The Nature of The $\Phi(m)$ Function

College of economics and management Chengdu University,China
Wei Zhang E-mail:tianshi20122013@sina.com

Abstract

In number theory, for the continuous product formula $\Pi\left(1-\frac{2}{p}\right)$, the mean ing is unclear. Th is paper gives the definition and nature of $\Phi(m)$ function, as well as the relationship between $\Phi(m)$ and Euler's totient function $\varphi(m)$. In number theory, Euler function $\varphi(m)$ is widely used, $\Phi(m)$ function if there are other applications, Some attempts are made in this paper.

Key words: $\Phi(m)$ function;Euler function $\varphi(m)$;co-prime
MSC: 11A41;11R04

Notation

P : a prime number.
m : a positive integer,
$\varphi(\mathrm{m})$: Euler's totient function.
$\Phi(\mathrm{m}): \Phi$ function.
$(\mathrm{a}, \mathrm{b})=1$: a and b are co-prime.
Π :the sign of the continued product.
\sim : denotes equivalence relation.

Definitions and Natures

Euler function $\varphi(m)$
In number theory, for the positive integer m, Euler function is the number of the positive integer q less than m and $(q, m)=1$.
$\varphi(m)=m \Pi\left(1-\frac{1}{p}\right)(p$ is a prime factor of $m)$
$\Phi(\mathrm{m})$ function ${ }^{[1][2][3]}$

1. In number theory, for an even number $m(m \geq 6)$, Function $\Phi(m)$ is the number of the positive odd q less than $m,(q, m)=1$ and $(q-2 k, m)=1$ or $(q+2 k, m)=1(k \geq 1)$.
Obviously, $\mathrm{q}<\mathrm{m}, \mathrm{q}-2 \mathrm{k}$ is not necessarily a positive integer or $\mathrm{q}+2 \mathrm{k}$ is not necessarily less than m.

If $k=2^{n}, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right)(p$ is the odd factor of m)
If the odd factor of k is different from that of $m, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right)$ (p is the odd factor of m) If k shares an odd factor p with $m, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right) \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}$
($\Pi\left(1-\frac{2}{p}\right), \mathrm{p}$ is the odd factor of $\mathrm{m}, \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)^{\prime}} \mathrm{P}$ is the common odd factor of k and m .)
If k is the same as the odd factor of $m, \Phi(m)=\varphi(m)$
For different $2 k$, if the difference of $2 k$ is a multiple of $m, \Phi(m)$ is equal, q is the same.
In particular, if $m=2^{n}, \Phi(m)=\varphi(m)=\frac{m}{2}$
2. If m is odd ($m \geq 3$), Function $\Phi(m)$ is the number of the positive integer q less than m, $(q, m)=1$ and $(q-k, m)=1$ or $(q+k, m)=1(k \geq 1)$.

Obviously, $\mathrm{q}<\mathrm{m}, \mathrm{q}-\mathrm{k}$ is not necessarily a positive integer or $\mathrm{q}+\mathrm{k}$ is not necessarily less than m.
If $k=2^{n}, \Phi(m)=m \Pi\left(1-\frac{2}{p}\right)(p$ is the odd factor of $m)$
If the odd factor of k is d ifferent from that of $m, \Phi(m)=m \Pi\left(1-\frac{2}{p}\right)(p$ is the odd factor of $m)$
If k shares an odd factor p with $\mathrm{m}, \Phi(\mathrm{m})=m \Pi\left(1-\frac{2}{\mathrm{p}}\right) \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}$
$\left(\Pi\left(1-\frac{2}{\mathrm{p}}\right), \mathrm{p}\right.$ is the odd factor of $\mathrm{m}, \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}, \mathrm{p}$ is the common odd factor of k and m)
If k is the same as the odd factor of $m, \Phi(m)=\varphi(m)$
For different $2 k$, if the difference of $2 k$ is a multiple of $m, \Phi(m)$ is equal, q is the same. For an odd number $m(m \geq 3), \Phi(2 m)=\Phi(m)$
3. In number theory, for an even number $m(m \geq 6)$, Function $\Phi(m)$ is the number of the positive odd q less than $m,(q, m)=1$ and $(m+2 k-q, m)=1(k \geq 1)$.
If $k=2^{n}, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right)(p$ is the odd factor of m)
If the odd factor of k is different from that of $m, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right)$ (p is the odd factor of m)
If k shares an odd factor p with $m, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right) \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}$
($\Pi\left(1-\frac{2}{\mathrm{p}}\right), \mathrm{p}$ is the odd factor of $\mathrm{m}, \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}, \mathrm{p}$ is the common odd factor of k and m .)
If k is the same as the odd factor of $m, \Phi(m)=\varphi(m)$
For different $2 k$, if the difference of $2 k$ is a multiple of $m, \Phi(m)$ is equal, q is the same.

The proof of $\Phi(m)$ Function

The proof of $\Phi(m)$ function is similar to euler function $\Phi(m)$, slightly.

For example

1: $\mathrm{m}=30,2 \mathrm{k}=2$ or $2 \mathrm{k}=4$ or $2 \mathrm{k}=8$ or $2 \mathrm{k}=16$ or $2 \mathrm{k}=32$ or $2 \mathrm{k}=2^{\mathrm{n}}, \Phi(\mathrm{m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right)=3$, q is not more than $30,(q, 30)=1$ and $(q-2 k, 30)=1(k \geq 1)$,

The number of odd pairs $(q-2, q)$ is $3,(q-2, q):(-11),(1113),(1719)$.

The number of odd pairs $(q-4, q)$ is $3,(q-4, q):(711),(1317),(1923)$.

The number of odd pairs $(q-8, q)$ is $3,(q-8, q):(-71),(-17),(1119)$.
The number of odd pairs $(q-16, q)$ is $3,(q-16, q):(17),(723),(1329)$.
The number of odd pairs $(q-32, q)$ is $3,(q-32, q):(-311),(-1913),(-1319)$.

The number of odd pairs $(q-64, q)$ is $3,(q-64, q):(5311),(-4717),(-4123)$.
$2 k=2$ and $2 k=32$,the difference between $2 k$ is $30, q$ is the same, $q: 1,13,19$.
$2 k=4$ and $2 k=64$,the difference between $2 k$ is $60, q$ is the same, $q: 11,17,23$.

2: $m=30,2 k=6$ or $2 k=12$ or $2 k=24$ or $2 k=48$ or $2 k=3^{N} \times 2^{n}, \Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right) \Pi \frac{(p-1)}{(p-2)}=6$, q is not more than $30,(q, 30)=1$ and $(q-2 k, 30)=1(k \geq 1)$,

The number of odd pairs $(q-6, q)$ is $6,(q-6, q):(17),(713),(1319),(1117),(1723),(2329)$.
The number of odd pairs $(q-12, q)$ is $6,(q-12, q):(-111),(113),(719),(1729),(-111),(11$ 23).

The number of odd pairs $(q-24, q)$ is $6,(q-24, q):(-231),(-177),(-1311),(-1113),(-7$ 17),(-1 23).

The number of odd pairs $(q-48, q)$ is $6,(q-48, q):(-471),(-417),(-3711),(-3117),(-29$ 19),(-19 29).

3: $\mathrm{m}=30,2 \mathrm{k}=30$ or $2 \mathrm{k}=60$ or 2 k is a multiple of $30, \Phi(\mathrm{~m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right) \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}=\frac{\mathrm{m}}{2} \Pi(1-$ $\left.\frac{1}{\mathrm{p}}\right)=\varphi(\mathrm{m})=8$, q is not more than $30,(q, 30)=1$ and $(q-2 k, 30)=1(k \geq 1)$,

The number of odd pairs $(q-30, q)$ is $8,(q-30, q):(-291),(-237),(-1911),(-1713),(-13$ 17),(-11 19),(-7 23),(-1 29).

The number of odd pairs $(q-60, q)$ is $8,(q-60, q):(-591),(-537),(-4911),(-4713),(-43$ 17),(-41 19),(-37 23),(-31 29).

4: $\mathrm{m}=30,2 \mathrm{k}=14$ or $2 \mathrm{k}=28$ or $2 \mathrm{k}=56$ or $2 \mathrm{k}=7^{\mathrm{N}} \times 2^{\mathrm{n}}, \Phi(\mathrm{m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right)=3$, q is not more than $30,(q, 30)=1$ and $(q-2 k, 30)=1(k \geq 1)$,

The number of odd pairs $(q-14, q)$ is $3,(q-14, q):(-131),(-77),(-113)$.

The number of odd pairs (q-28,q) is $3,(q-28, q):(129),(-1117),(-1711)$.

The number of odd pairs $(q-56, q)$ is $3,(q-56, q):(-497),(-4313),(-3719)$.
5: $\mathrm{m}=30,2 \mathrm{k}=2$ or $2 \mathrm{k}=4$ or $2 \mathrm{k}=8$ or $2 \mathrm{k}=16$ or $2 \mathrm{k}=32$ or $2 \mathrm{k}=2^{\mathrm{n}}, \Phi(\mathrm{m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right)=3$, q is not more than $30,(q, 30)=1$ and $(30+2 k-q, 30)=1(k \geq 1)$,
$(\mathrm{q}, 30)=1$ and $(30+2-\mathrm{q}, 30)=1$, the number of q is $3, \mathrm{q}: 1,13,19$.
$(q, 30)=1$ and $(30+4-q, 30)=1$, the number of q is $3, q: 11,17,23$.
$(q, 30)=1$ and $(30+8-q, 30)=1$, the number of q is $3, q: 1,7,19$.
$(q, 30)=1$ and $(30+16-q, 30)=1$, the number of q is $3, q: 17,19,23$.
$(\mathrm{q}, 30)=1$ and $(30+32-\mathrm{q}, 30)=1$, the number of q is $3, \mathrm{q}: 1,13,19$.
$(q, 30)=1$ and $(30+64-q, 30)=1$, the number of q is $3, q: 11,17,23$.
$2 \mathrm{k}=2$ and $2 \mathrm{k}=32$,the difference between 2 k is $30, \mathrm{q}$ is the same, $\mathrm{q}: 1,13,19$.
$2 \mathrm{k}=4$ and $2 \mathrm{k}=64$,the difference between 2 k is $60, \mathrm{q}$ is the same, $\mathrm{q}: 11,17,23$.

6: $\mathrm{m}=30,2 \mathrm{k}=6$ or $2 \mathrm{k}=12$ or $2 \mathrm{k}=24$ or $2 \mathrm{k}=48$ or $2 \mathrm{k}=3^{\mathrm{N}} \times 2^{\mathrm{n}}, \Phi(\mathrm{m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right) \Pi \frac{(\mathrm{p}-1)}{(\mathrm{p}-2)}=6$, q is not more than $30,(q, 30)=1$ and $(30+2 k-q, 30)=1(k \geq 1)$,
$(q, 30)=1$ and $(30+6-q, 30)=1$, the number of q is $6, q: 7,13,17,19,23$,
$(q, 30)=1$ and $(30+12-q, 30)=1$, the number of q is $6, q: 1,11,13,19,23$,
$(\mathrm{q}, 30)=1$ and $(30+24-\mathrm{q}, 30)=1$, the number of q is $6, \mathrm{q}: 1,7,11,13,17,23$.
$(q, 30)=1$ and $(30+48-q, 30)=1$, the number of q is $6, q: 1,7,11,17,19,29$.

7: $m=30,2 k=30$ or $2 k=60$ or $2 k$ is a multiple of 30 , $\Phi(m)=\frac{m}{2} \Pi\left(1-\frac{2}{p}\right) \Pi \frac{(p-1)}{(p-2)}=\frac{m}{2} \Pi(1-$ $\left.\frac{1}{\mathrm{p}}\right)=\varphi(\mathrm{m})=8$, q is not more than $30,(q, 30)=1$ and $(30+2 k-q, 30)=1(k \geq 1)$,
$(q, 30)=1$ and $(30+30-q, 30)=1$, the number of q is $8, q: 1,7,11,13,17,19,23$.
$(\mathrm{q}, 30)=1$ and $(30+60-\mathrm{q}, 30)=1$, the number of q is $8, \mathrm{q}: 1,7,11,13,17,19,23$,

8: $\mathrm{m}=30,2 \mathrm{k}=14$ or $2 \mathrm{k}=28$ or $2 \mathrm{k}=56$ or $2 \mathrm{k}=7^{\mathrm{N}} \times 2^{\mathrm{n}}$, $\Phi(\mathrm{m})=\frac{\mathrm{m}}{2} \Pi\left(1-\frac{2}{\mathrm{p}}\right)=3$,
q is not more than $30,(q, 30)=1$ and $(30+2 k-q, 30)=1(k \geq 1)$,
$(q, 30)=1$ and $(30+14-q, 30)=1$, the number of q is $3, q: 1,7,13$.
$(q, 30)=1$ and $(30+28-q, 30)=1$, the number of q is $3, q: 11,17,29$.
$(\mathrm{q}, 30)=1$ and $(30+56-\mathrm{q}, 30)=1$, the number of q is $3, \mathrm{q}: 7,13,19$.

Application of $\Phi(m)$ function: The generalized Goldbach's conjecture

The Goldbach's conjecture is that $\forall n \in N^{*}, \exists p, q \in P$, such that $2 n=p+q$.

The generalized Goldbach's conjecture ${ }^{[4]}$:
Given $m, a \in N,(a, m)=1$,for every $\frac{x}{2}=a(\bmod m)$ large enough (x is even integer), $\exists p, q \in$ P,such that $x=p+q$ and $p \equiv q \equiv a(\bmod m)$.

Let $G(a, m, x)$ is the number of representatives a large even integer x as a sum of two primes p and q, Among them $(a, m)=1, p \equiv q \equiv a(\bmod m)$.
Let $G(x)$ is the number of representatives a large even integer x as a sum of two primes. $\Phi(m)$ is the number of categories of $G(x)$ for mod m.

1. If $m=2^{n}, G(a, m, x) \sim \frac{1}{\Phi(m)} G(x) \sim \frac{1}{\varphi(m)} G(x)$

2. If m is odd, $G(a, m, x) \sim \underset{\Phi(m)}{\sim} G(x), \Phi(m)=m \Pi\left(1-\frac{2}{p}\right)$ (p is the odd factor of m)

Where $G(x) \sim 2 C \cdot \Pi \frac{(p-1)}{(p-2)} \cdot \frac{x}{\ln ^{2} x}\left(p\right.$ is the odd factor of $x . C=\Pi\left(1-\frac{1}{(p-1)^{2}}\right), p$ is an odd prime number.)
It can be seen, while $m=2 ; m=3$ or $m=6$ aiternative,

$$
\mathrm{G}(\mathrm{x})=\mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{~m}) \sim \mathrm{G}(\mathrm{x})
$$

this formula prompts the expression of Goldbach conjecture.

references

[1] G.h.Hardy and E.M.wright.An Introduction to The Theory of Numbers,section 17.1 and 22.20.The Oxford University Press,5ed.
[2]Ke zhao, Sun qi. Lecture Notes on Number Theory (part one) [M]. Beïjing: Higher Education Press. 1990.
[3] Min sihe, Yan shīian. Elementary Number Theory [M]. Beijing: Higher Education Press. 1992.
[4] Chengdong Pan and Chengbiao Pan.The Goldbach's Conjecture,section 6.1 and 8.1. Science Press,2ed.

