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Abstract

In this short note we describe the correspondence between tangles and
associahedra tiles, where R occurs in the case of braid tangles, leading to a
natural extension to ribbons for C. Such tangles were used by Bar-Natan
to study Khovanov complexes in nice cobordism categories.

1 Introduction

Khovanov homology [1] for links and tangles was studied by Bar-Natan [2] using
a careful construction of cobordism categories. In particular, we do not require
a tangle diagram to be thought of as a morphism between source and target.
For many applications, it is preferable to bound the core of the planar tangle
diagram with a polygon with an arbitrary number of sides. Then a trace of
the core uses arcs in any number of different directions. Such a trefoil tangle is
shown in figure 3.

After Bar-Natan [2], the core of a tangle diagram, which contains all the
crossings, will be drawn inside a polygon with B sides. This core diagram meets
the boundary polygon in generic points along the edges. Outside the polygon,
a set of non crossing loops will join the points on any given edge. Observe how
we generalise the use of sources and targets for braid diagrams, corresponding
to a polygon with only B = 2 sides.

Our motivation is cohomology for motivic gravity [3][4][5], and we will see
below that the ubiquitous associahedra are closely related to tangles inside poly-
gons. Both associahedra and cubes appear [6][7][8] in configuration spaces as-
sociated to cubics, which are applied to rest masses.

2 Tangle traces

No matter how many sides B our tangle boundary has, on each edge we will
place N points. For braid tangles, N can take any value, but for ribbons we set
N = 2m. A trace on such a polygon with B sides is defined to be a selection of
non crossing loops between points on the same edge of the polygon, as shown
in figures 1 and 2. A ribbon trace clearly requires N = 0 mod 4, and there are
2m/2−1 such diagrams. The total number of braid traces on each edge is 2m−1,
which counts noncommutative partitions, shown for N = 8 in figure 1.
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Figure 1: Noncommutative partitions counting traces

When N = 12, the ribbon traces of figure 2 reduce the 32 braid traces down
to just four. An example of a full ribbon trace is shown for the trefoil knot
of figure 3. This diagram is pleasing to physicists, because it replaces a B2

braid for B = 2 with a representation that is truly ternary, reflecting the three
dimensions of space [3].

Figure 2: Four ribbon traces at N = 12

In analogy to the smoothing cubes in Khovanov homology, the traces on an
edge belong to a cube. However, we are more interested in completely general
smoothing diagrams, to be used in the basic axioms of categories with more
than two arrow ends.

Figure 3: A ribbon trefoil traced on a triangle

3 Loop free smoothings

Let (B,N) denote the space of all possible diagrams on a polygon with B sides,
with N points on each edge. The outer traces are described above. Inside the
polygon, we permit smoothing diagrams, without specifying a knot or link, and
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with no internal loops. That is, all possible non crossing diagrams between the
boundary points are allowed. Examples are given in figures 4 and 5.

Figure 4: 5 diagrams in (B,N) = (3, 2)

Figure 5: 42 diagrams in (B,N) = (5, 2)

The easy proof that (B, 2) contains a Catalan number CB of smoothings is
given in figure 6. Each diagram corresponds to a rooted binary tree vertex on
an associahedron [9][10]. The associahedron point is the B = 1 trivial polygon,
and at B = 2 we have the tangle associator edge. These two diagrams also
represent four leg trees when a propagator stands in for the area bounded by
the two pink edges, as shown in figure 7. Such diagrams are closely related to
planar algebras [11].

Figure 6: Proof of polygon Catalan numbers

What about higher dimensional faces of the associahedron? The saddle
cobordism of figure 7 is the associator edge, modelling edges on associahedra in
all dimensions. Since we are secretly talking about homotopy, we go upwards
in dimension from there. For us, the dimension of an associahedron polytope
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is the categorical dimension that we are working in, because particle number
must increase with dimension in quantum computation.

Long ago, I forget where, J. Loday pointed out that the trefoil knot could
be drawn on the nine faces of the B = 4 associahedron. Each crossing is drawn
on one of the three square faces, and each pentagon face carries a single arc. To
turn our trefoil triangle into this associahedron, we first create a tetrahedron
with an unused vertex at infinity, so that each trace arc sits on a triangle face.
Now put three vertices right in the centre of the crossing triplet, and two extra
vertices along each edge between the ribbon arc ends. Along with our four
tetrahedron vertices, and an extra vertex in the centre of the central tetractys,
we have the required 14 vertices.

Here the 3 + 1 points that are placed inside the crossing triplet resemble the
3+1 points that are added to the 10 point sheaf cohomology good cover of RP2,
to obtain the associahedron. This is cohomology.

Figure 7: Scattering channels as tangles

4 Comment on gravity

The combinatorics of genus zero moduli spaces with B + 2 points is well known
to come from the associahedra [7]. In the geometry of line configurations for
cubics, both associahedra and cubes are required to tile the S3 boundary of a
4-cell [8]. Such complex tilings are essential to the Higgs mechanism [6] in the
motivic reformulation of the Standard Model, which we already know makes
heavy use of the associahedra.

A canonical correspondence between algebraic tangles and polytope axioms
is central to the philosophy of the motivic approach, wherein the old space goes
to algebra functors of topological field theories are replaced by one special infinite
dimensional category (or generalised category) that encapsulates the monadicity
of quantum logic.

A cube of size 2B(m/2−1) is built out of tangle traces. As N increases by
one step of 4, this cube grows by a factor of 2B , which equals 16 in the case of
B = 4. Such outer cubes describe spinor degrees of freedom [12].
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