The Schrodinger and the Heisenberg Operators

Anamitra Palit

Freelancer, physicist

P154 Motijheel Avenue, Flat C4, Kolkata700074, India
palit.anamitra@gmail.com

Cell:+91 9163892336

Abstract

This brief article in the first section brings out the fact that the Heisenberg and the Schrodinger operators become identical if the operators correspond to a conserved quantity. In Section II solutions we show that for time independent operators A_{S} that satisfy $\left[A_{S}, H\right]=0$ where H satisfies the Schrodinger equation $i \hbar \frac{\partial \psi}{\partial t}=H \psi$ we have $A_{S}=a$ where ' a ' is an eigen value of the stated equation. It is independent of space and time coordinates.

Introduction

In Section I we first show that if the Schrodinger operator commutes with the Hamiltonian then $\left[e^{i H t}, \hat{O}_{S}\right]=0$. That leads to the Schrodinger and the Heisenberg operators becoming identical. In Section II solutions we show that for time independent operators A_{S} that satisfy $\left[A_{S}, H\right]=0$ where H satisfies the Schrodinger equation $i \hbar \frac{\partial \psi}{\partial t}=H \psi$ we have $A_{S}=a$ where ' a ' is an eigen value of the stated equation. It is independent of space and time coordinates.

Section I

The Schrodinger Operator Commuting with the Hamiltonian

We start with the definition of the Heisenberg operator ${ }^{[1]}$

$$
\begin{equation*}
\hat{O}_{H}=e^{i H t / \hbar} \widehat{O}_{S} e^{-i H t / \hbar} \tag{1}
\end{equation*}
$$

Setting \hbar to unity we have

$$
\hat{O}_{H}=e^{i H t / \hbar} \hat{O}_{S} e^{-i H t / \hbar}
$$

\widehat{O}_{S} :Heisenberg operator
$\widehat{O}_{H}:$ Heisenberg operator
[H as suffix denotes 'Heisenberg' while H in the exponential term denotes 'Hamiltonian]then Theorem 1

$$
\left[H, \widehat{O}_{S}\right]=0 \Rightarrow\left[e^{i H t}, \widehat{O}_{S}\right]=0
$$

Indeed,

$$
\begin{gathered}
e^{i H t} \hat{O}_{S}=\left[1+\frac{i H t}{1!}+\frac{(i H t)^{2}}{2!}+\frac{(i H t)^{3}}{3!}+\frac{(i H t)^{4}}{4!}+\cdots \ldots \cdots \cdot \hat{O}_{S}\right. \\
e^{i H t} \hat{O}_{S}=\hat{O}_{S}+\frac{i H t}{1!} \hat{O}_{S}+\frac{(i H t)^{2}}{2!} \hat{O}_{S}+\frac{(i H t)^{3}}{3!} \hat{O}_{S}+\frac{(i H)^{4}}{4!} \hat{O}_{S}+\cdots \ldots \ldots
\end{gathered}
$$

Since $\left[H, \hat{O}_{S}\right]=0$ by our postulation

$$
\begin{gather*}
e^{i H t} \hat{O}_{S}=\hat{O}_{S}+\hat{O}_{S} \frac{i H t}{1!}+\hat{O}_{S} \frac{(i H t)^{2}}{2!}+\hat{O}_{S} \frac{(i H t)^{3}}{3!}+\hat{O}_{S} \frac{(i H t)^{4}}{4!}+\cdots \ldots \ldots \\
\Rightarrow e^{i H t} \hat{O}_{S}=\hat{O}_{S}\left[1+\frac{i H t}{1!}+\frac{(i H t)^{2}}{2!}+\frac{(i H t)^{3}}{3!}+\frac{(i H t)^{4}}{4!}+\cdots \ldots \cdots\right] \\
\Rightarrow e^{i H t} \hat{O}_{S}=\hat{O}_{S} e^{i H t} \\
{\left[e^{i H t}, \hat{O}_{S}\right]=0} \tag{2}
\end{gather*}
$$

Subject to the validity of (2) we have

$$
\hat{O}_{H}=e^{i H t} \hat{O}_{S} e^{-i H t}=\hat{O}_{S} e^{i H t} e^{-i H t}=\hat{O}_{S} \Rightarrow \hat{O}_{H}=\hat{O}_{S}
$$

Theorem 2

Subject to the validity of equation (2) that is if $\left[e^{i H t}, \hat{O}_{S}\right]=0$ then

$$
\begin{equation*}
\hat{O}_{H}=\hat{O}_{S} \tag{3}
\end{equation*}
$$

For any conserved quantity $\left[H, \hat{O}_{S}\right]=0 \Rightarrow\left[e^{i H t}, \hat{O}_{S}\right]=0 \Rightarrow \hat{O}_{H}=\hat{O}_{S}$
For such a conserved quantity , since $\widehat{O}_{H}=\widehat{O}_{S}$, we have,

$$
\begin{equation*}
\hat{O}_{H}\left|\psi_{H}>=\hat{O}_{S}\right| \psi_{H}>= \tag{4}
\end{equation*}
$$

But ψ_{H} on the left side and hence on the right side is independent of time: the Heisenberg state function does not evolve with time. On the right side \widehat{O}_{S} being a Schrodinger operator does not evolve
with time. Therefore $\widehat{O}_{H} \mid \psi_{H}>$ itself does not evolve with time, not just the expectation value. $\widehat{O}_{H}(t) \mid \psi_{H}>$ does not evolve with time.

Section II

We consider the Schrodinger equation ${ }^{[2]}$

$$
\begin{equation*}
i \hbar \frac{\partial \psi}{\partial t}=H \psi \tag{5}
\end{equation*}
$$

H represents the operator Hamiltonian

We right multiply both sides of (5) by an arbitrary linear operator A_{S} that does not evolve with time. Therefore (5) implies

$$
i \hbar \frac{\partial \psi}{\partial t} A_{S}=H \psi A_{S} \Rightarrow i \hbar \frac{\partial\left(\psi A_{S}\right)}{\partial t}=H \psi A_{S}
$$

Equation (6) is an operator equation

$$
i \hbar \frac{\partial\left(\psi A_{S}\right)}{\partial t}=H \psi A_{S}(6)
$$

Equation (6) is an operator equation

Let $\psi A_{S}=\phi \equiv$ Operator

$$
i \hbar \frac{\partial \phi}{\partial t}-H \phi=0(7)
$$

Applying the Integrating factor $e^{\frac{i H t}{\hbar}}$ as per standard technique

$$
\begin{gathered}
i \hbar e^{\frac{i H t}{\hbar}} \frac{\partial \phi}{\partial t}-e^{\frac{i H t}{\hbar}} H \phi=0 \\
e^{\frac{i H t}{\hbar}} \frac{\partial \phi}{\partial t}+\frac{i}{i \hbar} e^{\frac{i H t}{\hbar}} H \phi=0 \\
\frac{\partial\left(e^{\frac{i H t}{\hbar}} \phi\right)}{\partial t}=0 \\
e^{\frac{i H t}{\hbar}} \phi=C^{\prime}(x, y, z) \\
e^{\frac{i H t}{\hbar}} \psi A_{S}=C^{\prime}(x, y, z) \equiv \text { Time independent operator (8) }
\end{gathered}
$$

$$
\psi A_{S}=e^{\frac{-i H t}{\hbar}} C^{\prime}(x, y, z)
$$

Applying the same technique ${ }^{[3]}$ we may solve (5) to obtain

$$
\begin{align*}
\psi & =e^{\frac{-i H t}{\hbar}} D(x, y, z) \tag{10}\\
A_{S} \psi & =A_{S} e^{\frac{-i H t}{\hbar}} D(x, y, z) \tag{11}
\end{align*}
$$

Left multiplying (9) by A_{S} we obtain

$$
\begin{equation*}
A_{S} \psi A_{S}=A_{S} e^{\frac{-i H t}{\hbar}} C^{\prime}(x, y, z) \tag{12}
\end{equation*}
$$

Using (11) with (16) we Oobtain

$$
\begin{gathered}
A_{S} e^{\frac{-i H t}{\hbar}} D(x, y, z) A_{S}=A_{S} e^{\frac{-i H t}{\hbar}} C^{\prime}(x, y, z) \\
\left.D A_{S}=C^{\prime} 13\right)
\end{gathered}
$$

Relation (13) is independent of the fact as to whether H commutes with A_{S} or not

If $\left[H, A_{S}\right]=0$

$$
\begin{align*}
i \hbar A_{S} \frac{\partial \psi}{\partial t} & =A_{S} H \psi \\
\Rightarrow i \hbar \frac{\partial\left(A_{S} \psi\right)}{\partial t} & =H A_{S} \psi \tag{14}
\end{align*}
$$

Using the substitution $\phi=A_{S} \psi$

$$
\begin{gathered}
i \hbar \frac{\partial \phi}{\partial t}=H \phi \\
\frac{\partial \phi}{\partial t}+\frac{i}{\hbar} H \phi=0
\end{gathered}
$$

Integrating factor: $e^{\frac{i H t}{\hbar}}$

$$
\begin{gathered}
e^{\frac{i H t}{\hbar}}\left(\frac{\partial \phi}{\partial t}+\frac{i}{\hbar} H \phi\right)=0 \\
\frac{\partial\left(e^{\frac{i H t}{\hbar}} \phi\right)}{\partial t}=0 \\
\phi=e^{\frac{-i H t}{\hbar}} C(x, y, z)
\end{gathered}
$$

$$
\begin{equation*}
A_{S} \psi=e^{\frac{-i H t}{\hbar}} C(x, y, z) \tag{15}
\end{equation*}
$$

Left multiplying (9) by A_{S} we obtain

For $\left[H, A_{S}\right]=0$ both (11) and (15) hold. We have

$$
\begin{equation*}
A_{S} e^{\frac{-i H t}{\hbar}} D(x, y, z)=e^{\frac{-i H t}{\hbar}} C(x, y, z) \tag{16}
\end{equation*}
$$

But

$$
\left[H, A_{S}\right]=0 \Rightarrow\left[A_{S}, e^{\frac{-i H t}{\hbar}}\right]=0
$$

Therefore

$$
\begin{gathered}
e^{\frac{-i H t}{\hbar}} A_{S} D(x, y, z)=e^{\frac{-i H t}{\hbar}} C(x, y, z) \\
A_{S} D=C
\end{gathered}
$$

Points to Observe

1. $D A_{S}=C^{\prime} \Rightarrow D A_{S} \psi=C^{\prime} \psi \Rightarrow A_{S} \psi=\frac{1}{D} C^{\prime} \psi$ since D is a multiplicative function. If ψ is a common eigenstate of H and A_{S} that is if $\left[H, A_{S}\right]=0$ which is true of operators A_{S} that stand for conserved quantities, then $\frac{1}{D} C^{\prime}$ is an eigen value of $\psi: \frac{1}{D} C^{\prime}=\mathrm{a}$ [' a ' is independent of space and timer coordinates]. The time independent operator $C^{\prime}=a D$ is a time independent multiplicative function of spatial coordinates. Thus the operator C^{\prime} is a time independent multiplicative function.
2. $\left[H, A_{S}\right]=0 \Rightarrow A_{S} \psi=a \psi$ provided ψ is an eigenfunction of H.Again

$$
\psi=e^{\frac{-i H t}{\hbar}} D(x, y, z) \Rightarrow A_{S} \psi=a e^{\frac{-i H t}{\hbar}} D(x, y, z)
$$

But $A_{S} \psi=e^{\frac{-i H t}{\hbar}} C(x, y, z)$ for $\left[H, A_{S}\right]=0$
Therefore

$$
a e^{\frac{-i H t}{\hbar}} D(x, y, z)=e^{\frac{-i H t}{\hbar}} C(x, y, z) \Rightarrow a D(x, y, z)=C
$$

Since by (17) $A_{S} D=C$ for $\left[H, A_{S}\right]=0$ we have $a D=A_{S} D \Rightarrow A_{S}=a$. This means that A_{S} is a multiplicative factor independent of the spatial as well as of the time coordinates

Conclusion

We conclude that for time independent operators A_{S} that satisfy $\left[A_{S}, H\right]=0$ where H satisfies the equation $i \hbar \frac{\partial \psi}{\partial t}=H \psi$ we have $A_{S}=a$ where ' a ' is an eigen value of the stated equation. It
is independent of space and time coordinates. In physics $i \hbar \frac{\partial \psi}{\partial t}=H \psi$ is the Schrodinger equation while the operator A_{S} represents a conserved observable whose expectation value does not evolve with time.

References

1. Schwabl F., Quantum Mechanics, Springer Verlag, Berlin Heidlberg, © 1992, Third Narosa Publishing House Printing, 1998, Chapter 8:Operators,Matrices,State Vectors, Section 8.5.2: The Heisenberg Operator,p166
2. Wikipedia, Schrodinger Equation ,Link https://en.wikipedia.org/wiki/Schr\�\�dinger_equation accessed on 30.12.2029
3. Liboff R L Introductory Quantum Mechanics,Pearson Educaton, © 20032 by Pearson Education Inc, Published by Dorling Kindersley(India) Pvt Ltd, 2006, Chapter 3p 84-85
