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Abstract. In this paper we consider general multivector elements of Clif-
ford algebras Cl(p, q), n = p+ q ≤ 3, and study multivector equivalents
of polar decompositions and factorization into products of exponentials,
where the exponents are frequently blades of grades zero (scalar) to n
(pseudoscalar).
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1. Introduction

The polar decomposition can be thought of as related via matrix isomor-
phisms to a factorization into an orthogonal matrix (the reverse gives the
inverse of this factor) and a symmetric matrix (the corresponding multivec-
tor is self reverse, i.e. invariant under reversion).

Motivated by previous research into the polar decomposition of complex-
ified quaternions and octonions [18], we look for exponential factorizations of
general multivectors in Clifford algebras m ∈ Cl(p, q), n = p+q ≤ 3, m = RS,
with the inverse of the first factor R−1 usually being given by reversion, and

the second factor S = S̃ being identical to its own reverse (corresponding
to a symmetric matrix). We aim to split each factor further into elementary
exponential functions of simple blades, usually resulting in exponentials with
blades of all grades zero (scalars) to n (pseudoscalar) in the exponents. We
further gained motivation and insight from [4], where also a form of polar
decomposition is applied to rotors in Cl(3, 0) and Cl(4, 1). Since the factor-
izations obtained, easily allow to express the multivector inverse (compare
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also [13]) by reversing factor order and signs in the exponentials, we also
provide these.

We treat the factorization in order of increasing dimension for Clif-
ford algebras Cl(p, q), n = p + q = 1, 2, and 3. The interesting cases of
multivectors in Cl(3, 0) and Cl(0, 3) have important applications in the real
three-dimensional world (e.g. in physics and robotics, etc.) and in Clifford
analysis[5], and they are simpler than the case of mixed signature Cl(2, 1).
Then we treat the case Cl(1, 2) via the isomorphism Cl(1, 2) ∼= Cl(3, 0).
The case Cl(2, 1) follows last, since the mixed signature, and the presence
of null blades and idempotents needs more case distinctions. An appen-
dix features more technical details of Cl(2, 1) regarding the isomorphism
Cl(1, 2) ∼= Cl(2, 0) ⊗ Cl(1, 0) and the use of idempotents, and multivector
norms in Cl(2, 1).

Apart from the standard involutions of main (or grade) involution m̂,
reverse m̃, and Clifford conjugation m, we also refer to principal involution
(or transposition anti-involution) [1, 2, 3, 14] in real Clifford algebras) pi(m),
which is a combination of reversion and negating the sign of every basis vector
with negative square.

The paper is structured as follows. Section 2 begins with an elementary
demonstration of this factorization in Cl(1, 0) and Cl(0, 1). Section 3 expands
this to the case of Cl(2, 0). Applying the isomorphism Cl(1, 1) ∼= Cl(2, 0),
Section 4 treats Cl(1, 1), while Section 5 deals with Cl(0, 2) ∼= H in analogy
to quaternions but also introducing an exponential factorization with blades
of grades zero, one and two in the exponents. Then we treat the factorizations
of multivectors in Cl(3, 0) and Cl(0, 3) in Section 6. Next, Section 7 deals with
the factorization in Cl(1, 2) by applying the isomorphism Cl(1, 2) ∼= Cl(0, 3).
Section 8 explicitly treats multivector factorization in Cl(2, 1), making use of
the isomorphism Cl(2, 1) ∼= Cl(2, 0)⊗Cl(1, 0). Finally, appendix A provides
details of the isomorphism Cl(2, 1) ∼= Cl(2, 0)⊗ Cl(1, 0), including a look at
the role of idempotents in Cl(2, 1) and norm definitions for multivectors in
Cl(2, 1).

2. Factorization in Cl(1, 0) and Cl(0, 1)

The algebra Cl(1, 0) is isomorphic to hyperbolic numbers. A general element
m ∈ Cl(1, 0) is given by

m = m0 +m1e1, e21 = 1, m0,m1 ∈ R. (2.1)

It can be expressed in the form

m = (β + αe1)h1(e1), (2.2)

such that β > |α| ≥ 0, and h1(e1) = ±1 or h1(e1) = ±e1. This allows to
write m as product of exponentials

m = eα0m′ = eα0eα1e1h1(e1),

α0 = 1
2 ln(β2 − α2), α1 = atanh(α/β). (2.3)
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Regarding reversion symmetry we have

m̃ = m. (2.4)

The inverse can be variously expressed as

m−1 = e−α0 m̂′ = e−α0 m′. (2.5)

The algebra Cl(0, 1) is isomorphic to complex numbers C. A general
element m ∈ Cl(0, 1) is given by

m = m0 +m1e1, e21 = −1, m0,m1 ∈ R. (2.6)

It can therefore be represented in the polar form of complex numbers

m = eα0m′ = eα0eα1e1 , α = 1
2 ln(m2

0 +m2
1), α1 = atan2(m1,m0). (2.7)

The multivector is again self reverse m̃ = m, and the inverse can be written
in three different ways as

m−1 = e−α0 m̂′ = e−α0 m′ = e−α0 pi(m′). (2.8)

3. Factorization in Cl(2, 0)

A general element m ∈ Cl(2, 0) can be represented as

m = m0 +m1e1 +m2e2 +m12e12,

m0,m1,m2,m12 ∈ R, e212 = −1. (3.1)

We can rewrite m as

m = m1e1 +m2e2 +m0 +m12e12 = au′ + bR,

a =
√
m2

1 +m2
2, b =

√
m2

0 +m2
12,

u′ = (m1e1 +m2e2)/a, R = (m0 +m12e12)/b, u′2 = RR̃ = 1. (3.2)

If m1e1 + m2e2 = 0 or m0 + m12e12 = 0, then the factorization is already
complete in the form

m = bR = eα0eα2e12 , α0 = ln(b), α2 = atan2(m12,m0),

S = b = eα0 , S̃ = S,

R = eα2e12 , R−1 = e−α2e12 = R̃ = R = pi(R), m−1 = e−α0R̃, (3.3)

or

m = au′ = eα
′
0u′, α′0 = ln(a), m̃ = m,

u′−1 = u′ = ũ′ = pi(u′), m−1 = e−α
′
0u′. (3.4)

We therefore assume from now on that both m1e1 + m2e2 6= 0 and m0e2 +
m12e1 6= 0, and compute

m = au′ + bR = (au′R−1 + b)R = (au+ b)R,

u = u′R−1 = Ru′, u2 = uu = ũu = u′R̃Ru′ = 1 (3.5)
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We can therefore always rewrite m ∈ Cl(2, 0) as

m = (β + αu)h1(u)R, (3.6)

such that β > α ≥ 0 and h1(u) = 1 or h1(u) = u. This leads to the general
factorization (with R from (3.2))

m = eα0eα1uh1(u)eα2e12 = SR,

α0 = 1
2 ln(β2 − α2), α1 = atanh(α/β), α2 = atan2(〈R〉2e−112 , 〈R〉0),

S = eα0eα1uh1(u), R = eα2e12 = S−1m,

S−1 = e−α0e−α1uh1(u), e−α1u = ê−α1u = e−α1u,

S̃ = S, R−1 = e−α2e12 = R̃ = R = pi(R), m−1 = R−1S−1. (3.7)

4. Factorizing Cl(1, 1)

The isomorphism Cl(2, 0) ∼= Cl(1, 1) with

1 = 1, E1 = e1, E2 = e12, E12 = e2, (4.1)

where {e1, e2} is the orthonormal basis of R2, and {E1, E2} is the orthonormal
basis of R1,1, allows to factorize m ∈ Cl(1, 1) by first isomorphically mapping
it to Cl(2, 0), factorizing it there (as shown above in Section 3), and map the
factorized result back to Cl(1, 1).

We get

m = m0 +m1E1 +m2E2 +m12E12
(4.1)
= m0 +m1e1 +m2e12 +m12e2. (4.2)

To factorize this multivector m0 + m1e1 + m2e12 + m12e2 in Cl(2, 0), we
simply exchange the places of m2 and m12 in (3.1) to (3.7). And finally
we map the factorization obtained back to Cl(1, 1) with (4.1). The inverse
will be with m = eα0m′ : m−1 = eα0m′. Viewed strictly in Cl(1, 1), the
exponential corresponding to eα1u will no longer have a single grade one
vector as argument, but a sum of vector plus bivector.

5. Factorization of Cl(0, 2)

Because of the isomorphism to quaternions Cl(0, 2) ∼= H the result is straight
forward

m = m0 +m1e1 +m2e2 +m12e12 = |m|eα
′
2i

′
= eα0eα

′
2i

′
,

|m|2 = mm = m2
0 +m2

1 +m2
2 +m2

12, α0 = ln(|m|),

i′ =
m1e1 +m2e2 +m12e12√

m2
1 +m2

2 +m2
12

,

α′2 = atan2(
√
m2

1 +m2
2 +m2

12/|m|, m0/|m|),

m−1 = m/|m| = e−α0e−α
′
2i

′
. (5.1)
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Indeed any factorization known for quaternions H can be realized via the
isomorphism Cl(0, 2) ∼= H in Cl(0, 2) as well.

Furthermore, we can factorize m ∈ Cl(0, 2) in exponentials specified by
grade

m = eα0eα1ueα2e12

= eα0(cosα1 cosα2 + u sinα1 cosα2 + u e12 sinα1 sinα2 + e12 cosα1 sinα2),

u2 = −1, u ∈ R0,2, (5.2)

by computing

α0 = ln(|m|), α1 = arccos
(√m2

0 +m2
12

|m|

)
,

α2 = atan(m12/m0), u =
m1e1 +m2e2
|m| sinα1

e−α2e12 . (5.3)

For the factors S and R and for the inverse of m we then have, respectively,

S = eα0eα1u, S̃ = S, S−1 = e−α0e−α1u,

R = eα2e12 , R−1 = R̃ = R = pi(R) = e−α2e12 ,

m−1 = R−1S−1. (5.4)

And no matter what factorization we choose (via isomorphism to quater-
nions, or directly as in (5.2)), after defining m′ = e−α0m, we can always
express the inverse multivector by

m−1 = m/|m| = e−α0 m′−1, m′−1 = m′ = pi(m′). (5.5)

6. Factorization in Cl(3, 0) and Cl(0, 3)

Unit vectors u, unit bivectors i2, and the central unit pseudoscalar i = e123
in Cl(3, 0) square to

u2 = +1, i22 = −1, i2 = −1. (6.1)

Unit vectors u, unit bivectors i2, and the central unit pseudoscalar i = e123
in Cl(0, 3) square to

u2 = −1, i22 = −1, i2 = +1. (6.2)

The even subalgebras of both Cl(3, 0) and Cl(0, 3) are isomorphic to quater-
nions H: Cl2(3, 0) ∼= Cl2(0, 3) ∼= H. That means general multivectors m in
Cl(3, 0) and Cl(0, 3) can always be represented as complex (i2 = −1) or
hyperbolic (i2 = +1) (bi)quaternions:

m = p+ iq, (6.3)

where in both cases p and q are (isomorphic to) quaternions

p = ape
αpip , q = aqe

αqiq , ap, aq ∈ R+
0 , i2p = i2q = −1, (6.4)

with bivectors ip, iq ∈ Cl2(3, 0) or ∈ Cl2(0, 3).
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Remark 6.1. Note that for aq = 0 or ap = 0 the factorization is already
achieved in the form of

m = ape
αpip = eα0eαpip , α0 = ln ap,

or m = iaqe
αqiq = ieα

′
0eαqiq , α′0 = ln aq. (6.5)

In the rest of this Section, we therefore assume that both ap 6= 0 and aq 6= 0.

Clifford conjugation maps

ip → −ip, iq → −iq, i→ i. (6.6)

Clifford conjugation applied to (6.4) is equivalent to quaternion conjugation.
Therefore we obtain

mm = (p+ iq)(p+ iq) = pp+ i2qq + i2 1
2 (pq + qp)

= a2p + i2a2q + i2apaq cos(p, q) = r0 + ir3 ∈ R + iR, (6.7)

and cos(p, q) being the cosine of the four-dimensional (4D) angle between
quaternions p, q, because 1

2 (pq + qp) expresses the inner (or scalar) prod-
uct in four dimensions for quaternions. We thus have | cos(p, q)| ≤ 1, which
means for the hyperbolic case (i2 = +1): r0 = a2p + a2q ≥ |2apaq| ≥ |r3| =
2|apaq cos(p, q)|.

We can always factorize mm and compute its square root as

mm = e2α0e2α3i,
√
mm = eα0eα3i, (6.8)

with

eα0 = (r20 − i2r23)
1
4 , α0 = 1

4 ln(r20 − i2r23), (6.9)

and

α3 =
1

2

{
atan2(r3, r0) for m ∈ Cl(3, 0)
atanh(r3/r0) for m ∈ Cl(0, 3)

. (6.10)

Next, we devide m by the central square root
√
mm and obtain the normed

multivector

M =
m√
mm

= me−α0e−α3i, (6.11)

with unit norm

MM = 1. (6.12)

The resulting form of M will therefore be (similar to (6.3) and (6.4))

M = P +Qi = aP e
αP iP + iaQe

αQiQ = eαP iP (aP + iaQe
−αP iP eαQiQ), (6.13)

with

MM = 1 = a2P + i2a2Q. (6.14)

The two quaternions P and Q can be computed explicitly as

P = 〈M〉even, Q = 〈M〉odd i−1, (6.15)

with amplitudes

aP =
√
PP , aQ =

√
QQ, (6.16)
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unit bivectors

|〈P 〉2| =
√
−〈P 〉22, iP =

〈P 〉2
|〈P 〉2|

, (6.17)

|〈Q〉2| =
√
−〈Q〉22, iQ =

〈Q〉2
|〈Q〉2|

, (6.18)

and phase angles

αP = atan2(〈P 〉2i−1P , 〈P 〉0), αQ = atan2(〈Q〉2i−1Q , 〈Q〉0), (6.19)

Computation of MM yields

MM = eαP iP (aP + iaQe
−αP iP eαQiQ)(aP + iaQe

−αQiQeαP iP )e−αP iP

= eαP iP
(
a2P + i2a2Q + iaPaQ(e−αP iP eαQiQ + e−αQiQ)eαP iP

)
e−αP iP

= a2P + i2a2Q + iaPaQe
αP iP (e−αP iP eαQiQ + e−αQiQeαP iP )e−αP iP .

(6.20)

Because MM = a2P + i2a2Q = 1 we must have the second term in round
brackets to be zero

e−αP iP eαQiQ + e−αQiQeαP iP = e−αP iP eαQiQ + (e−αP iP eαQiQ)∼ = 0. (6.21)

We now analyze M further

M = aP e
αP iP + iaQe

αQiQ = eαP iP (aP + aQi(e
−αP iP eαQiQ − 0))

(6.21)
= eαP iP

(
aP + aQi(e

−αP iP eαQiQ − 1
2e
−αP iP eαQiQ − 1

2 (e−αP iP eαQiQ)∼)
)

= eαP iP
(
aP + aQi

1
2 (e−αP iP eαQiQ − (e−αP iP eαQiQ)∼)

)
, (6.22)

where the term

1
2 (e−αP iP eαQiQ − (e−αP iP eαQiQ)∼) = 〈e−αP iP eαQiQ〉2 (6.23)

is a pure bivector. Multiplied with trivector i we get a vector with length ω
and unit direction u, u2 = 1 for Cl(3, 0), and u2 = −1 for Cl(0, 3),

ωu = i〈e−αP iP eαQiQ〉2 = i
aP
aQ

〈
P−1Q

〉
2
. (6.24)

Thus in full generality, the multivector M can be represented by

M = eαP iP (aP +aQ ωu) = (aP +aQ ωu
′)eαP iP , u′ = eαP iP ue−αP iP . (6.25)

Note that unit vector u′, is simply a rotated version of u. Computing

MM = eαP iP (aP +aQωu)(aP −aQωu)e−αP iP = . . . = a2P −u2a2Qω2, (6.26)

shows by comparison with (6.14), that ω2 = 1, i.e. ω = 1. Without restriction
of generality, we can therefore express

M = eαP iP (aP + aQu) = (aP + aQu
′)eαP iP ,

M M = a2P − u2a2Q = a2P − u′2a2Q = 1, (6.27)
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Table 1. Multiplication table of Cl(3, 0).

1 e1 e2 e3 e12 e23 e31 e123
1 1 e1 e2 e3 e12 e23 e31 e123
e1 e1 1 e12 −e31 e2 e123 −e3 e23
e2 e2 −e12 1 e23 −e1 e3 e123 e31
e3 e3 e31 −e23 1 e123 −e2 e1 e12
e12 e12 −e2 e1 e123 −1 −e31 e23 −e3
e23 e23 e123 −e3 e2 e31 −1 −e12 −e1
e31 e31 e3 e123 −e1 −e23 e12 −1 −e2
e123 e123 e23 e31 e12 −e3 −e1 −e2 −1

We thus end up with

M = eα2i2eα1u = eα1u
′
eα2i2 ,

α1 =

{
atanh(aQ/aP ) for Cl(3, 0)
atan2(aQ, aP ) for Cl(0, 3)

}
, α2 = αP , i2 = iP . (6.28)

In total, we therefore have

m = M
√
mm = eα2i2eα1ueα0eα3i

= eα0eα2i2eα1ueα3i = eα0eα1u
′
eα2i2eα3i. (6.29)

We can further write

m = SR, S = S̃ = eα0eα1u
′
, S−1 = e−α0e−α1u

′
,

R = eα2i2eα3i, R−1 = R̃ = e−α2i2e−α3i,

m−1 = R−1S−1. (6.30)

7. Factorization of Cl(1, 2)

The results of the previous section lend themselves to factorize multivectors
in Cl(1, 2) ∼= Cl(3, 0), based on the isomorphism Cl(1, 2) ∼= Cl(3, 0). We
list the multiplication tables, Table 1 for Cl(3, 0) and Table 2 for Cl(1, 2).
Cl(1, 2) ∼= Cl(3, 0) can be verified from Tables 1 and 2, which can be brought
into agreement by indentifying

1 = 1, E1 = e1, E2 = e12, E3 = e31,

E12 = e2, E23 = e23, E31 = e3, E123 = e123, (7.1)

where {E1, E2, E3} is the orthonormal vector basis of R1,2 generating Cl(1, 2),
and {e1, e2, e3} is the orthonormal vector basis of R3 generating Cl(3, 0).

Factorization of multivectors m ∈ Cl(1, 2) can be achieved by mapping
m via the isomorphism (7.1) to its isomorphic counterpart m′ ∈ Cl(3, 0),
then factorize m′ in Cl(3, 0), and finally map the factorized form back with
applying (7.1) again in reverse. In particular the unit vector u ∈ Cl(3, 0) and
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Table 2. Multiplication table of Cl(1, 2) ∼= Cl(3, 0).

1 E1 E12 E31 E2 E23 E3 E123

1 1 E1 E12 E31 E2 E23 E3 E123

E1 E1 1 E2 −E3 e2 E123 −E31 E23

E12 E12 −E2 1 E23 −E1 E31 E123 E3

E31 E31 E3 −E23 1 E123 −E12 E1 E2

E2 E2 −E12 E1 E123 −1 −E3 E23 −E31

E23 E23 E123 −E31 E12 E3 −1 −E2 −E1

E3 E3 E31 E123 −E1 −E23 E2 −1 −E12

E123 E123 E23 E3 E2 −E31 −E1 −E12 −1

the unit bivector i2 in (6.29) become

u = u1e1 + u2e2 + u3e3 = u1E1 + u2E12 + u3E31, (7.2)

i2 = b12e12 + b23e23 + b31e31 = b12E2 + b23E23 + b31E3, (7.3)

with u21 + u22 + u23 = 1, and b212 + b223 + b231 = 1.
Viewed strictly in Cl(1, 2), the exponentials corresponding to eα1u and

eα2i2 will therefore no longer have a single grade one vector or a single grade
two bivector as respective arguments, but in both cases a sum of vector plus
bivector will appear as arguments.

8. Explicit approach for Cl(2,1)

See Appendix A for the details of the isomorphism Cl(2, 1) ∼= Cl(2, 0) ⊗
Cl(1, 0) and the role of idempotents in Cl(2, 1).

Let m ∈ Cl(2, 1), be a general multivector. We assume a factorization
into two factors m = RS with distinct symmetries under the reverse involu-
tion

R̃ = R−1, R̃R = RR̃ = 1, S̃ = S. (8.1)

We intend to write R and S in terms of exponential functions as

R = eα2i2h2(i2)eα3ih3(i), S = eα0eα1uh1(u), (8.2)

with four real phase angles {α0, α1, α2, α3} ∈ R, unit vector u ∈ Rp,q, unit
bivector i2 ∈ Cl2(p, q), and unit pseudoscalar i = e123, i2 = 1. The four phase
angles, the vector u and the bivector i2 can be determined as explained below.

Remark 8.1. Because hyperbolic elements with positive square, like u = e1,
i2 = e23 or i = e123 may occur, the factorization may require additional fac-
tors {±1,±u,±i2,±i}, encoded in {h1(u), h2(i2), h3(i)}, h1(u)2 = h2(i2)2 =
h3(i)2 = 1, h1(u)−1 = h1(u), h2(i2)−1 = h2(i2), h3(i)−1 = h3(i), needed
to cover all four segments of the respective hyperbolic plane, divided by the
asymptotic lines through the origin in the directions 1± u, 1± i2, and 1± i.

Remark 8.2. After establishing the explicit forms of R and S in (8.2) as
detailed below, the computation of the inverse of m is straightforward, as
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long as m is not itself a divisor of zero:

m−1 = S−1R−1, R−1 = e−α2i2h2(i2)e−α3ih3(i) = e−α3ih3(i)e−α2i2h2(i2),

S−1 = e−α0e−α1uh1(u). (8.3)

First, we compute the product of the reverse of m with m

m̃m = (̃RS)RS = S̃R̃RS = S̃S = S2 = a+ bu, u2 =

 −1,
0,
+1.

, (8.4)

where a, b ∈ R. We assume that S2 6= 0. But note that there are multivectors
with zero square, e.g. e1+e3, (e1+e3)∼ = e1+e3, (e1+e3)∼(e1+e3) = e21+e23 =
1−1 = 0. Therefore for S2 = 0, m will have null vectors like e1+e3 as factors.
These could be removed by contraction with (e1 − e3)/2 = pi(e1 + e3)/2,
because (e1 + e3)c(e1 + e3)/2 = (e21 − e23)/2 = (1 + 1)/2 = 1.

Note that m̃m = S2 is self reverse. That means it must be composed of
scalars and vectors. The vector part bu = 〈S2〉1 of S2 yields for (bu)2 6= 0,

u =
〈S2〉1
|〈S2〉1|

. (8.5)

For unit vector u, u2 = −1, we compute

e4α0 = a2 + b2, α0 = 1
4 ln(a2 + b2), α1 = 1

2atan2(b, a), (8.6)

S2 = e2α0e2α1u = e2α0(cos(2α1) + u sin(2α1)), S = eα0eα1u, (8.7)

R = mS−1 = me−α0e−α1u, R̃R = 1. (8.8)

The combination1 α1u for u2 = 0 can be defined as

α1u = 1
2

bu

a
, α0 = 1

2 ln(a), S2 = e2α0e2α1u = e2α0(1 + 2α1u), (8.9)

S = eα0eα1u, R = mS−1 = me−α0e−α1u, R̃R = 1. (8.10)

For u2 = 1 we can always rewrite S2 ∈ R + uR in one of four forms

S2 = ±(β + αu) or S2 = ±(β + αu)u, (8.11)

such that β > |α| ≥ 0. Then we can determine

e4α0 = β2 − α2, α0 = 1
4 ln(β2 − α2), α1 = 1

2atanh(α/β), (8.12)

S2 = e2α0e2α1uh1(u), h1(u) = ±1 or ± u. (8.13)

We will divide m only by eα0eα1u, which results in

R = me−α0e−α1u, R̃R = h1(u). (8.14)

1We can exclude the case of S = α+ a, α ∈ R, a ∈ Rp,q , S2 = 〈S2〉1 6= 0, S4 = 0, because
S2 = (α + a)2 = α2 + 2αa + a2 = 2αa means α2 = −a2. And if a would square to zero

(necessary for S4 = 0), then also the real scalar α would have zero square, therefore α
itself would be zero. But then S = a, and S2 = 0, contrary to the assumption S2 6= 0.
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The R thus obtained can be expanded in the following way2, abbrevi-
ating ch = cosh, sh = sinh,

R = eα3ih3(i)eα2i2h2(i2)

= (chα3 + i shα3)h3(i)

 cos(α2) + i2 sin(α2), h2(i2) = 1, 〈R〉22 < 0,
1 + α2i2, h2(i2) = 1, 〈R〉22 = 0,(
ch(α2) + i2 sh(α2)

)
h2(i2), 〈R〉22 > 0,

(8.15)

because i2 = +1 in Cl(2, 1). For brevity, we also use the notation c3 =
cosh(α3) and s3 = sinh(α3). Further expanding R gives (ordered by grade
from 0 to 3) for 〈R〉22 < 0

R =
(
c3 cosα2 + s3 sin(α2) ii2 + c3 sin(α2)i2 + s3 cos(α2)i

)
h3(i), (8.16)

for 〈R〉22 > 0

R =
(
c3 chα2 + s3 sh(α2) ii2 + c3 sh(α2)i2 + s3 ch(α2)i

)
h3(i)h2(i2), (8.17)

and for 〈R〉22 = 0

R = ch(α3) + sh(α3)α2 i2 i+ ch(α3)α2 i2 + i sh(α3). (8.18)

For 〈R〉22 6= 0 we can compute

i2 =
〈R〉2
|〈R〉2|

. (8.19)

This allows us to compute for 〈R〉22 < 0

tanα2 =
〈R〉2i−12

〈R〉0
, α2 = atan2

(
〈R〉2i−12 , 〈R〉0

)
. (8.20)

We can immediately divide R by eα2i2 to obtain a linear combination of scalar
and trivector, that can be expressed as

Re−α2i2 =
{
b+ ai or (b+ ai)i

}
= (b+ ai)h3(i), (8.21)

such that b > |a| ≥ 0, and h3(i) = 1 or h3(i) = i. Note that an overall sign
will already be accounted for in eα2i2 , i22 = −1. Next we compute

α3 = atanh(a/b), (8.22)

and finally obtain the total factorization

R = eα2i2

{
eα3i or
eα3i i

}
= eα2i2 eα3i h3(i) . (8.23)

For 〈R〉22 = 0 it is easier to first analyze the combination 〈R〉0 + 〈R〉3 in
the form of

〈R〉0 + 〈R〉3 =

{
±(β + αi) or
±(β + αi)i

}
= (β + αi)h3(i), (8.24)

2The case of 〈R〉3 = 0 can only occur for α3 = 0, and then simply chα3 = cosh 0 = 1,
shα3 = sinh 0 = 0.
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such that β > |α| ≥ 0, and four possible values for h3(i) = ±1 or h3(i) = ±i.
We then obtain

α3 = atanh(α/β), 〈R〉0 + 〈R〉3 =

{
± eα3i or
±i eα3i

}
= eα3ih3(i). (8.25)

Next, we divide R by the central factor 〈R〉0 + 〈R〉3 to obtain

R
(
〈R〉0 + 〈R〉3

)−1
= 1 + α2i2, α2i2 =

〈
R(〈R〉0 + 〈R〉3)−1

〉
2
. (8.26)

Therefore for 〈R〉22 = 0 we obtain the total factorization of R as

R = (1 + α2i2)

{
± eα3i or
±i eα3i

}
= (1 + α2i2)eα3ih3(i) = eα2i2eα3ih3(i). (8.27)

For 〈R〉22 > 0 we can ignore a total sign common to 〈R〉0 and 〈R〉2,
which can be taken into account later in connection with the eα3i factor. So
we assume without loss of generality, that we can bring 〈R〉0 + 〈R〉2 in the
following form

〈R〉0 + 〈R〉2 =
{
a+ bi2 or (a+ bi2)i2

}
= (a+ bi2)h2(i2), (8.28)

with a > |b| ≥ 0, and h2(i2) = 1 or h2(i2) = i2. We can then compute the
coshα3-factor common to 〈R〉0 and 〈R〉2 by

coshα3 =
√
a2 − b2. (8.29)

Furthermore we get

α2 = atanh(b/a), (8.30)

and hence

〈R〉0 + 〈R〉2 = ± coshα3

{
eα2i2 ,
eα2i2 i2 .

}
= ± coshα3 e

α2i2 h2(i2). (8.31)

Next we divide by eα2i2h2(i2) to obtain

Re−α2i2h2(i2) =

{
±(β + αi), or
±(β + αi) i

}
= (β + αi)h3(i), (8.32)

such that β > |α| ≥ 0, and h3(i) = ±1 or h3(i) = ±i. Using α, β and h3(i)
we compute

α3 = atanh(α/β), (β + αi)h3(i) = eα3ih3(i). (8.33)

Thus the full factorization of R for 〈R〉22 > 0 results in

R = eα2i2eα3i h2(i2)h3(i). (8.34)

In this way we have been able to explicitly compute the four real phase
angles {α0, α1, α2, α3} ∈ R, unit vector u ∈ Rp,q, unit bivector i2 ∈ Cl2(p, q).
For the special cases of a null vector u 6= 0, u2 = 0, we only obtain the



Polar Decomposition 13

product combination α1u. Similarly for a null bivector i2 6= 0, i22 = 0, we
only obtain the product combination α2i2.

m = eα2i2eα3i h2(i2)h3(i)eα0eα1u h1(u)

= eα0 eα2i2 h2(i2) eα1u h1(u) eα3i h3(i). (8.35)

9. Conclusion

In this paper we have considered general elements of all Clifford algebras
C(p, q), p + q ≤ 3, and studied multivector equivalents of polar decomposi-
tions and factorization into products of exponentials, where the exponents
are frequently blades of grades zero (scalar) to n (pseudoscalar). Depending
on the algebra, we used methods of direct computation or applied several
isomorphisms, to simplify the computation at hand or make use of known
results in isomorpic representations. It may be possible in the future to ex-
tend this approach to even higher dimensional Clifford algebras. The present
work can e.g. be applied in the study of Lipschitz versors, see e.g. E.4.2 in
[19], pinor and spinor groups, etc.

Acknowledgments

EH wishes to thank God: In the beginning God created the heavens and the
earth [6].

References

[1] R. Ab lamowicz, B. Fauser, On the transposition anti-involution in real Clifford
algebras I: the transposition map, Journal of Linear and Multilinear Algebra,
59(12) (2011) pp. 1331–1358. See also: https://arxiv.org/abs/1005.3554

[2] S. Buchholz, K. Tachibana, E. Hitzer, Optimal Learning Rates for Clifford
Neurons. In: de Sá J.M., Alexandre L.A., Duch W., Mandic D. (eds) Ar-
tificial Neural Networks – ICANN 2007. Lecture Notes in Computer Sci-
ence, vol 4668. Springer, Berlin, Heidelberg, 864–873 (2007). DOI: 10.1007/
978-3-540-74690-4_88

[3] S. Buchholz, E. Hitzer, K. Tachibana, Coordinate independent update formulas
for versor Clifford neurons, Proc. Joint 4th Int. Conf. on Soft Comp. and Intel.
Sys., and 9th Int. Symp. on Adv. Intel. Sys., 17–21 Sep. 2008, Nagoya, Japan,
pp. 814–819 (2008). DOI: 10.14864/softscis.2008.0.814.0

[4] L. Dorst, R. Valkenburg, Square Root and Logarithm of Rotors in 3D Conformal
Geometric Algebra Using Polar Decomposition, in L. Dorst, J. Lasenby (eds.),
Guide to Geometric Algebra in Practice, pp. 81–104, Springer, London, 2011.

[5] M.I. Falcao, H.R. Malonek, Generalized Exponentials through Appell sets in
Rn+1 and Bessel functions, AIP Conference Proceedings, 936, (2007) pp. 738–
741.

[6] Genesis chapter 1 verse 1, in The Holy Bible, English Standard Version, Cross-
way Bibles, Good News Publishers, Wheaton, Illinois, 2001.



14 Eckhard Hitzer and Stephen J. Sangwine

[7] D. Hestenes, and G. Sobczyk, Clifford Algebra to Geometric Calculus: A Unified
Language for Mathematics and Physics, Springer, Heidelberg, 1984.

[8] E. Hitzer, Creative Peace License, http://gaupdate.wordpress.com/2011/

12/14/the-creative-peace-license-14-dec-2011/

[9] E. Hitzer, R. Ab lamowicz, Geometric Roots of −1 in Clifford Algebras Cl(p, q)
with p + q ≤ 4. Adv. Appl. Clifford Algebras, 21(1), (2011) pp. 121–144,
DOI: 10.1007/s00006-010-0240-x. Available as preprint: http://arxiv.org/

abs/0905.3019 .

[10] E. Hitzer, Introduction to Clifford’s Geometric Algebra, Journal of the Society
of Instrument and Control Engineers, Vol. 51, No. 4, pp. 338-350, (April 2012).
Available as preprint: http://arxiv.org/abs/1306.1660v1 .

[11] E. Hitzer, J. Helmstetter, and R. Ab lamowicz, Maple worksheets created with
CLIFFORD for a verification of results in [12], http://math.tntech.edu/rafal/
publications.html ( c©2012).

[12] E. Hitzer, J. Helmstetter and R. Ab lamowicz, Square Roots of −1 in Real
Clifford Algebras, in: E. Hitzer and S.J. Sangwine (Eds.), Quaternion and
Clifford Fourier Transforms and Wavelets, Trends in Mathematics (TIM) 27,
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Appendix A. Properties of Cl(2, 1)

A.1. The isomorphism Cl(2, 1) ∼= Cl(2, 0)⊗ Cl(1, 0)

The multiplication tables for Cl(2, 1) (Table 3) and tensor product Cl(2, 0)⊗
Cl(1, 0) (Table 4) are seen to be isomorphic by indentifying

(1, 1) = 1, (E1, 1) = e1, (E2, 1) = e2, (−E12, h) = e3,

(E12, 1) = e12, (E1, h) = e23, (E2, h) = e31, (1, h) = e123, (A.1)
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Table 3. Multiplication table of Cl(2, 1).

1 e1 e2 e3 e12 e23 e31 e123
1 1 e1 e2 e3 e12 e23 e31 e123
e1 e1 1 e12 −e31 e2 e123 −e3 e23
e2 e2 −e12 1 e23 −e1 e3 e123 e31
e3 e3 e31 −e23 −1 e123 e2 −e1 −e12
e12 e12 −e2 e1 e123 −1 −e31 e23 −e3
e23 e23 e123 −e3 −e2 e31 1 e12 e1
e31 e31 e3 e123 e1 −e23 −e12 1 e2
e123 e123 e23 e31 −e12 −e3 e1 e2 1

Table 4. Multiplication table of Cl(2, 1) ∼= Cl(2, 0)⊗ Cl(1, 0).

(1, 1) (E1, 1) (E2, 1) (−E12, h) (E12, 1) (E1, h) (E2, h) (1, h)

(1, 1) (1, 1) (E1, 1) (E2, 1) (−E12, h) (E12, 1) (E1, h) (E2, h) (1, h)

(E1, 1) (E1, 1) (1, 1) (E12, 1) (−E2, h) (E2, 1) (1, h) (E12, h) (E1, h)

(E2, 1) (E2, 1) (−E12, 1) (1, 1) (E1, h) (−E1, 1)(−E12, h) (1, h) (E2, h)
(−E12, h)(−E12, h) (E2, h) (−E1, h) (−1, 1) (1, h) (E2, 1) (−E1, 1)(−E12, 1)

(E12, 1) (E12, 1) (−E2, 1) (E1, 1) (1, h) (−1, 1) (−E2, h) (E1, h) (E12, h)

(E1, h) (E1, h) (1, h) (E12, h) (−E2, 1) (E2, h) (1, 1) (E12, 1) (E1, 1)

(E2, h) (E2, h) (−E12, h) (1, h) (E1, 1) (−E1, h)(−E12, 1) (1, 1) (E2, 1)

(1, h) (1, h) (E1, h) (E2, h) (−E12, 1) (E12, h) (E1, 1) (E2, 1) (1, 1)

where {e1, e2, e3} ∈ R2,1 generate Cl(2, 1), {E1, E2} ∈ R2 generate Cl(2, 0),
and h ∈ R1 generates Cl(1, 0).

That means a multivector in Cl(2, 1) can be expressed via the isomor-
phism as

m = m0 +m1e1 +m2e2 +m3e3 +m12e12 +m23e23 +m31e31 +m123e123

= m0 +m1e1 +m2e2 +m12e12 + (m123 +m23e1 +m31e2 −m3e12)e123

→
m′ = m0(1, 1) +m1(E1, 1) +m2(E2, 1) +m12(E12, 1)

+m123(1, h) +m23(E1, h) +m31(E2, h) +m3(−E12, h)

= (m0 +m1E1 +m2E2 +m12E12, 1)

+ (m123 +m23E1 +m31E2 −m3E12, h)

= (p, 1) + (q, h), (A.2)

with p, q ∈ Cl(2, 0)

p = m0 +m1E1 +m2E2 +m12E12,

q = m123 +m23E1 +m31E2 −m3E12. (A.3)

A.2. Taking idempotents of Cl(2, 1) into account and multivector norms

Finally, we add some considerations that take the idempotent structure of
Cl(2, 1) into account. Using Clifford conjugation (combining reversion and
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grade involution) allows to compute, see (6.2) in [13],

mm = r0 + ir3 ∈ R + iR. (A.4)

For Cl(2, 1) the pseudoscalar squares to i2 = +1, and computation
of the square root of mm requires r0 > 0 and |r3| ≤ r0. The idempotent
representation

id+ =
1 + i

2
, id− =

1− i
2

, id+ + id− = 1, id+ − id− = i,

id2+ = id+, id2− = id−, id+id− = id−id+ = 0, (A.5)

leads to

r0 + ir3 = r0(id+ + id−) + r3(id+ − id−) = (r0 + r3)id+ + (r0 − r3)id−

=
√
r0 + r3

2
id+ +

√
r0 − r3

2
id−

= (
√
r0 + r3id+ +

√
r0 − r3id−)2 =

√
r0 + ir3

2
. (A.6)

And the two coefficient square roots
√
r0 + r3,

√
r0 − r3, can only be com-

puted if r0 +r3 ≥ 0 and r0−r3 ≥ 0, that means r0 ≥ |r3| ≥ 0. Graphically, in
the r0, r3-plane, the square roots of r0+ir3 can be computed in the cone (seg-
ment of the plane, symmetric domain around r0-axis, r0 > 0) with r0 ≥ |r3|,
if we want to avoid the use of complex square roots.

Assuming for Cl(2, 1), that r0 ≥ |r3| is fulfilled, we can compute
√
mm =

√
r0 + r3id+ +

√
r0 − r3id−

= 1
2 (
√
r0 + r3 +

√
r0 − r3) + 1

2 (
√
r0 + r3 −

√
r0 − r3)i. (A.7)

This can be represented as exponential by computing

eα0 =
(
r20 − r23

) 1
4 , α0 = 1

4 ln
(
r20 − r23

)
, (A.8)

α3 = 1
2 atanh(r3/r0),

√
mm = eα0eα3i. (A.9)

Since r0 ≥ |r3| is restrictive to only one of four segments in the hyper-
bolic r0, r3-plane, it is of interest to investigate the other three segments of
the r0, r3-plane. We now show, that even for i2 = +1, the linear combination
r0 + ir3 always can be cast into exponential form and additional factors ±1
or ±i as follows.

For r3 = 0, we will either have r0 = 0 (origin of the r0, r3-plane, then
m has zero determinant, and also no inverse), or we can represent the real
scalar (on the r0-axis) as mm = r0 = ±e2α0 .

The more interesting case r3 6= 0, assuming 0 < α < β, leads to one of
the following five situations

• mm = ±αi (here r0 = 0)
• mm = β ± αi
• mm = −β ∓ αi = −(β ± αi)
• mm = ±α+ βi = (β ± αi)i
• mm = ∓α− βi = −(β ± αi)i



Polar Decomposition 17

For the first item, we can compute e2α0 = α, α0 = 1
2 ln(α). For the remaining

four items we can always compute α3 = 1
2atanh(±α/β) and α0 = 1

4 ln(β2 −
α2). We can therefore represent mm, in one of the following three forms

mm = ±i e2α0 or (A.10)

mm = ± e2α0(cosh(2α3) + i sinh(2α3)) = ± e2α0e2α3i or (A.11)

mm = ±i e2α0(cosh(2α3) + i sinh(2α3)) = ±i e2α0e2α3i. (A.12)

Since i with i2 = +1 has no square root, only the second line allows to directly
compute the square root of mm. Note, that the negative sign in −e2α0e2α3i

would necessitate the use of the complex imaginary unit I ∈ C, I2 = −1,
which would necessarily drop out in the total factorization, because m is
assumed to be real from the very beginning. We observe, that the third line
subsumes the first when α3 = 0.

The square root of the exponential factors e2α0e2α3i can always be taken,
using α0 and α3. We may therefore define for i2 = +1 the special norm

|m|+ =
√
e2α0e2α3i = eα0eα3i. (A.13)

Division of m by this special norm leads to

M+ =
m

|m|+
, M+M+ = h3(i) =

{
±1,
±i. (A.14)

Finally, some further insights, which may be worth noting, can be gained
by changing again to the isomorphism view point Cl(2, 1) ∼= Cl(2, 0) ⊗
Cl(1, 0). Every m ∈ Cl(2, 1) can be written as

m = m0 +m1e1 +m2e2 +m3e3 +m12e12 +m23e23 +m31e31 +m123e123

= m0 +m1e1 +m2e2 +m12e12 + (m123 +m23e1 +m31e2 −m3e12)e123,
(A.15)

or with p, q ∈ Cl(2, 0),

p = m0 +m1e1 +m2e2 +m12e12, (A.16)

q = m123 +m23e1 +m31e2 −m3e12, (A.17)

as hyperbolic (i2 = 1) linear combination of two multivectors in Cl(2, 0) with

m = p+ iq. (A.18)

The product mm gives

mm = pp+ qq + 2i 12 (pq + qp), (A.19)

where

pp = p20 + p212 − p21 − p22 = pp, qq = qq, (A.20)

1
2 (pq + qp) = p0q0 + p12q12 − p1q1 − p2q2 = 1

2 (pq + qp). (A.21)

Therefore we also have

mm = pp+ qq + 2i 12 (pq + qp) = mm. (A.22)
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A non-zero product mm can always be represented as

mm = (β + αi)

{
±1 or
±i

}
= (β + αi)h3(i), (A.23)

with β > |α| ≥ 0, and h3(i) = ± or h3(i) = ±i.
For h3(i) = 1, we have

mm = e2α0e2α3i,
√
mm = eα0eα3i, (A.24)

and obtain the multivector factor M of unit norm (using Clifford conjugation)

M =
m√
mm

, MM = 1. (A.25)

We can express M as
M = P +Qi, (A.26)

with

P = M0 +M1e1 +M2e2 +M12e12, (A.27)

Q = M123 +M23e1 +M31e2 −M3e12, (A.28)

and because of MM = MM = 1 have

PP +QQ = 1, 1
2 (PQ+QP ) = 1

2 (PQ+QP ) = 0, (A.29)

that means
PQ+ PQ = PQ+ PQ = 0. (A.30)

Assuming that PP is not zero (i.e. P is invertible) we can rewrite

M = P (1 + iP−1Q) = P (1 + i
1

PP
PQ) = P (1 + i

1

PP
(PQ− 0))

= P (1 + i
1

PP
(PQ− 1

2PQ−
1
2QP ))

= P (1 + i
1

PP
1
2 (PQ−QP )). (A.31)
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