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Abstract

Newton’s Law of Gravitational Force together with his Second and Third Laws of Motion implies that
the inverse of the ratio of the acceleration magnitudes of the two stars of a binary system equals their
mass ratio, and that the difference of their accelerations is proportional to their mass sum as well as being
inversely proportional to the square of their separation, which causes their vector separation to trace out
an elliptical orbit. The period and major axis length of that elliptical orbit yield the two stars’ mass sum.
The complete orbit’s data isn’t needed; five or more of the points which lie on an ellipse determine it,
and the orbit sweeps out the area enclosed by that ellipse at a constant rate.

The Newtonian gravitational accelerations of the stars of a binary system

Newton’s Law of Gravitational Force together with his Second Law of Motion implies the following pair of
coupled equations of motion for the two stars of a binary system,

m1r̈1 = −Gm1m2(r1 − r2)/|r1 − r2|3 and m2r̈2 = −Gm2m1(r2 − r1)/|r2 − r1|3, (1a)

which, since the forces −Gm1m2(r1−r2)/|r1−r2|3 and −Gm2m1(r2−r1)/|r2−r1|3 are equal and opposite,
is consonant with Newton’s Third Law of Motion. Therefore summing this pair of equations yields simply,

m1r̈1 +m2r̈2 = 0 ⇒ (m1/m2)r̈1 = −r̈2 ⇒ (m1/m2) = (|r̈2|/|r̈1|), (1b)

so the ratio (m1/m2) of the masses of the two stars of a binary system is equal to the inverse (|r̈2|/|r̈1|) of
the ratio of the magnitudes |r̈1| and |r̈2| of their opposed-direction accelerations r̈1 and r̈2.

The two Eq. (1a) coupled Newtonian equations of motion can also be written,

r̈1 = −Gm2(r1 − r2)/|r1 − r2|3 and r̈2 = −Gm1(r2 − r1)/|r2 − r1|3, (1c)

which shows that the acceleration of each star is independent of its own mass, in accord with the gravitational
principle of equivalence. Subtracting this pair of equations yields the equation of motion for the vector
separation r = (r1 − r2) of the two stars,

r̈ = −GMr/|r|3, where r
def
= (r1 − r2) and M

def
= (m1 +m2), (1d)

which purely for reasons of familiarity of terminology, can also conveniently be presented as,

mr̈ = −GmMr/|r|3, where m
def
= m1m2/(m1 +m2) = m1m2/M has the name “reduced mass”. (1e)

Since in Eq. (1e), mM = m1m2 and r = (r1−r2), the Eq. (1e) “force” −GmMr/|r|3 is equal to the Eq. (1a)
force −Gm1m2(r1 − r2)/|r1 − r2|3. The Eq. (1e) presentation of the Eq. (1d) vector-separation equation of
motion sanctions the use of familiar terminology such as “force” for −GmMr/|r|3, “angular momentum” L
for m(r× ṙ) and “energy” E for m(|ṙ|2/2−GM/|r|).

In the next section we find, by applying Eq. (1d), that the vector separation r = (r1−r2) of the two stars
of a binary system traces out an elliptical orbit whose period and major-axis length yields, in conjunction
with the universal gravitational constant G, the sum (m1 +m2) = M of the two stars’ masses.

The sum of the two stars’ masses from their vector-separation elliptical orbit

The Eq. (1d) vector-separation equation of motion r̈ = −GMr/|r|3 yields “angular momentum” conservation,

d(L/m)/dt = d(r× ṙ)/dt = (ṙ× ṙ) + (r× r̈) = (ṙ× ṙ)−GM(r× r)/|r|3 = 0. (2a)

Since (L/m) = (r × ṙ) is a constant vector , r(t) and ṙ(t) are always confined to the plane perpendicular to

that constant vector , i.e., r(t) is planar . Thus |r× ṙ| = (|L|/m) alone is relevant, so we define L
def
= |L|.

The Eq. (1d) vector-separation equation of motion r̈ = −GMr/|r|3 also yields “energy” conservation,

d(E/m)/dt = d
(
|ṙ|2/2−GM/|r|

)
/dt =

d
(
(ṙ · ṙ)/2−GM/(r · r)

1
2

)
/dt = (ṙ · r̈) +GM

(
(ṙ · r)/(r · r)

3
2

)
= ṙ ·

(
r̈ +GMr/|r|3

)
= 0.

(2b)
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Having shown that the Eq. (1d) equation of motion r̈ = −GMr/|r|3 for the vector-separation r = (r1−r2)
of the two stars implies the conservation relations (r × ṙ) = (L/m) and (|ṙ|2/2 − GM/|r|) = (E/m), we
would like to solve these conservation relations for the locus of that two-star vector-separation orbit, from
which we in turn would like to obtain enough information to determine M = (m1 +m2), the sum of the two
stars’ masses. Since we now know that this orbit is planar , the first thing we need to do is to express these
conservation relations in two-dimensional polar coordinates, which have the following properties,

r = (r cos θ, r sin θ), |r| = r,

ṙ = (ṙ cos θ − rθ̇ sin θ, ṙ sin θ + rθ̇ cos θ), |ṙ|2 = ṙ2 + r2θ̇2, |r× ṙ| = r2|θ̇|.
(3a)

Expressed in these two-dimensional polar coordinates |r× ṙ| = (L/m) becomes,

r2|θ̇| = (L/m), (3b)

and in these coordinates (|ṙ|2/2−GM/|r|) = (E/m) becomes,(
ṙ2 + r2θ̇2

)/
2−GM/r = (E/m) (3c)

We don’t try to solve Eqs. (3c) and (3b) for both r(t) and θ(t); we instead obtain only the orbit’s locus
r(θ) from these equations. We insert the relation ṙ2 = (dr/dθ)2θ̇2 into Eq. (3c), and then use Eq. (3b) to
substitute (L/m)2r−4 for θ̇2 in the result, which yields the following differential equation for the locus r(θ),

(L/m)2r−4
(
(dr/dθ)2 + r2

)/
2−GM/r = (E/m). (3d)

The disquieting factor r−4 in Eq. (3d) is eliminated upon changing the dependent variable from r to u = (1/r)
because dr/dθ = −u−2(du/dθ). After that change of dependent variable, Eq. (3d) reads,

(L/m)2
(
(du/dθ)2 + u2

)/
2−GMu = (E/m) (3e)

Eq. (1d) is satisfied by circular orbits r(t) = ρ0 > 0 provided that θ̇2 = GM/ρ30. Eq. (3e) is correspondingly
satisfied by circular loci u(θ) = 1/ρ0 provided that (L/m)2 = GMρ0 and (E/m) = −(GM/ρ0)/2. Circular
orbits aren’t general solutions of Eq. (1d) however, because M → 0 suppresses the gravitational force, which
allows Eq. (1d) to be satisfied by arbitrary constant-velocity straight-line trajectories (Newton’s First Law of
Motion). In two-dimensional rectangular coordinates all straight-line loci have the form,

ax− by =
(
a2 + b2

) 1
2 ρ0,

which is changed to polar coordinates by substituting (r cos θ) for x and (r sin θ) for y, with the result,

r
[
cos θ

(
a
/(
a2 + b2

) 1
2

)
− sin θ

(
b
/(
a2 + b2

) 1
2

)]
= ρ0.

An angle δ that satisfies cos δ = a/(a2 +b2)
1
2 and sin δ = b/(a2 +b2)

1
2 of course always exists. That, together

with the fact that u = 1/r, allows all straight-line loci in two dimensions to be written,

u(θ) = cos(θ + δ)/ρ0. (3f)

In the M → 0 limit of no gravitational force, substitution of Eq. (3f) into Eq. (3e) yields,

(L/(mρ0))2/2 = (E/m), (3g)

which always entails nonnegative energy E, as expected for no gravitational force and straight-line loci .
We have now exhibited two completely different special classes of solutions of the Eq. (3e) gravitational

orbit locus differential equation, namely the bounded circular loci u(θ) = 1/ρ0 and the unbounded straight-
line loci u(θ) = cos(θ + δ)/ρ0. It thus seems not unreasonable to guess that the general solutions u(θ) of
Eq. (3e) are linear-combination hybrids of these two opposite-character special solutions, namely,

u(θ) = (1− β cos(θ + δ))/ρ0. (3h)
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Inserting the Eq. (3h) circle/straight-line hybrid guess u(θ) = (1− β cos(θ + δ))/ρ0 into Eq. (3e) produces,

(L/(mρ0))2
(
−2β cos(θ + δ) + 1 + β2

)/
2− (GM/ρ0)

(
−β cos(θ + δ) + 1

)
= (E/m). (3i)

Since in Eq. (3i) the coefficient of cos(θ+ δ) must vanish, the first consequence of Eqs. (3h) and (3e) is that,

GM =
(
(L/m)2/ρ0

)
. (3j)

Putting this result back into Eq. (3i) yields the second consequence of Eqs. (3h) and (3e),

(E/m) = (L/(mρ0))2
(
β2 − 1

)/
2 = (GM/ρ0)

(
β2 − 1

)/
2, (3k)

from which we see that the energy E of this gravitational system is negative only if β2 < 1, namely only
if the Eq. (3h) circle/straight-line hybrid orbit locus u(θ) = (1 − β cos(θ + δ))/ρ0 is more a circle than it
is a straight line. Further on we deal with this orbit locus in more transparent detail by converting it to
two-dimensional rectangular coordinates; it is difficult to become accustomed to the fact that very large
values of r(θ) produce very small, innocuous-looking values of u(θ) = 1/r(θ). In rectangular coordinates it
is also transparent that this orbit locus is always a conic section. We already know that it is a circle when
β = 0, but a better overview also shows that it is an ellipse when 0 < β2 < 1, a parabola when β2 = 1 and
a hyperbola when β2 > 1. Thus it is little wonder that the Eq. (3k) energy of this gravitational system is
negative only if β2 < 1, namely only if its orbit locus is a circle or ellipse.

Eq. (3j) is the key to obtaining M = m1 + m2 from the universal gravitational constant G and suitable
input from the vector-separation orbit r(t) = (r1(t) − r2(t)) of the two stars. The ingredients which enter
into the right side of Eq. (3j) are the parameter ρ0 of the Eq. (3h) orbit locus u(θ) = (1− β cos(θ + δ))/ρ0
and the Eq. (3b) conserved dynamical orbit entity (L/m) = r2|θ̇|. Regarding r2|θ̇|, since the infinitesimal
planar area |dA| that corresponds to an infinitesimal angular arc |dθ| of the orbit is,

|dA| = 1
2r(r|dθ|) = r2|dθ|/2,

the planar area which the orbit sweeps out per unit time is,

|dA/dt| = r2|θ̇|/2 = (L/m)/2. (3l)

It was Johannes Kepler who first realized, in the course of studying the precise planetary-orbit observations
of Tycho Brahe, that |dA/dt| is a conserved dynamical orbit entity . Thus it has been routine for around 400
years for astronomers to read off (L/m) = 2|dA/dt| from orbital data. Alternatively, if the period T of the
orbit has been observed , then since |dA/dt| is constant in time,

(L/m) = 2|dA/dt| = 2A/T, (3m)

where A is the area enclosed by the complete elliptical orbit locus u(θ) = (1− β cos(θ + δ))/ρ0 with β2 < 1.
In terms of ρ0 and β (where β2 < 1), the area A enclosed by the complete elliptical orbit locus is,

A = π ρ20
/(

1− β2
) 3

2 = π r0R0, where r0
def
= ρ0/(1− β2)

1
2 and R0

def
= ρ0/(1− β2). (3n)

This r0 and R0 are the respective half-lengths of the minor and major ellipse axes. From Eqs. (3m) and (3n),

(L/m) = 2A/T = (2π/T ) ρ20
/(

1− β2
) 3

2 = (2π/T ) r0R0. (3o)

Insertion of Eq. (3o) into Eq. (3j) yields for the sum of the masses of the two stars,

(m1 +m2) = M = G−1
(
(L/m)2/ρ0

)
= G−1(2π/T )2

(
ρ0
/(

1− β2
))3

= G−1(2π/T )2R3
0. (3p)

In view of Eq. (3p) a simple observational link to R0 would be welcome. One observational link to R0 and r0
arises from the fact that the orbital perigee and apogee distances, the smallest and greatest distances between
the two stars, are respectively R0 ∓ (R2

0 − r20)
1
2 , so R0 is the arithmetic mean of the smallest and greatest

distances between the two stars, whereas r0 is the geometric mean of those smallest and greatest distances.
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It is worth mentioning that the parameters ρ0 and β of the elliptical locus u(θ) = (1 − β cos(θ + δ))/ρ0
are related to r0 and R0 by ρ0 = r20/R0, β = (1− (r0/R0)2)

1
2 and (1− β2) = (r0/R0)2; the inverse relations

r0 = ρ0/(1− β2)
1
2 and R0 = ρ0/(1− β2) which apply when β2 < 1 were noted in Eq. (3n).

Below Eq. (3l) we mentioned that (L/m) = 2|dA/dt| can simply be read off from orbital data, which is
doubtless the best option. Alternatively , if the period T of the orbit has been observed, we have from Eq. (3o)
that (L/m) = (2π/T ) r0R0. Below Eq. (3p) we mentioned that the basic elliptical-locus parameters R0 and
r0 are respectively the arithmetic and geometric means of the smallest and greatest distances between the
two stars. Alternatively , just as a circle is in principle determined by three or more of the points which lie on
it, an elliptical locus is in principle determined by five or more of the points which lie on it, the best option.

We have also mentioned that the Eq. (3h) representation u(θ) = (1 − β cos(θ + δ))/ρ0 of the orbit
locus is as opaque as it is simple. To remedy its opacity we convert it to rectangular coordinates. Since
u = 1/r, cos(θ + δ) = cos θ cos δ − sin θ sin δ, x = r cos θ and y = r sin θ, after multiplying the relation
u = 1/r = (1− β(cos θ cos δ − sin θ sin δ))/ρ0 by (rρ0), it is readily expressed in terms of y and x as,(

y2 + x2
) 1

2 = ρ0 + β(x cos δ − y sin δ). (4a)

In Eq. (4a) we set x to (x′ cos δ + y′ sin δ) and y to (y′ cos δ − x′ sin δ)—and then discard the primes—the
rotated coordinates explicitly display the mirror invariance of the locus, which is now manifest when y → −y,(

y2 + x2
) 1

2 = ρ0 + βx. (4b)

We square both sides of Eq. (4b) and regroup the resulting terms to reveal that this locus is the conic section,

y2 +
(
1− β2

)(
x−

(
βρ0

/(
1− β2

)))2
= ρ20

/(
1− β2

)
. (4c)

The Eq. (4c) locus is a circle when β = 0, an ellipse when 0 < β2 < 1, a parabola when β2 = 1 and a hyperbola
when β2 > 1. Thus this locus only applies to a binary-star system if β2 < 1. In that case Eq. (4c) yields the
semi-minor axis length r0 = ρ0/(1− β2)

1
2 > 0 and the semi-major axis length R0 = ρ0/(1− β2) ≥ r0; these

axis lengths were specifically mentioned in Eq. (3n). Since ρ0 = r20/R0, β = (1−(r0/R0)2)
1
2 = (R2

0−r20)
1
2 /R0

and (1− β2) = (r0/R0)2, expressing the Eq. (4c) elliptical locus in terms of r0 and R0 produces,

y2 + (r0/R0)2
(
x−

(
R2

0 − r20
) 1

2

)2
= r20, which enforces the bounds −r0 ≤ y ≤ r0 and

−R0 ≤
(
x−

(
R2

0 − r20
) 1

2

)
≤ R0, so

(
−R0 +

(
R2

0 − r20
) 1

2

)
≤ x ≤

(
R0 +

(
R2

0 − r20
) 1

2

)
.

(5a)

The square of the distance from the origin (0, 0) to this elliptical locus is, for x in its Eq. (5a) domain,

x2 + y2 = x2 + r20 − (r0/R0)2
(
x−

(
R2

0 − r20
) 1

2

)2
=
(
1− (r0/R0)2

)(
x+

(
r20/R0

)(
1− (r0/R0)2

)− 1
2

)2
, (5b)

which is, except in the R0 = r0 case of a circle, strictly increasing over the entire Eq. (5a) x-domain because,

d(x2 + y2)/dx = 2
(
1− (r0/R0)2

)(
x+

(
r20/R0

)(
1− (r0/R0)2

)− 1
2

)
=

2
(
1− (r0/R0)2

)[(
x−

(
−R0 +

(
R2

0 − r20
) 1

2

))
+
((
R0 −

(
R2

0 − r20
) 1

2

)(
1− (r0/R0)2

)− 1
2

)]
.

(5c)

The perigee therefore occurs at x = −R0 + (R2
0− r20)

1
2 , y = 0, and the apogee at x = R0 + (R2

0− r20)
1
2 , y = 0,

so the perigee and apogee distances are respectively R0 ∓ (R2
0 − r20)

1
2 , as is mentioned below Eq. (3p).

The area A of this Eq. (5a) elliptical locus is,

A = 2r0

∫ R0+
(
R2

0−r
2
0

) 1
2

−R0+
(
R2

0−r
2
0

) 1
2

(
1−

((
x−

(
R2

0 − r20
) 1

2

)/
R0

)2) 1
2

dx = 2r0R0

∫ 1

−1

(
1− u2

) 1
2 du =

2r0R0

∫ π/2

−π/2
cos2 θ dθ = r0R0

∫ π/2

−π/2
(1 + cos 2θ)dθ = r0R0[π + 1

2 (sinπ − sin(−π))] = π r0R0.

(5d)

Thus Eq. (3n) properly accords with the Eq. (5d) area A = π r0R0 of the Eq. (5a) elliptical locus.
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