the cosmological horizon.
Alternatively, we start with a duality between the 3 point set and the 7 pieces in the intersecting



Venn diagram for the subsets of the 3 point set. Adding antimatter, we get the 4 + 7 = 11
dimensions of M theory, within a much larger geometric framework.

Now consider ribbon representations, starting with representations for the quantum double
of a finite group. These categories arise with the condensation of anyons to a surface boundary.
The Dijkgraaf-Witten model in [9] uses an inner and outer rectangle of plaquettes in a discrete
gauge theory for G = S3, and an initial Kitaev quantum double Hamiltonian. Here a ribbon is
a chain of simplices in the lattice, and each simplex carries a qudit. The ribbon operators on
the lattice form a Hopf algebra dual to D(G).

Gapped boundary types correspond to subgroups of G, such as our C3 ⊂ S3. Recall that
D(C3) uses the Fourier transform F3 to make electric magnetic duality manifest [61]. Elementary
excitations, for a finite group G [9], are dyonic pairs (m, e), where the magnetic charge m is a
conjugacy class for G and the electric charge e is an irrep for its centraliser. In other words, a
dyon is an irrep for the quantum double. For example, m = {(231), (312)} and e = C3. This
explains the choice of particle braids in table 1.

Anyon fusion occurs when two excitations are brought to the same simplex on the lattice.
Compare this to figure 7, where two types of overlap triangle are possible. In defects on the
boundary, these two options define two distinct tensor products. A gapped boundary in [9] is a
condensable algebra object A, in a unitary modular tensor category, which is also Lagrangian,
meaning that the quantum dimension of A is the square root of the full category dimension.

A collection of n gapped boundaries (internal rectangles on the lattice) models n marked
points on a Riemann sphere, and hence n anyons for the fusion trees on the associahedron with
n leaves. A sequence of splittings from the vacuum object, followed by condensation of n objects
to the vacuum, is exactly a choice of two trees on the associahedron, which defines an element
of Thompson’s F group, as described in section 3.1. These are ground state degeneracies. Thus
two boundaries A1 and A2, along with the vacuum, define a pair of pants diagram, and in this
case a bulk anyon particle/antiparticle pair (which condenses) may be represented by a (Wilson)
line connecting the two holes on a surface.

Condensation introduces 3j symbols into the structure of the category, for the diagram that
first fuses two bulk anyons and then condenses them. The symbols have six indices: three for
the 2 + 1 bulk anyons and three for the condensation vertices on both this diagram, and the
diagram where the two anyons condense straight away. The required axiom is a pentagon with
four 3j arrows and one fusion arrow [9], and the commutativity of condensation relates the 3j
to the braiding operator. Finally, a 6j symbol is defined across the boundary by a mirror pair
of 3j equations, summing over both the input bulk fusion and the mirror fusion index.

The 3 × 3 algebras for B4 are augmented by MUBs for Dirac operators, including a 4 × 4
Fourier MUB for the γ5 matrix. This now appears in the Lie algebraic triality automorphism τ
for D4 in terms of the modular S and T matrices for the toric code fusion category, for which
G = S2 in the above. That is,

−2τ = ((41)(32)) ◦ S ◦ T =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (28)

The 4-basis is {1, e,m, em} [9], and the Lagrangian algebras are A1 = 1 + e and A2 = 1 + m.
Condensation sends 1 and e to 1, and m and em to m, and the braiding moves one hole around
another.

Consider again the planar pants diagram, with a bulk anyon line connecting the circles. A
pair of S1 circles is a toric analog of the pair of S2 which form a 1-handle in a Kirby diagram.
Thus a single bulk anyon ribbon is a natural surface analog of the cancelling 2-handle, and for
both T 2 and S2 × S2 the 2× 2 intersection form is given by σX in (6).



Thus we interpret the three copies of σX in (7) as three gapped boundaries for mass
generation. Then for D(C3) we have two condensates: 1 + e+ e and 1 +m+m. This category

is the same as SU(3)1 × SU(3)1, which we can represent with two surface layers, so that the
bulk line between two holes is categorified to a cylinder handle connecting the holes on different
sheets. Sliding tubes around each other in this 3-space is analogous to the spherical category
functors used in [39] to define smooth 4-manifold invariants.

The usual Fibonacci category is a condensation of its double. The representation of Bn in
(24) comes with a ribbon twist map θX = −e±πi/51X . We assume that the

√
φ appears as

a Lagrangian dimension for some higher dimensional structure, and the antipode of (27) also
requires rings with the number ρ, as expected. Recall that the scale factors (1, φ) are associated
to one copy of e8, introducing a (4, 4) metric under the negative norms involving φ.

4.5. Templates and ribbons
Categorification is inevitable in quantum computation, where lines are thickened to ribbon strips,
used to build surfaces with boundaries. A template is a branched surface which includes ribbon
vertices, as shown in figures 5 and 6. In 1995, Ghrist [73] showed that there exists a template
with four holes containing all knots and links, as one would expect for a DNA code.

Figure 5. A two-holed Lorenz attractor with blue path

Everything happens in either three or six dimensions, because the higher dimensions of
extended M theory just correspond to extra strands in our braid diagrams. This has been
discussed elsewhere. Figure 6 illustrates the standard product and coproduct diagrams for a
bialgebra, reading the processes down the page. Templates [74] also include up and down ribbon
caps for duality, as in the Lorenz template of figure 5.

Figure 6. Template vertices

A template diagram has a framed link equivalent, as shown in figure 7. Kirby moves act on
the framed links.

For the B3 diagrams, there exists a universal representation of SU(2) using the Fibonacci
anyons [70][75]. Our Standard Model particle braids [76][64][37][38] assign SU(3) color to a
choice of one in three twisted ribbon strands, and the twist is a U(1) charge, as in table 1.



Figure 7. Framed links for template vertices

4.6. Simplices and polytopes
A discrete cube is a cubic piece of the integral lattice with d points along each edge segment.
Its vertex coordinates are noncommutative words in the integer letters. For commutative
coordinates, we take diagonal slices. For example, the two words (10) and (01) sit at either
end of a diagonal line across the square in the plane. We replace letters with the variables X
and Y , so that the integers count the number of appearances of X and Y in a word. Then X
and Y are directions in space. For a three letter qutrit alphabet, we get a 2-simplex, as in the
examples of figure 8.

Figure 8. Discrete simplices on three letters

A pentagon has natural integer coordinates [77], as in figure 9, so that three pentagons sit
inside the tetractys simplex on the right. The three corresponding cubes represent the three
mass generations of the Standard Model. Observe the correspondence between these coordinates
and words on the pentagon of figure 4. We can do this for the associahedron in every dimension,
using discrete simplices with d+ 1 points on each edge.

Figure 9. Coordinates for a pentagon



The three dimensional associahedron of figure 11, with 14 vertices, has 24 triangular faces
when each of its six pentagons is divided into three triangles. When all faces are triangulated, the
associahedron is dual to the 24 vertex permutohedron for S4. Coordinates for the associahedron
are extended [1] to the 120 vertex polytope of figure 10, which is a pentagon blow up of the
permutohedron. Two copies of this polytope catalog the 240 roots of e8, which are associated
to the integral points of the Jordan algebra J3(O) [65]. The two copies are scaled by the factors
(1, φ) in the icosian integers. The scaling ρ introduces another two copies, putting 16 dimensions
into the 6 dimensions of gravity. The e8 roots in the magic plane attach Jordan algebra elements
to the six points of the star, lying inside the six points of the a2 plane. These are the 12 points
of g2 coming from the vertices of the cuboctahedron on the three qutrit cube.

Again, the 24 vertices of the permutohedron are each blown up to obtain the 120 vertex
permutoassociahedron of figure 10. Let us divide the 24 pentagons into two sets, green and red.
The green lines connecting the 12 green pentagons form the icosahedron, with 20 triangular
faces.

Figure 10. Icosahedron inside the permutoassociahedron

The 12 vertices of the icosahedron have traditional coordinates of the form (0,±1,±φ), with
cyclic permutations. The 6 lines through a centred pentagon on the icosahedron come from a
6 dimensional lattice. In figure 10, the 8 green triangles inside a 12-gon form a square on 8
out of 20 vertices of the dodecahedron. These are the vertices (±1,±1,±1), where the other 12
coordinates are cycles of (0,±φ,±(φ− 1)). The 12 vertices of the icosahedron are similar to the
12 vertices of the cuboctahedron, inscribed on the 12 edges of a cube.

The golden number ρ appears in the right angled triangle with an angle of 36◦ and side
lengths (

√
5, 2ρ, φρ). A pentagram component is the right angled triangle (1,

√
φ, φ). To include

1/
√
φ, as in (24), we need integers of degree 8, or 16 with the complexification of (27).

A discrete direction in our computational space is labelled by the toric paths 1, X, XX,
and so on. Given the qudit interpretation, we want an auxilliary space whose directions are
given by prime powers, so that all qubit cubes are given by a discrete edge, as in the sides of
triangles in figure 8. The figure 8 simplices then belong to higher dimensional qutrit cubes,
where the dimension is determined by the number of letters in the word labelling a point. Thus
as usual the commutative tetractys diagram gives the 27 points on the 3-cube. The central word
XY Z holds 6 permutations for the six paths on the little cube with target point XY Z. But in
dimension 4, the 81 path 2-simplex now labels points on a 4-cube. So we can either increase the
number of points along an edge in dimension p, and take the diagonal simplex, or we can fix p
points on an edge and increase the dimension. In the former case, the dimension is constrained
by the qudits, and four dimensions carries 4-simplices for 5-dits, while two dimensions carries



the qutrits.

Figure 11. 3-coloring of the associahedron

Introducing the prime 7 in dimension six, we get the cubicuboctahedron and the Mathieu
group M24 [78], starting with a permutoassociahedron model for the genus 3 surface. The seven
primes (including 1) p that divide the order of M24 are precisely those such that p+1 is a divisor
of 24. M24 has 26 irreps, and their dimensions satisfy nice properties. Only the largest irrep, at
dimension 10395, has a new prime factor, namely the 24th prime 83.

5. Motivic pairings
PROP categories rely on a higher dimensional notion of distributivity [57][79]. For quantum
logic, where set cardinality is replaced by dimension, the reals are automatically infinite
dimensional, and we would like to think of distributivity in ∞-categories. Here however, it
depends on a braiding between ⊗ and ⊕ structures.

Observe that while all n ∈ N have a unique prime factorisation, all n ∈ N also have a unique
sum decomposition

∑
i Fi into non consecutive Fibonacci numbers. So we think of the ∞-

category distributivity in terms of maps between the product and sum representations. Morally,
this canonical category of motives underlies L functions, like the Riemann zeta funcion. The
Bi matrix representations have increasing dimensions Fi, while there is also a state space of
dimension n = pr11 · · · p

rk
k under ⊗. Presumably the associahedra components within the operad

build symmetric trees for a renormalisation Hopf algebra.
All computations are motivic. An integral is a pairing between universal homology and

cohomology. The isomorphism between these spaces is natural in a category whose objects have
both a geometric and algebraic interpretation, wherein our topological field theories become
monadic endofunctors. Such a pairing is generically a functor F : Co × C → R, so that a map
between two such functors F and G is a dinatural transformation α [80], which satisfies the
hexagonal rule

F (D,C)→ F (C,C)→αC G(C,C)→ G(C,D) = (29)

F (D,C)→ F (D,D)→αD G(D,D)→ G(C,D)

for every f : C → D in C. So it’s basically a natural transformation for the spans and cospans
on an original category of sets. Given such a functor F , a coend of F is a pair (C,α), with C
an object and α a dinatural transformation F → C that maps F to a constant.

Let C be a coend in a ribbon category C. A Kirby element in a ribbon category [81] is
a morphism f : 1 → C such that any framed link L on n strands defines a good invariant
T (L, f) = aL ◦ f⊗n, where aL : C⊗n → 1 is the unique arrow that attaches the link to an object



X1⊗ · · · ⊗Xn. In a ribbon fusion category, with a finite set s of simple objects, a coend has the
form C = ⊕i∈sX∗i ⊗Xi. In the double Fibonacci category Fib2, this gives us the special object
2I +X.

Under the Thompson group construction of section 3.1, a fusion vertex can become a braid
crossing on a link. But we can never obtain a 3-coloring at a vertex in the Fibonacci category.
In a category where we can have three colors at a vertex, like an annihilation (e, e, 1) interaction
vertex, the bulk fusions in a ground state 1→ 1 diagram are removed, and there are no vertices
in the resulting link diagram. If the initial crossings lie inside a set of holes on the link diagram,
the hole boundaries are then connected by non crossing lines, as for planar algebra diagrams.
We see then that these holes add structure to the local cutouts used in skein relations.

Finally, figure 12 is a heuristic view of a proper helicity neutrino at the Thompson scattering
mirror, with a collapsed RH braid representing the sterile state of the CMB.

The moral of the story is that motivic geometry cares about numbers. We do not start with
messy real or complex analysis, or classical gauge groups, since these methods rightly exist only
as a limit of local (meaning at a prime) computational diagrams.

Figure 12. Neutrino braid at mirror with RH line
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Appendix A. Number Theory
A good introduction to Number Theory is [82]. We introduce a selection of interesting fields
and rings with a mind to applications in quantum computation and quantum gravity.

By definition, a number field extends the rationals by one special real number α, containing
all numbers of the form a+ bα for a and b in Q. Multiplication and addition in this field Q(α)
work in the obvious way. Given α, there is a ring of integers in Q(α), but this is not always the
integer multiples of the form a+ bα. For example, when α =

√
5, the ring of integers consists of

numbers a+ bφ, where φ = (1 +
√

5)/2 is the golden ratio.
An algebraic number is a root of a finite polynomial with rational coefficients, such that the

leading coefficient is 1. The golden ratio is algebraic as a root of X2 − X − 1 = 0. Given an
algebraic number, there exists a unique such polynomial (of a given degree) with α as a root. It
is useful to factorise the polynomial. Consider the quadratic X2 − k = (X +

√
k)(X −

√
k) = 0

of degree 2. The set of roots {+
√
k,−
√
k} are called conjugates for the field Q(

√
k), and we use

this term for polynomials of any degree d. In terms of the d conjugates, where α = α1, the norm
of a number α is defined by

N(α) =

d∏
i=1

αi. (A.1)



Thus N(φ) = φ · (−1/φ) = −1, while X2 + 3 = 0 gives N(
√
−3) = 3.

Given a set of conjugates for α, any other element β in Q(α) may be written in the form

β = a0 + a1α+ a2α
2 + · · ·+ ad−1α

d−1, (A.2)

where the ai are rational or integer as required. The field conjugates of β are the d− 1 numbers
of the form a0αi + · · ·+ ad−1α

d−1
i .

Take a basis {β1, β2, · · · , βd} of Q(α). Typically, we will choose the basis {1, α, α2, · · · , αd−1}.
Now for any Q(α), the basis defines a d× d matrix Mij with columns indexed by the basis and
rows by the conjugates of α. Many examples are given below. The discriminant of Q(α) is
defined by the determinant square ∆ = Det(M)2.

Appendix A.1. Quadratic fields
The degree d is a quantum dimension, since 2 × 2 matrices ought to be about qubits. When
α =

√
k for an integer k with no square factors, the polynomial X2 − k = 0 defines the field

matrix

M =

(
1
√
k

1 −
√
k

)
(A.3)

with discriminant ∆ = 4k. But for
√
−3, the ring of integers has a basis {1, (−1 +

√
−3)/2},

so that ∆ = −3. Similarly, other negative values of k give negative integral discriminants, in
contrast to the positive example of Q(

√
5), which has ∆ = 5 coming from(

1 φ
1 −1/φ

)
. (A.4)

There are no additional field conjugates in the quadratic case. The opposite sign in N(φ) = −1,
compared to an ordinary complex norm, is responsible for time in a Lorentzian metric, and
3+5 = 8 dimensions are associated to the adjoint representation of SU(3) and octonion algebras.

Appendix A.2. Fields on cube roots
Note that the signs in (A.4) give the 2× 2 Hadamard matrix. In dimension 3, we see the qutrit
3 × 3 Fourier transform in the field matrix. Let ω = (−1 +

√
−3)/2 be the cube root of unity

above. For the polynomial X3 − k = 0 with k cube free, we have

M =

1 k1/3 k2/3

1 ωk1/3 ωk2/3

1 ωk1/3 ωk2/3

 . (A.5)

Hopefully it is clear that 27 is an important number! This is the determinant square of the
Fourier transform, and we have in general ∆ = −27k2.

An elliptic curve C of genus 1 takes the standard form Y 2 = X3 + aX + b for rational
coefficients, and has a cubic discriminant ∆C = 4a3 + 27b2, generalising the example above. If
a prime p divides ∆C , then ∆C = 0 in the finite field Fp. The finite set of Fp solutions to C
defines a Mordell-Weil group for C, whose order Np(C) appears in the zeta function for C.

Appendix A.3. Fields on fourth roots
When α is a fourth root, we find that ∆ = −k3 for X4 − k = 0. The matrix is

1 k1/4 k1/2 k3/4

1 ik1/4 −k1/2 −ik3/4
1 −k1/4 k1/2 −k3/4
1 −ik1/4 −k1/2 ik3/4

 . (A.6)



Now let ρ =
√
φ+ 2 be the diagonal of the golden rectangle. It is algebraic because

ρ4 − 5ρ2 + 5 = 0. There are two nice bases for the integers in Q(ρ), namely
1 ρ ρ2 ρ3

1 −ρ ρ2 −ρ3
1
√

5 5 5
√

5

1 −
√

5 5 −5
√

5

 and


1 ρ φ ρφ
1 −ρ φ −ρφ
1
√

5 3 3
√

5

1 −
√

5 3 −3
√

5

 , (A.7)

both with ∆ = 1055.7281. The second basis forms the golden ring of integers of the form

x0 + x1φ+ x2ρ+ x3ρφ (A.8)

for xi ∈ Z. Note that
√

5 = 2φ − 1. In the complex field Q(ρ, i), the ring of integers defines a
dense map of Z8 into C. Alternatively, use the half integer lattice Z8/2 (used for e8 roots).

Figure A1. Angle 36◦ bisection

Figure 14 indicates one of ten possible blue rectangles covering much of the pentagram. The
10 external blue points define a decagon. The chord length on a unit side decagon is ρ.

Appendix A.4. Fields on fifth and higher roots
Using the golden phase e2πi/5, the discriminant for X5− k = 0 is ∆ = 55k4. For example, when
k = 4 we have ∆ = 800000.

We are mostly interested in prime dimensions d for qudit computation spaces. Let θ be the
primitive d-th root of unity. For d prime, the phase coefficients θij for i, j ∈ {0, 1, · · · , d − 1}
always define the discrete Fourier transform. Then the ∆ for Xp − k = 0 looks like ppkp−1.

Appendix A.5. Primes and lattices
For quadratic fields, there is a quadratic form that characterises the norm. As expected, the
form f = aX2 + bXY + cY 2 comes with the discriminant ∆f = b2− 4ac. In particular, for Z[ω]
in Q(

√
−3) we have ∆f = −3 from X2 + XY + Y 2. For Z[φ] the form is X2 + XY − Y 2 and

∆f = 5. The form X2 +Y 2 matches the Gaussian integers Z[i]. Here Q(
√

5) requires φ because
5 equals +1 mod 4. For positive primes p ≥ 7 that equal 3 mod 4, such as 7 and 11, the integers
have the simple basis {1,√p}, while −7 = 1 mod 4 uses (−1 +

√
−7)/2.

The Galois primes {2, 3, 5, 7, 11} give the angles for Lie algebra root systems, which satisfy
the lattice condition

4 cos2(
2π

p+ 1
) ∈ {0, 1, 2, 3}. (A.9)



Beyond Lie algebras there are other important lattices, notably the Leech lattice in dimension
24 [49].
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