Klaus von Klitzing Formula and Stability Frequency

by Moisés Domínguez Espinosa

moi_de@ciencias.unam.mx FC-UNAM

30/12/19

We substitute equation (3) in equation (2)

$$eV_H = h\left(\frac{2Rc}{n^4}\right) \tag{4}$$

(5)

(6)

We rewrite equation (4) as

 $V_H = \frac{h}{ne} \left(\frac{2Rc}{n^3}\right)$

of the electron in the Bohr model is

 $v_B = \frac{2Rc}{n^3}$

Now we know that the revolution frequency

Abstract

In this paper, we build the von Klitzing formula from the stability formula that arises in the dynamic quantization model.

Let us assume that $E_H = eV_H$ is the Hall voltage energy and $E_{\xi} = hv_{\xi}$ is the stability energy which is associated to v_{ξ} .

We propose (hypothesis 1) that

$$E_H = E_{\xi} \tag{1}$$

$$V_H = \frac{h\nu_B}{ne} \tag{7}$$

If we multiply and divide (7) by the electron charge e we have

$$V_H = \frac{hev_B}{ne^2} \tag{8}$$

If we accept (hypothesis 2) that the term $I = ev_B$ is the current generated by the electron turning around the proton, thus from equation (8)

therefore

$$eV_H = h\nu_{\xi} \tag{2}$$

Where

$$\nu_{\xi} = \frac{2Rc}{n^4} \tag{3}$$

$$V_H = \frac{hI}{ne^2} \tag{9}$$

If $\frac{V_H}{I} = R_H$ is the Hall resistance

$$R_H = \frac{h}{ne^2} \tag{10}$$

finally

$$R_H = \frac{R_K}{n} \tag{11}$$

We know R_K as von Klitzing constant

$$R_k = \frac{h}{e^2} = 25812.8075\,\Omega\tag{12}$$

References

Paul A. Tipler, Física, Editorial Reverté, Tercera Edición p. 804

A Simple Model of Quantization: an Approach from Chaos, <u>Moises Dominguez-</u> <u>Espinosa</u>, <u>Jaime Melendez-Martinez</u>, <u>viXra:1603.0377</u>, 2016