The Time Evolution Operator

Anamitra Palit
Freelancer,physicist
P154 Motijheel Avenue, Flat C4, ZKolkata 700074, India
palit.anamitra@tgmail.com

Cell:+91 9163892336

Abstract

In this article we have devised a simpler alternative solution to the operator equation for the usual time evolution operator. This is based on an interesting commutator relation which has been derived valid subject to a weak condition that two specific operators should not be simultaneously non invertible.

Introduction

The article considers an interesting commutator relation valid subject to a weak condition that two specific operators should not be simultaneously non invertible. Applying the stated relation we have devised a simpler alternative solution to the operator equation for the usual time evolution operator

Time evolution operator

Let us consider the operator function ${ }^{[1]}$

$$
\begin{equation*}
\widehat{U}\left(t, t_{0}\right)=e^{i \widehat{H}_{0}\left(t-t_{0}\right)} e^{-i H\left(t-t_{0}\right)} \tag{1.1}
\end{equation*}
$$

We would like to transform (1.1) to our advantage is done in standard treatment to obtain a form conducive to the construction of Feynman's diagrams.

From (1.1) we formulate the differential equation ${ }^{[2]}$ and solve it subject to $\widehat{U}\left(t_{0}, t_{0}\right)=1$:

$$
\begin{equation*}
i \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=\widehat{H}(t) \widehat{U}\left(t, t_{0}\right) \tag{1.2}
\end{equation*}
$$

Standard solution to (1.2) subject to $\widehat{U}\left(t_{0}, t_{0}\right)=1$ is given by

$$
\begin{equation*}
\widehat{U}\left(t, t_{0}\right)=T\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\}\right] \tag{3}
\end{equation*}
$$

Where by definition ${ }^{[3]}$,

$$
\begin{align*}
& T\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\}\right] \\
&=I+\frac{1}{1!} \int_{t_{0}}^{t} d t_{1} \widehat{H}\left(t_{1}\right)+\frac{1}{2!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} T\left[\widehat{H}\left(t_{1}\right) \widehat{H}\left(t_{2}\right)\right] \\
&+\frac{1}{3!} \int_{t_{0}}^{t} d t_{1} \int_{t_{0}}^{t} d t_{2} \int_{t_{0}}^{t} d t_{3}\left[\widehat{H}\left(t_{1}\right) \widehat{H}\left(t_{2}\right) \widehat{H}\left(t_{3}\right)\right]+\cdots(4) \tag{4}
\end{align*}
$$

The right side of (4) is conducive to the construction of Feynman's Diagrams

The Trial Solution and Subsequent Considerations

We consider the following trial solution:

$$
\begin{equation*}
\widehat{U}\left(t, t_{0}\right)=\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \tag{5}
\end{equation*}
$$

Solution given by (5) satisfies: $\widehat{U}\left(t_{0}, t_{0}\right)=1$
Partial differentiating the above with respect to ' t ' we have,

$$
\begin{equation*}
\frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=-i \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \widehat{H}(t) \tag{6}
\end{equation*}
$$

We shall now prove that

$$
\begin{equation*}
\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \widehat{H}(t)=\widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \tag{7}
\end{equation*}
$$

that is

$$
\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\}, \widehat{H}(t)\right]=0
$$

Proof of (8): We may first consider the relation

$$
\begin{equation*}
\hat{A} \exp (-i \hat{A})=\exp (-i \hat{A}) \hat{A} \tag{9}
\end{equation*}
$$

which may be proved by direct expansion. Indeed Left side of (7):

$$
\hat{A} \exp (-i \hat{A})=\hat{A}\left[1-\frac{i \hat{A}}{1!}+\frac{(i \hat{A})^{2}}{2!}-\frac{(i \hat{A})^{3}}{3!}+\cdots \ldots \ldots\right]
$$

$$
\begin{gathered}
=\left[1-\frac{i \hat{A}}{1!}+\frac{(i \hat{A})^{2}}{2!}-\frac{(i \hat{A})^{3}}{3!}+\cdots \ldots \cdots\right] \hat{A} \\
=\exp (-i \hat{A}) \hat{A}
\end{gathered}
$$

Let

$$
\begin{equation*}
\hat{A}=\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{X}=\hat{A} \exp (-i \hat{A})=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \tag{11.1}
\end{equation*}
$$

By applying (9) we have

$$
\begin{equation*}
\hat{X}=\exp (-i \hat{A}) \hat{A}=\exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \tag{11.2}
\end{equation*}
$$

Differentiating (11.1) with respect to time we have

$$
\begin{equation*}
\frac{\partial \hat{X}}{\partial t}=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t)(\tag{12.1}
\end{equation*}
$$

Differentiating (11.2) with respect to time we have

$$
\begin{align*}
& \frac{\partial \hat{X}}{\partial t}=-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \\
&+\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \tag{12.2}
\end{align*}
$$

Since the left sides of (12.1) and (12.2) are identical the right sides will also be identical. This will hold if equation (8)[equivalently (7)] holds that is if we have $\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime \widehat{H}\left(t^{\prime}\right)}\right\}, \widehat{H}(t)\right]=0$. A relation like $\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime \widehat{H}\left(t^{\prime}\right)}\right\}, \widehat{H}(t)\right]=b(t) \neq 0 \quad$ will upset the expected identicalness of (10.1) and (10.2)[we may consider different forms of $\widehat{H}(t)$.].

$$
\begin{gather*}
{\left[\exp \left\{-i \int_{t_{0}}^{t} d t^{\prime \widehat{H}\left(t^{\prime}\right)}\right\}, \widehat{H}(t)\right]=b(t)} \\
\Rightarrow \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \widehat{H}(t)=b(t)+\widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \tag{13}
\end{gather*}
$$

Using (13) with (12.1) we have,

$$
\begin{gather*}
\frac{\partial \hat{X}}{\partial t}=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \\
\frac{\partial \hat{X}}{\partial t}=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)\left[b(t)+\widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \hat{H}\left(t^{\prime}\right)\right\}\right] \\
\frac{\partial \hat{X}}{\partial t}=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) b(t) \\
-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\}(14) \tag{14}
\end{gather*}
$$

Equating the right sides of (12.2) and (14) we obtain

$$
\begin{aligned}
=\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) & H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \\
= & \left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) H(t) \exp \left(-i \int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)-i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) b(t) \\
& -i\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) \widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\}
\end{aligned}
$$

We have the operator equation

$$
\begin{equation*}
\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) b(t)=0 \tag{15}
\end{equation*}
$$

If the operator $b(t)$ has an inverse then

$$
\begin{gather*}
\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) b(t)[b(t)]^{-1}=0 \\
\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}=0 \tag{16}
\end{gather*}
$$

Equation (16) cannot be entertained: we will not have any Feynman diagram as per conventional method

If the operator $\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}$ has an inverse then

$$
\begin{equation*}
\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right)^{-1}\left(\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}\right) b(t)=0 \Rightarrow b(t)=0 \tag{17}
\end{equation*}
$$

If $\int_{t_{0}}^{t} H\left(t^{\prime}\right) d t^{\prime}$ and $b(t)$ are numbers then any one will be zero $\mathrm{b}=0$ would be appropriate.
$b(t)=0$ seems most plausible.
[If both the operators are expressible in matrix form it might happen both are non invertible at the same time??]

Unless both A and b are non invertible we have as follows

From equations(6) and (7) we obtain:

$$
\begin{equation*}
\frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=-i \widehat{H}(t) \exp \left\{-i \int_{t_{0}}^{t} d t^{\prime} \widehat{H}\left(t^{\prime}\right)\right\} \tag{18}
\end{equation*}
$$

Using (5) we have

$$
\begin{aligned}
& \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=-i H(t) \widehat{U}\left(t, t_{0}\right) \\
& \Rightarrow i \frac{\partial \widehat{U}\left(t, t_{0}\right)}{\partial t}=H(t) \widehat{U}\left(t, t_{0}\right)
\end{aligned}
$$

In the above we have obtained (1.2). Our trial solution indeed satisfies(1.2)

Conclusion

As claimed an alternative solution has been considered against the existing one. This is in view of a commutator relation valid subject to a weak condition that two specific operators should not be simultaneously non invertible.

References

1. Peskin M E, Schroeder D V, Quantum Field theory, Chapter 4:Interacting fields and Feynman's Diagrams, Section 4.2: Perturbation Expansion of Correlation Functions,p84
2. Peskin M E, Schroeder D V, Quantum Field theory, Chapter 4:Interacting fields and Feynman's Diagrams, Section 4.2: Perturbation Expansion of Correlation Functions,p84
3. Peskin M E, Schroeder D V, Quantum Field theory, Chapter 4:Interacting fields and Feynman's Diagrams, Section 4.2: Perturbation Expansion of Correlation Functions,p85
