THE MYSTERY OF PLANCK-EXTENDED VERSION

(The Power of Panck)

Leonardo Rubino
 14/02/2016
 24/12/2019

Abstract: Mysterious numerical coincidences to be explained.

1) According to the Stefan-Boltzmann's Law: $\frac{P_{[W]}}{4 \pi R^{2}}=\sigma T^{4} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right]$, where $\sigma=5,67 \cdot 10^{-8} \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}^{4}$ is the Stefan-Boltzmann's Constant. From that, we have: $T=\left(\frac{P_{[W]}}{4 \pi R^{2} \sigma}\right)^{1 / 4}$. If now we say R is the classic radius of the electron $r_{e}=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{m_{e} \cdot c^{2}} \cong 2,8179 \cdot 10^{-15} \mathrm{~m}$, and if the power P (Power of Planck) is half the Planck Constant, $P=1 / 2 h \quad[\mathrm{~W}]$, then the temperature T is exactly the T CMBR of the Universe: $T_{C M B R}=\left(\frac{1 / 2 h}{4 \pi r_{e}{ }^{2} \sigma}\right)^{1 / 4} \cong 2,7 K!$
2) I want to irradiate in the Universe all the energy of an electron by the Power of Planck we have just introduced; this is obviously happening in a time $T_{U}=\frac{m_{e} c^{2}}{h / 2}=2,47118 \cdot 10^{20} s$. Now, I want to make a comparison between the potential energy of an electron and the energy of a photon; the ratio between them is: $\frac{G m_{e}^{2}}{r_{e} / h v \text {. }}$. I know from the High School that the frequency is the inverse of the period: $v=\frac{1}{T}$; if now I use the T_{U} just introduced to get the frequency v_{U}, then I get: $\frac{\frac{G m_{e}^{2}}{r_{e}}}{h v_{U}}=\frac{1}{137}=\alpha$, that is exactly the Fine Structure Constant!
3) Still from the High School, I know that the period T_{U} just obtained through the Power of Planck is given by the ratio between the circumference and the revolution speed. Therefore, in our Universe: $T_{U}=\frac{2 \pi R_{U}}{c}$, so: $R_{U}=\frac{c T_{U}}{2 \pi}=1,17908 \cdot 10^{28} \mathrm{~m}$. Moreover, the centrifugal acceleration is given by the ratio between the square speed and the radius; so, still in our Universe: $a_{U}=\frac{c^{2}}{R_{U}}=7,62 \cdot 10^{-12} \mathrm{~m} / \mathrm{s}^{2}$. Now, I wonder if there exist a "celestial body" whose gravitational acceleration is exactly a_{U}. Well, it exists and it is the electron! In fact, if, in a classic sense, we see it as a small planet, we will have, for a small test mass m_{x} over its "surface": $m_{x} \cdot g_{e}=G \frac{m_{x} \cdot m_{e}}{r_{e}^{2}}$, from which: $g_{e}=G \frac{m_{e}}{r_{e}^{2}}=a_{U}=7,62 \cdot 10^{-12} \mathrm{~m} / \mathrm{s}^{2}$!
4) In our Universe, according to Newton, we can get the mass from the acceleration au:
$a_{U}=G \cdot M_{U} / R_{U}^{2}$, so: $M_{U}=a_{U} \cdot R_{U}^{2} / G=1,59486 \cdot 10^{55} \mathrm{~kg}$. If we ask ourselves how many electrons and positrons are needed to get the Universe, we would have N of them: $N=M_{U} / m_{e}=1,74 \cdot 10^{85}$, but now we also realize that $R_{U}=\sqrt{N} r_{e}$!!!!!!!!!! (very sharp!)
5) In our galaxy (the Milky Way) the Sun is at a distance of $8,5 \mathrm{kpc}$ from the centre and should have a rotation speed of $160 \mathrm{~km} / \mathrm{s}$, if it were due only to baryonic matter, that is that of the stars and of all visible matter. But we know that, on the contrary, the Sun speed is $220 \mathrm{~km} / \mathrm{s}$. So we have a discrepancy $\Delta \mathrm{v}$ of 60 $\mathrm{km} / \mathrm{s}:(\Delta \mathrm{v}=220-160=60 \mathrm{~km} / \mathrm{s}) .\left(1 \mathrm{kpc}=1000 \mathrm{pc} ; 1 \mathrm{pc}=1\right.$ Parsec $=3,26_{2} l . y .=3,08 \cdot 10^{16} \mathrm{~m} ; \quad 1$ light year 1.y. $\left.=9,46 \cdot 10^{15} \mathrm{~m}\right)\left(R_{G a l}=8,5 \mathrm{kpc}=27,71 \cdot 10^{3} _l . y .=2,62 \cdot 10^{20} \mathrm{~m}\right.$ is the distance of the Sun from the centre of the Milky Way)
If the Sun were at a distance Rgal of 30 kpc , it would have had the same speed of $220 \mathrm{~km} / \mathrm{s}$, but the discrepancy $\Delta \mathrm{v}$ would have been higher. In general, we know from the rotation curves that:
$\Delta v=k \sqrt{R_{G a l}}$, where $\mathrm{k}=$ constant. We realize that: $k=\sqrt{2 a_{U}}$!!!!!!!! Try with the above values for the Sun and see.
6) We see here that the «Unification between Gravitation and Electromagnetism » stands:
$\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r_{e}}=G \frac{m_{e} M_{U}}{R_{U}}$!!!!!!!!!
7) Let's start from the RADIATION CONSTANT : $a=\frac{4 \sigma}{c}=\frac{8 \pi^{5} k^{4}}{15 c^{3} h^{3}}=7,566 \cdot 10^{-16} \frac{J}{m^{3} K^{4}}$. We know from physics that it respects the following law: $u=a T^{4} ; \quad[u]=\left[\frac{J}{m^{3}}\right]$ and σ is the Stefan-Boltzmann's Constant. With a spherical Universe (for reasons of symmetry) and as the Universe cannot have a translational motion (because it would need a bigger Universe in which to translate), its motion is just rotational, with an energy: $E=\frac{1}{2} I_{U} \omega_{U}^{2}$, where IU is the moment of inertia and, for a sphere, we know that: $I_{U}=\frac{2}{5} M_{U} R_{U}^{2}$ and ω_{u}, from physics, is: $\omega_{U}=\frac{2 \pi}{T_{U}}$, where $T_{U}=\frac{2 \pi R_{U}}{c}$. Now, we have:
$\omega_{U}=\frac{2 \pi}{\frac{2 \pi R_{U}}{c}}=\frac{c}{R_{U}}$, from which: $E=\frac{1}{2} \frac{2}{5} M_{U} R_{U}^{2}\left(\frac{c}{R_{U}}\right)^{2}=\frac{1}{5} M_{U} c^{2}$, and, for $u\left[J / m^{3}\right]:$
$u\left[J / m^{3}\right]=\frac{E}{V}=\frac{\frac{1}{5} M_{U} c^{2}}{\frac{4}{3} \pi R_{U}^{3}}=\frac{3}{20} \frac{M_{U} c^{2}}{\pi R_{U}^{3}}=a T_{C M B R}^{4}$, from which:
$T_{C M B R}=\left(\frac{3}{20} \frac{M_{U} c^{2}}{a \pi R_{U}^{3}}\right)^{1 / 4}=\left(\frac{9 c^{5} h^{3}}{32 \pi^{6} k^{4}} \frac{M_{U}}{R_{U}^{3}}\right)^{1 / 4}=\left(\frac{72 G c^{11} h^{3} \varepsilon_{0}^{4} m_{e}^{6}}{\pi^{2} e^{8} k^{4}}\right)^{1 / 4}=2,72846(02218319896) K \cong 2,72846 K$
which is very sharp, as the official measured value is $T_{C M B R}=2,72548 K$, so we are in the $0,1 \%!!!\left(3^{\text {rd }}\right.$ decimal!)
8) Let's consider the Heisenberg's Indetermination Principle (taken with the equal sign, out of simplicity):
$\Delta p \cdot \Delta x=\hbar / 2 \quad\left(\hbar=h / 2 \pi=0,527 \cdot 10^{-34} J \cdot s\right)$. We realize and can be also proved that (just
numerically): $\Delta p \cdot \Delta x=m_{e} c \cdot \frac{a_{U}}{(2 \pi)^{2}}=0,527 \cdot 10^{-34}$ which is exactly $\hbar=h / 2 \pi$ and very very sharp!!!!!!!!

Bibliography: http://vixra.org/abs/1303.0074
http://vixra.org/pdf/1303.0074v1.pdf
Thank you.
Leonardo RUBINO

