
SURGICAL ANALYSIS OF FUNCTION

T. AGAMA

Abstract. In this paper we introduce the concept of surgery. This concept

ensures that almost all discontinuous functions can be made to be continuous

without redefining their support. Inspite of this, it preserves the properties of
the original function. Consequently we are able to get a handle on the number

of points of discontinuities on a finite interval by having an information on the

norm of the repaired function and vice-versa.

1. Introduction and motivation

Continuous functions are considered very tractable functions to work with, but
once a function fails to be continuous we need to be extra careful in handling such
function for effective analysis. We can still engage in some repair process if the
discontinuous function has removable discontinuities in the support. Consider the
function G : R −→ R, defined by

G(x) =
x− 1

x2 − 1
,

a function that has discontinuities at x = 1,−1. One of this is a removal disconti-
nuity and the other is an essential discontinuity. For various classifications of the
type of discontinuities, see [1]. In this paper, we introduce the concept of surgery,
a method of making a discontinuous function continous on it’s support by breaking
the function into pieces and replacing the discontinous body with a continous body
almost identical to the original. It turns out that this analysis preserves most of the
properties of the original function. In that direction we have the following result:

Theorem 1.1. Let f : [a, b] ⊂ R −→ R. Let N = {y1, y2, . . . , yn} be the points of

discontinuities of f . If f accepts surgery, then ||f̂ || < δ if and only if there exist
some k0 > 0 such that |N | ≥ K for all K ≥ k0 for arbitrary δ > 0.

Remark 1.2. It is therefore natural to expect that a discontinuous function could be
undefined on its support. But in this paper, the use of the terminology discontinuity
would mean the function is defined on its support but fails to be continous. That
is, we are entirely ruling out functions that experience blowups at some points in
their support.
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2. Surgery on funtions

Definition 2.1. Let f : [a, b] −→ R and let x1 < x2 < · · · < xn be the points of
discontinuities of f , where [a, b] ⊂ R. Then we say f accepts surgery if there exist
some non-constant continous functions gi : [xi − ε, xi + ε] −→ R for 1 ≤ i ≤ n such
that f � gi in the support of gi, where ε is arbitrarily small. Then the surgical

representation of f , denoted f̂ , is given by

f̂ = f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

g[xi−ε,xi+ε],

where

f̃ : [a, b] \ ∪ni=1[xi − ε, xi + ε] −→ R.

f̃ is said to be the structured part of the representation and each gi forms a com-
ponent of the delicate part, and where

G[c,d](x) =

{
G(x) if x ∈ [c, d]

1 otherwise.

The conductor of the surgical representation f̂ of f on any given point on their
support will depend greatly on their location in [a, b]. That is, if x ∈ [xi− ε, xi + ε]

for some 1 ≤ i ≤ n, then the value f̂(xi) = gi(xi). However if

x ∈
n⋃
i=1

[a, b] \ [xi − ε, xi + ε],

then f̂(x) = f̃(x). In practice the surgical representation of functions takes on
values in the following manner

f̂(a) =

(
f̃[a,b]\∪n

i=1[xi−ε,xi+ε]

n∏
i=1

g[xi−ε,xi+ε]

)
(a)

= f̃[a,b]\∪n
i=1[xi−ε,xi+ε](a)

n∏
i=1

g[xi−ε,xi+ε](a)

It follows from this analysis that any discontinous function (resp. continous) can
be controlled from below and above by its surgical representation as(

f̂(x)

D

) 1
n+1

≤ f(x) ≤
(
f̂(x)

C

) 1
n+1

for D := D(n) > 0 and C := C(n) > 0 for n > 0 and C(n) = 1 if n = 0 with
D(n) = 1 if n = 0, where n is the number of points of discontinuities of f .

Remark 2.2. The notion of surgery of a function f can be thought of in practical
terms as identifying sufficiently small neighbourhoods of points of discontinuities
of f , removing the portion of the graph of f whose support corresponds to this
neighbourhood and replacing it with an equivalently nice function on the same
support by glueing both ends to the remnants of the closest body of the original
function.
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Theorem 2.3. Let f : [c, d] −→ R have finite number of points of discontinuities. If

f accepts surgery, then the surgical representation f̂ of f is unique up to a constant

dilates of f̂ .

Proof. Suppose f : [c, d] −→ R accepts surgery, and let

f̂ = f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

g[xi−ε,xi+ε]

= f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε].

Then it follows that
n∏
i=1

g[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε]

= 1.

It follows that g[xi−ε,xi+ε] = h[xi−ε,xi+ε] for each 1 ≤ i ≤ n. Suppose g[xi−ε,xi+ε] 6=
h[xi−ε,xi+ε], then it follows that for some a ∈ [xi − ε, xi + ε], we will certainly have

n∏
i=1

g[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε]

(a) 6= 1

a contradiction, thereby ending the proof. �

Theorem 2.4. Let f, g : [a, b] −→ R each having finite points of discontinuities in
the support [a, b] ⊂ R. If f and g accepts surgery, then we have

f̂ + g = f̂ + ĝ.

Proof. Let f, g : [a, b] −→ R and suppose f and g accepts surgery, then we can
write

f̂ + g = ˜(f + g)h1h2 · · ·hn.

By letting x1 < x2 . . . < xn and y1 < y2 < . . . < yn be the points of discontinuities

of f and g respectively, we observe that ˜(f + g) is supported on

[a, b] \
n⋃

i,j=1

(
[xi − ε, xi + ε]∩

(2.1)

[yj − ε, yj + ε]

)
=

n⋂
i,j=1

[a, b] \
(

[xi − ε, xi + ε] ∩ [yj − ε, yj + ε]

)

=

n⋂
i,j=1

[a, b] \ [xi − ε, xi + ε] ∪
n⋂

i,j=1

[a, b] \ [yj − ε, yj + ε]

=

n⋃
i,j=1

(
[a, b] \ [xi − ε, xi + ε] ∩ [a, b] \ [yi − ε, yi + ε]

)
.
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It follows from these relation that ˜f + g = f̃ + g̃. Thus

f̂ + g = ˜(f + g)h1h2 · · ·hn
= (f̃ + g̃)h1h2 · · ·hn
= f̃h1h2 · · ·hn + g̃h1h2 · · ·hn
= f̂ + ĝ

and the relation follows immediately. �

Remark 2.5. It is very important to notice that the structured part f̃ of the surgical
representation of any function with finite points of discontinuities is still the function
f but with the support restricted in some sense.

Corollary 2.1. Let fi : [a, b] −→ R for i = 1, 2 . . . n each having points of discon-
tinuities on the support, where [a, b] ⊂ R. If each fi accepts surgery, then

n̂∑
i=1

fi =

n∑
i=1

f̂i.

Proof. The result follows by applying Theorem 2.4. �

Remark 2.6. Corollary 2.1 reinforces the notion that we can get controll on the
surgical representation of the sum of function by the surgical representation of each
individual function.

Proposition 2.1. Let f : [a, b] −→ R having points of discontinuities on [a, b] ⊂ R
and let λ ∈ R. If f accepts surgery, then

λ̂f = λf̂ .

Proof. Let x1 < xn . . . < xn be the points of discontinuities of f and suppose f
accepts surgery, then it follows by Theorem 2.3

λ̂f = ˜(λf)h1h2 · · ·hn

where ˜(λf) by Remark 2.5 is the function λf supported on

[a, b] \ [xi − ε, xi + ε].

The conductors on this support are dilates of the conductors of f on the support.

Thus we can write ˜(λf) = λf̃ and it follows that

λ̂f = ˜(λf)h1h2 · · ·hn
= λf̃h1h2 · · ·hn
= λf̂ ,

thereby establishing the relation. �

Corollary 2.2. The surgical representation of functions on a given support is
linear. In particular, let λ ∈ R and suppose f, g : [a, b] −→ R both accept surgery,
where [a, b] ⊂ R, then

(i) f̂ + g = f̂ + ĝ.

(ii) λ̂f = λf̂ .

Proof. This is an assemblage of the result in Theorem 2.4 and Proposition 2.1. �
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3. Ordering of surgical representations

In this section we assign some bit of ordering to the surgical representations of
functions. We launch the following terminologies:

Definition 3.1. Let f : [a, b] −→ R and g : [a, b] −→ R be functions that accepts

surgery, where [a, b] ⊂ R. Then by f̂ � ĝ, we mean there exist some constant
c1 > 0 such that

|f̂(x)| ≤ c1ĝ(x)

for all common points x in their support. Similarly f̂ � ĝ if there exist some
constant c2 > 0 such that

|f̂(x)| ≥ c2ĝ(x)

for all points x in the common support. In both relation holds for any function
f : [a, b] −→ R and g : [a, b] −→ R that accepts surgery, then we write

f̂ � ĝ.

Remark 3.2. Next we state and prove a result that relates the interaction between
the structured part of two functions that accepts surgery to their surgical repre-
sentations. It is essentially saying that once the structured part of their surgical
representations are identical then the components of the delicate parts must also
be identical and, hence the two functions certainly should be identical.

Theorem 3.3. Let f : [a, b] −→ R \ {0} and g : [a, b] −→ R \ {0} accepts surgery,

where [a, b] ⊂ R. If f̃ � g̃, then f̂ � ĝ and hence f � g.

Proof. Suppose f : [a, b] −→ R and g : [a, b] −→ R accepts surgery. Let x1 < x2 <
. . . < xn and y1 < y2 < . . . < yn be their points of discontinuities respectively.

Then we observe that ˜(fg) is supported on

[a, b] \
n⋃

i,j=1

(
[xi − ε, xi + ε] ∩ [yj − ε, yj + ε]

)
=

n⋃
i,j=1

(
[a, b] \ [xi − ε, xi + ε] ∩ [a, b]\

[yj − ε, yj + ε]

)
.

It follows that ˜(fg) = f̃ g̃. By leveraging this relation, we can write

f̂g = ˜(fg)h1h2 · · ·hn
= f̃ g̃h1h2 · · ·hn
= f̃(g̃h1h2 · · ·hn)

= f̃ ĝ

= g̃(f̃h1h2 · · ·hn)

= g̃f̂ .

It follows from this relation f̃ ĝ = g̃f̂ if and only if

f̃

g̃
=
f̂

ĝ
.
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Under the condition that f̃ � g̃, it follows that f̂ � ĝ, and hence f � g, and the
proof of the theorem is complete. �

It turns out that the converse of this result also holds. To avoid being clumpsy
and ensure orderly presentation, we present the converse as a seperate piece.

Theorem 3.4. Let f, g : [a, b] −→ R \ {0} accepts surgery, where [a, b] ⊂ R. If

f � g, then f̂ � ĝ.

Proof. Suppose f, g : [a, b] −→ R \ {0} accepts surgery. Then the relation holds

f̃

g̃
=
f̂

ĝ
.

If f � g, then f̃ � g̃, since f̃ and g̃ are still the body of f and g with their support
restricted in some sense but still covered by the support of f and g. It follows

therefore from the above relation that f̂ � ĝ, and the proof is complete. �

These two results put together offers us some tranference principle that enables
us to examine the order of functions. This principle is phenomenally important
and it will be explored in the following sequel. We remark at this point that if
a function f is continous on [a, b] ⊂ R, then the structured part of the surgical
representation coincides with f . That is

f̃[a,b]\∪n
i=1[xi−ε,xi+ε] = f.

Next we prove that the monotonicity property of a function can be transfered to
the surgical representation of functions.

Theorem 3.5. Let f : [a, b] −→ R, where [a, b] ⊂ R, and differ on at least two
points in [a, b]. If f is non-increasing (resp. non − decreasing), then the surgical
representation is also non-increasing (resp. non− decreasing).

Proof. Let f : [a, b] −→ R. In the case f is continuous on [a, b], then it follows from

the forgone discussion that f̃[a,b]\∪n
i=1[yi−ε,yi+ε] = f . Since f is non-increasing, it

follows that

f̃[a,b]\∪n
i=1[yi−ε,yi+ε](x1) ≥ f̃[a,b]\∪n

i=1[yi−ε,yi+ε](x2)

with x1 < x2 for all x1, x2 ∈ [a, b] and it follows that f̂(x1) ≥ f̂(x2) for any x1 < x2.
In the case f fails to be continuous on [a, b], then let y1 < y2 < · · · < yn be the
points of discontinuities of f and suppose f accepts surgery. Then the structured
part of the surgical representation f̃[a,b]\∪n

i=1[yi−ε,yi+ε] is supported on

[a, b] \ ∪ni=1[yi − ε, yi + ε].

Since f̃[a,b]\∪n
i=1[yi−ε,yi+ε] is still the body of f , it follows that

f̃[a,b]\∪n
i=1[yi−ε,yi+ε](x1) ≥ f̃[a,b]\∪n

i=1[yi−ε,yi+ε](x2)

for x1 < x2 for all x1, x2 ∈ [a, b] \ ∪ni=1[yi − ε, yi + ε]. It follows that the structured
part is non-increasing. We complete the proof by showing that each component of
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the delicate part is also non-increasing. Suppose the contrary that the remaining
part of the surgical representation is increasing, that is

n∏
i=1

h[yi−ε,yi+ε](x1) <

n∏
i=1

h[yi−ε,yi+ε](x2)

with x1 < x2 for all x1, x2 ∈ [yi − ε, yi + ε] for some i = 1, 2, . . . n. Then it follows
that each component of the delicate part is increasing; that is, h[yi−ε,yi+ε](x1) <
h[yi−ε,yi+ε](x2) for i = 1, 2 . . . n. Since each h[yi−ε,yi+ε] � f in its support, it follows
that

h[yi−ε,yi+ε](x) ≤ Kf(x)

for some contant K > 0 in the support [yi− ε, yi + ε]. It follows that for x1 < x2 <
· · · < xn

h[yi−ε,yi+ε](x1) ≤ Kf(x1) ≤ h[yi−ε,yi+ε](x2) ≤ Kf(x2) ≤ · · · ≤ h[yi−ε,yi+ε](xn) ≤ Kf(xn).

It follows from this relation

f(x1) ≤ f(x2) ≤ · · · ≤ f(xn)

for x1 < x2 < · · · < xn. Since f is non-increasing, we must have

f(x1) ≥ f(x2) ≥ · · · ≥ f(xn)

and it follows that f(x1) = f(x2) = · · · = f(xn). This is a contradiction since
f differs on at least two points. It follows therefore that each component of the
delicate part of the surgical representation of f must also be non-decreasing, thereby
proving that

f̂(x1) ≥ f̂(x2)

for x1 < x2. �

4. The norm of a surgical representation (weak norm of f)

In this section we introduce the notion of the norm of the surgical representation
of a function. This norm is not realistically the actuall norm of the function. Thus
we have coined such a norm a weak norm of f .

Definition 4.1. Let f : [a, b] −→ R having points of discontinuities and let f
accepts surgery. Then we set

||f̂ || = sup{|f̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}.

Since the surgical representation f̂ of a function is a continuous body of f , it
follows that the structured part and the components of the delicate part are now
continous on [a, b]. It follows that they must be bounded. It is also very important
to notice that || · || on surgical representations of functions is a norm. The following
result makes this statement a bit formal.

Proposition 4.1. Let f : [a, b] ⊂ R −→ R and g : [a, b] ⊂ R −→ R accepts surgery.
Let λ ∈ R+, then the following holds:

(i) ||f̂ || ≥ 0. (Positivity)

(ii) ||λf̂ || = |λ|||f̂ ||. (Homogeneity)

(iii) ||f̂ + ĝ|| ≤ ||f̂ ||+ ||ĝ||. (Triangle inequality)
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Proof.

(i) The fact that ||f̂ || ≥ 0 follows by definition 4.1.

(ii) Let λ ∈ R+. Then by Corollary 2.2, we can write

||λf̂ || = ||λ̂f ||

= sup{| ˜(λf)(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

= sup{|λf̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

= |λ|sup{f̃(x) : x ∈ [a, b] \ [xi − ε, xi + ε]}

= λ||f̂ ||.

(iii) By Corollary 2.2, we can write

||f̂ + ĝ|| = ||f̂ + g||

= sup{| ˜(f + g)(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

= sup{|(f̃ + g̃)(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

= sup{|f̃(x) + g̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

≤ sup{|f̃(x)|+ |g̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

≤ sup{|f̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}
+ sup{|g̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}

= ||f̂ ||+ ||ĝ||,

and the triangle inequality follows immediately. �

The Cauchy-swartz inequality is an extremely usefull inequality in the whole
of mathematics. In the following sequel, we extend this inequality to the surgical
representation of functions. But before then, we examine the following preparatory
lemmas.

Lemma 4.2. Let {An} and {Bn} be any sequence of real numbers. Then the
following holds

(i) sup(|An||Bn|) = sup(|An|)sup(|Bn).
(ii) sup(|An|+ |Bn|) = sup(|An|) + sup(|Bn|).

(iii) sup(
√
|An|+ |Bn|) =

√
sup(|An|) + sup(|Bn|).

Proof. For a proof see for instance [1], [2]. �

Proposition 4.2. Let {fn} and {gn} be sequence of functions that accepts surgery,
then

||
s∑

n=1

f̂nĝn|| ≤
( s∑
n=1

||f̂n||2
)1/2( s∑

n=1

||ĝn||2
)1/2

.
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Proof. Suppose {fn} and {gn} be sequence of functions that accepts surgery. Then
applying Lemma 4.2 and using Proposition 4.1, it follows that

||
s∑

n=1

f̂nĝn|| ≤
s∑

n=1

||f̂nĝn||

=

s∑
n=1

||f̂n||||ĝn||

=

s∑
n=1

sup(|f̃n(x)|)sup(|g̃n(x)|)

=

s∑
n=1

sup(|f̃n(x)||g̃n(x)|)

= sup

( s∑
n=1

|f̃n(x)||g̃n(x)|
)

≤ sup

(( s∑
n=1

|f̃n|2
)1/2)( s∑

n=1

|g̃n(x)|2
)1/2)

.

= sup

( s∑
n=1

|f̃n(x)|2
)1/2

sup

( s∑
n=1

|g̃n(x)|2
)1/2

=

( s∑
n=1

sup(|f̃n(x)|2)

)1/2( s∑
n=1

sup(|g̃n(x)|2)

)1/2

=

( s∑
n=1

||f̂n||2
)1/2( s∑

n=1

||ĝn||2
)1/2

thereby establishing the relation. �

It is very important to notice that the norm of the surgical representation of
any function that accepts surgery depends greatly on the number of points of dis-
continuities in the support. This is because as we increase the number of points
for which f is not well-behaved, essentially points of discontinuities of f , the more
we shrink the support of the structured part f̃ and the likelyhood of removing
the point for which f majorizes all other conductors of f and so the norm might
be very small. The opposite also happens. If a function have very few points of
discontinuities, then the support of the structured part may include the point for
which f is maximum and hence we might get a somewhat large norm for the sur-
gical representation of f . On the basis of this discussion, we make the following
formalism:

Theorem 4.3. Let f : [a, b] ⊂ R −→ R+. Let N = {y1, y2, . . . , yn} be the points

of discontinuities of f . If f accepts surgery, then ||f̂ || < δ if and only if there exist
some k0 > 0 such that |N | ≥ K for all K ≥ k0 for arbitrary δ > 0.
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Proof. Let f : [a, b] ⊂ R −→ R and suppose f accepts surgery. Let us consider the
inequality (

f̂(x)

D

) 1
n+1

≤ f(x) ≤
(
f̂(x)

C

) 1
n+1

for D := D(n) > 0 and C := C(n) > 0 for n > 0 and C(n) = 1 if n = 0 with
D(n) = 1 if n = 0, where n is the number of points of discontinuities of f . Then it
follows that

sup{|f̃[a,b]\[xi−ε,xi+ε](x)|} ≤ |f(x)| ≤
(
|f̂(x)|
C

) 1
n+1

.

It follows that for sufficiently large values of n, then ||f̂ || < δ. Conversely suppose

||f̂ || < δ, then it follows that(
f̂(x)

D

) 1
n+1

≤ f(x)� f̃[a,b]\[xi−ε,xi+ε](x).

Thus we have

log

(
min{f̂(x)}

D

)
log δ

� n.

The result follows by taking

k0 =

log

(
min{f̂(x)}

D

)
log δ

� n.

�

Remark 4.4. Theorem 4.3 could be viewed as an inverse theorem. It tells us that
the norm of surgical representation of functions can be made arbitrarily small by
increasing the points of discontinuities in their support. In a similar vein, the very
notion of small norms of the surgical representation of a function suggests that the
function has finitely many points of discontinuities in their support.

5. The zeros of surgical representations

In this section we examine the notion of the zeros of a surgical representation.
Recall that the zeros of any given function are the points in the support for which
the function vanishes. We prove that we can transfer the notion of the zeros of any
function discontinous on it’s support to the zeros of the surgical representations.

Theorem 5.1. Let f : [a, b] ⊂ R −→ R and let f accepts surgery. Then f(x1) = 0

for x1 ∈ [a, b] if and only if f̂(x1) = 0.

Proof. Let f : [a, b] ⊂ R −→ R and suppose f accepts surgery. Then we can write

f̂ = f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε].
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Then we have that f̂(x) = f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε](x) for any x ∈ [a, b].

In the case x is in the support of the structured part of the representation, then it
follows by definition 2.1 that

f̂(x) = f̃[a,b]\∪n
i=1[xi−ε,xi+ε](x).

Since f̃[a,b]\∪n
i=1[xi−ε,xi+ε] is a continous body of f , it follows that

f̃[a,b]\∪n
i=1[xi−ε,xi+ε](x) = 0.

In the case x lies in the support of the delicate part, then it must be in the support
of some component h[xi−ε,xi+ε] for some fixed 1 ≤ i ≤ n. In that case, we claim
that h[xi−ε,xi+ε](x) = 0. By definition 2.1, we have

h[xi−ε,xi+ε](x) ≤ Kf(x) = 0

for K > 0. Similarly, we have that h[xi−ε,xi+ε](x) ≥ Af(x) = 0 for some A > 0, and
it follows that |h[xi−ε,xi+ε](x)| = 0. Thus h[xi−ε,xi+ε](x) = 0, and the first part of

the argument is complete. Conversely, suppose f̂(x) = 0 for some x ∈ [a, b]. Then
since the surgical representation exist, it follows that f accepts surgery and that

f̂ = f̃[a,b]\∪n
i=1[xi−ε,xi+ε]

n∏
i=1

h[xi−ε,xi+ε].

If x lies in the support of f̃[a,b]\∪n
i=1[xi−ε,xi+ε], then by definition 2.1

f̂(x) = f̃[a,b]\∪n
i=1[xi−ε,xi+ε](x) = 0.

Since f̃[a,b]\∪n
i=1[xi−ε,xi+ε] is still the body of f , it follows that f(x) = 0. Other-

wise, x must lie in the support of some component of the delicate part. That is,
h[xi−ε,xi+ε](x) = 0 for some 1 ≤ i ≤ n. Using the fact that h[xi−ε,xi+ε] � f on it’s
support, it follows that f(x) = 0. This completes the proof. �

Corollary 5.1. Let f : [a, b] ⊂ R −→ R. If there exist some x0 ∈ [a, b] such that
f(x0) = 0, then 1

f̂(x)
is discontinous on [a, b].

Proof. The result follows from Theorem 5.1. �

Remark 5.2. It is important to notice that the converse of Corollary 5.1 also holds
on continous functions.

6. The space SA[a,b] of functions

In this section we introduce the space of discontinuous functions that accepts
surgery; in other words, the space of functions whose surgical representation exists.
We launch the following terminology in that regard.

Definition 6.1. Let D[a,b] denote the space of functions supported on [a, b] and
having conductors on the reals R. Then we set

SA[a,b] :=
{
f ∈ D[a,b] : f̂ exist

}
.

Proposition 6.1. The set SA[a,b] is a subspace of the function space D[a,b].
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Proof. It suffices to verify the axioms of a set to be a subspace in this setting.
We focus more on discontinuous functions on the support [a, b] since if a function
is continuous, then by neccessity it follows from the inequality in the foregone
discussion the surgical representation certainly exists and coincides with f , that is

f = f̂ . Since the space of continuous functions is a vector space the result holds.

Let λ ∈ R and f ∈ SA[a,b], then it follows that f̂ exist. Thus by linearity it follows

that λ̂f = λf̂ exist, and it follows that λf ∈ SA[a,b]. Again pick f, g ∈ SA[a,b],

then it follows that f̂ and ĝ both exists. Thus by linearity we have f̂ + g = f̂ + ĝ

and it follows that f̂ + g also exists. Thus f + g ∈ SA[a,b]. This completes the
claim that SA[a,b] is a subspace of the function space with elements supported on
[a, b]. �

Remark 6.2. Next we prove a result about the convergence of any function in the
space SA[a,b] in the weak norm.

Theorem 6.3. Every sequence in the space SA[a,b] converges in the weak norm.

Proof. Let fn ∈ SA[a,b] be a sequence. Then we have

||f̂n − f̂ || = ||f̂n − f ||

= sup
{
| ˜(fn − f)(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]

}
= sup{|f̃n(x)− f̃(x)| : x ∈ [a, b] \ [xi − ε, xi + ε]}
< δ

for δ > 0 and δ > 0 can be made arbitrarily small by taking n sufficiently large,
since f̃n is continuous on its support. This proves the claim. �
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