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Abstract

Trigonometry studies the properties of the cosine and sine functions, which relate a contiguous arc of the
unit-radius circle centered on the origin of coordinates to the rectangular Cartesian coordinates of the arc’s
endpoints. Since the Pythagorean theorem underlies the concept of Cartesian coordinates, this tutorial
commences with a plane-geometry recapitulation of that theorem. In the non-calculus treatment of the
cosine and sine, their demonstrable properties are encompassed by the unit length of unit-radius circle
vectors and the “angle-addition formula” which relates the rectangular coordinates of the endpoints of
two immediately successive arcs of the unit-radius circle to the rectangular coordinates of the endpoints of
the combined contiguous arc. Those properties are insensitive, however, to simultaneous single-parameter
rescaling of all of the arc lengths involved, and so don’t unambiguously characterize the cosine and sine
functions of directed arc length. Unambiguous determination of the cosine and sine hinges on whether
their derivatives with respect to directed arc length are well-defined, which presents no issues for arcs of
the unit-radius circle. In fact the cosine and sine functions fascinatingly are the real and imaginary parts
of the hyper-well-behaved exponential function of imaginary argument.

Review of the Pythagorean theorem in plane geometry

Some plane geometry texts gloss over the Pythagorean theorem without mentioning its centrality to Cartesian
coordinates, or emphasizing that it follows from the equality of the ratios of the corresponding side lengths
of three particular similar right triangles. It therefore seems worthwhile to reprise its demonstration here.

Given a right triangle whose two legs have lengths denoted l1 and l2, and whose hypotenuse has length
denoted h, we construct the the line segment perpendicular to its hypotenuse from its right-angle vertex.
This line segment, whose length we denote p, divides the right triangle into two more right triangles, each of
which is similar to the original right triangle because the angles are the same. The intersection point of this
line segment with the hypotenuse divides the hypotenuse into two line segments: we denote as s the length
of the hypotenuse line segment which intersects the leg of length l1; the remaining hypotenuse line segment,
whose length of course is (h− s), intersects the leg of length l2. Because the three right triangles are similar,
the following equalities of the ratios of their corresponding side lengths hold,

s/l1 = p/l2 = l1/h and p/l1 = (h− s)/l2 = l2/h, (1a)

where the last equality turns out to be redundant; we ignore it. Solving the remaining equalities for p yields,

p = s l2/l1 = l1l2/h = (h− s)l1/l2, (1b)

which can in turn be solved for s and (h− s) in terms of l1, l2 and h, with the results,

s = (l1)2/h and (h− s) = (l2)2/h. (1c)

Adding the two equalities of Eq. (1c) to eliminate s yields,

h =
(
(l1)2 + (l2)2

)/
h ⇒ h2 = (l1)2 + (l2)2, which is the Pythagorean theorem. (1d)

The rectangular coordinates of a unit-length vector after its planar rotation

Trigonometry studies the properties of the functions cos θ and sin θ which are defined as being respectively
the x and y coordinates of the x-direction unit vector (1, 0) after its counterclockwise rotation about (0, 0)
by the angle θ, i.e.,

R(θ)(0, 1) = (cos θ, sin θ), (2a)

which as well means that (cos θ, sin θ) is the (x, y) point of the unit-radius circle centered on (0, 0) which is
arrived at after counterclockwise traversal of that circle by arc length θ, starting from the circle’s point (1, 0).
Familiar simple examples of Eq. (2a) are,
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R(0)(1, 0) = (1, 0) = (cos(0), sin(0)), R(π/4)(1, 0) =
(
(2)−

1
2 , (2)−

1
2

)
= (cos(π/4), sin(π/4)),

R(π/3)(1, 0) =
(
(1/2), (3

1
2 /2)

)
= (cos(π/3), sin(π/3)), R(π/2)(1, 0) = (0, 1) = (cos(π/2), sin(π/2)),

R(π)(1, 0) = (−1, 0) = (cosπ, sinπ), R(3π/2)(1, 0) = (0,−1) = (cos(3π/2), sin(3π/2)).

(2b)

Since (cos θ, sin θ) always lies on the unit-radius circle centered on (0, 0), it has the basic property ,

cos2 θ + sin2 θ = 1. (2c)

The counterclockwise traversal of the unit-radius circle centered on (0, 0) by θ from an arbitrary starting
point (cos θ0, sin θ0) on that unit-radius circle is naturally defined as,

R(θ)(cos θ0, sin θ0)
def
= R(θ0 + θ)(1, 0) = (cos(θ0 + θ), sin(θ0 + θ)). (2d)

Since (cos θ0, sin θ0) = R(θ0)(1, 0), imposition of Eq. (2d) makes the operator R(θ) angle-additive, i.e.,

R(θ)R(θ0)(1, 0) = R(θ0 + θ)(1, 0) = R(θ + θ0)(1, 0) = R(θ0)R(θ)(1, 0), (2e)

which remains the case when (1, 0) in Eq. (2e) is replaced by the arbitrary unit-radius circle starting point
(cos θi, sin θi) (the reader may wish to fill in the demonstration).

By drawing the representations of the two successive counterclockwise traversals by θ1 and θ2 of the unit-
radius circle from the appropriate two successive starting points (1, 0) and (cos θ1, sin θ1), it can be worked
out , with the aid of cos2 θ1 + sin2 θ1 = 1, that the following trigonometric angle-addition formula holds,

R(θ2)R(θ1)(1, 0) = (cos θ1 cos θ2 − sin θ1 sin θ2, sin θ1 cos θ2 + cos θ1 sin θ2) =

R(θ1 + θ2)(1, 0) = (cos(θ1 + θ2), sin(θ1 + θ2)).
(2f)

One way to work out Eq. (2f) is to note that the point where the line segment representing sin(θ1 + θ2)
intersects the line segment representing cos θ2 divides both of those line segments into two line segments;
the lengths of all four resulting line segments can be worked out in terms of cos θ1, sin θ1, cos θ2 and sin θ2,
and those particular four lengths are also fairly simply related to cos(θ1 + θ2) and sin(θ1 + θ2) (it is useful
to take note that cos2 θ1 + sin2 θ1 = 1 however). One sees from the Eq. (2f) result , however, that R(θ) is a
linear operator . By combining the linearity of R(θ) with its angle-additivity noted in Eq. (2e), one arrives
at the Eq. (2f) angle-addition formula result by the following alternative route,

R(θ2)R(θ1)(1, 0) = R(θ2)(cos θ1, sin θ1) = cos θ1R(θ2)(1, 0) + sin θ1R(θ2)(0, 1) =

cos θ1R(θ2)(1, 0) + sin θ1R(θ2)R(π/2)(1, 0) = cos θ1R(θ2)(1, 0) + sin θ1R(π/2 + θ2)(1, 0) =

cos θ1(cos θ2, sin θ2) + sin θ1(cos(π/2 + θ2), sin(π/2 + θ2))

(2g)

By counterclockwise traversal of the unit-radius circle from the starting point (1, 0) by arc length (π/2+θ2),
and then by counterclockwise traversal of this circle from (1, 0) by arc length (π/2− θ2) it can be seen that,

(cos(π/2 + θ2), sin(π/2 + θ2)) = (− cos(π/2− θ2), sin(π/2− θ2)) = (− sin θ2, cos θ2), (2h)

which upon insertion into Eq. (2g) yields,

R(θ2)R(θ1)(1, 0) = cos θ1(cos θ2, sin θ2) + sin θ1(− sin θ2, cos θ2) =

(cos θ1 cos θ2 − sin θ1 sin θ2, sin θ1 cos θ2 + cos θ1 sin θ2) =

R(θ1 + θ2)(1, 0) = (cos(θ1 + θ2), sin(θ1 + θ2)),

(2i)

which is exactly the same as the Eq. (2f) trigonometric angle-addition formula result that involved manip-
ulations whose motivation was much less transparent. It is readily verified that Eq. (2i) properly adheres
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to cos2(θ1 + θ2) + sin2(θ1 + θ2) = 1 provided that cos2 θj + sin2 θj = 1, j = 1, 2, as is required by Eq. (2c).
Non-calculus trigonometry is encompassed by Eq. (2c) and the Eq. (2i) trigonometric angle-addition formula,
which both tolerate a simultaneous single-parameter rescaling θ → kθ of all θ which are involved, and thus
don’t uniquely determine (cos θ, sin θ) as a function of θ. Unambiguous determination of cos θ and sin θ in-
volves obtaining their derivatives, whose calculation is known to be rendered well-defined by the requirement
that limδθ→0(sin δθ/δθ) = 1. The arc length |δθ| of a sufficiently short smooth arc is always well approxi-
mated by the length of the straight-line-segment chord which joins the two ends of that arc. Therefore we
next obtain the length of the chord of an arc of the unit-radius circle which is traversed from the starting
point (1, 0), and verify that the ratio of | sin δθ| to that chord length approaches unity in the limit that the
corresponding arc length |δθ| → 0.

Length of the chord of an arc of the unit-radius circle

Consider the arc of the unit-radius circle which starts at (1, 0) and has arc length |θ|. We denote the length
of the straight-line-segment chord which joins the two ends of that arc as chl θ. Of course that chord length
chl θ is less than the arc length |θ| of the arc, but it turns out to be greater than | sin θ|; chl θ is readily
obtained by application of the Pythagorean theorem,

chl θ =
(
(sin θ)2 + (1− cos θ)2

) 1
2 ≥ | sin θ|; moreover, chl θ = (2(1− cos θ))

1
2 . (3a)

The arc length of a sufficiently short smooth arc always approaches its corresponding chord length, i.e.,

limδθ→0(chl δθ/|δθ|) = 1. (3b)

Inverting the Eq. (3a) result for the chord length chl θ of a unit-radius circle’s arc yields,

cos θ = 1− 1
2chl2 θ ⇒ | sin θ| =

(
1− cos2 θ

) 1
2 =

(
chl2 θ − 1

4chl4 θ
) 1

2 = chl θ
(
1− 1

4chl2 θ
) 1

2 . (3c)

Eq. (3b) in conjunction with the Eq. (3c) result that | sin θ| = chl θ
(
1− 1

4chl2 θ
) 1

2 yields,

limδθ→0(| sin δθ|/|δθ|) = 1, (3d)

and since (| sin θ|/|θ|) = (sin θ/θ) when 0 < |θ| < π, Eq. (3d) implies that,

limδθ→0(sin δθ/δθ) = 1. (3e)

Unambiguous characterization of the cosine and sine functions

With Eq. (3e) in hand, we next apply it together with Eqs. (2i) and (2c) to obtain d cos θ/dθ and d sin θ/dθ.
We write Eq. (2i) in a form conducive to taking the limits which define d cos θ/dθ and d sin θ/dθ,

cos(θ + δθ) = cos θ cos δθ − sin θ sin δθ and sin(θ + δθ) = sin θ cos δθ + cos θ sin δθ. (4a)

Combining d cos θ/dθ = limδθ→0((cos(θ+δθ)−cos(θ))/δθ) and d sin θ/dθ = limδθ→0((sin(θ+δθ)−sin(θ))/δθ)
with Eq. (4a) yields,

d cos θ/dθ = lim
δθ→0

((cos(θ + δθ)− cos(θ))/δθ) = lim
δθ→0

[cos θ((cos δθ − 1)/δθ)− sin θ(sin δθ/δθ)] and

d sin θ/dθ = lim
δθ→0

((sin(θ + δθ)− sin(θ))/δθ) = lim
δθ→0

[sin θ((cos δθ − 1)/δθ) + cos θ(sin δθ/δθ)].
(4b)

The two key limits on the right sides of Eq. (4b) are (1) limδθ→0(sin δθ/δθ) = 1 from Eq. (3e), and (2)
limδθ→0((cos δθ − 1)/δθ). Since (cos δθ − 1) = (cos2 δθ − 1)/(cos δθ + 1) = − sin2 δθ/(cos δθ + 1), we obtain,

lim
δθ→0

((cos δθ − 1)/δθ) = lim
δθ→0

[−(sin δθ)(sin δθ/δθ)/(cos δθ + 1)] = 0. (4c)

The Eq. (4c) and (3e) limits are what is needed to evaluate the right sides of Eq. (4b), which yield,

d cos θ/dθ = − sin θ and d sin θ/dθ = cos θ. (4d)
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A certain linear combination of cos θ and sin θ very usefully turns out to be an exponential . The hypothesis
below is built to make its left and right sides agree at θ = 0 (Eq. (2b) shows that (cos(0), sin(0)) = (1, 0)),

cos θ + β sin θ = exp(γθ), (5a)

Differentiating the two sides of Eq. (5a) with respect to θ yields,

β cos θ − sin θ = γ exp(γθ) = γ(cos θ + β sin θ), (5b)

which implies that β = γ and γ2 = −1, so β = γ = ±i. Thus,

cos θ ± i sin θ = exp(±iθ). (5c)

The two signs of ±i in fact are redundant ; their effect is already accounted for when θ → −θ.
This exponential version of trigonometry readily yields the Eq. (2i) angle-addition formula; on one hand,

exp(iθ1) exp(iθ2) = exp(i(θ1 + θ2)) = cos(θ1 + θ2) + i sin(θ1 + θ2), (5d)

whereas on the other hand ,

exp(iθ1) exp(iθ2) = (cos(θ1) + i sin(θ1))(cos(θ2) + i sin(θ2)) =

(cos(θ1) cos(θ2)− sin(θ1) sin(θ2)) + i(sin(θ1) cos(θ2) + cos(θ1) sin(θ2)).
(5e)

Eqs. (5d) and (5e) together produce the Eq. (2i) angle-addition formula, namely,

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2) and sin(θ1 + θ2) = sin(θ1) cos(θ2) + cos(θ1) sin(θ2). (5f)

As well as the angle-addition formula, exponential trigonometry yields Eq. (2c) since,

1 = exp(0) = exp
(
(iθ)+(−iθ)

)
= exp(iθ) exp(−iθ) = (cos θ + i sin θ)(cos θ − i sin θ) = cos2 θ + sin2 θ. (5g)

Proceeding now to the Taylor expansions of trigonometric functions, that of exp(iθ) is elementary ,

exp(iθ) =
∑∞
k=0(i)k(θ)k/k! =

∑∞
n=0(i)2n(θ)2n/(2n)! +

∑∞
n=0(i)2n+1(θ)2n+1/(2n+ 1)! =∑∞

n=0(−1)n(θ)2n/(2n)! + i
∑∞
n=0(−1)n(θ)2n+1/(2n+ 1)! .

(6a)

Since exp(iθ) = cos θ + i sin θ, the Taylor expansions of cos θ and sin θ can now be read off from Eq. (6a),

cos θ =
∑∞
n=0(−1)n(θ)2n/(2n)! and sin θ =

∑∞
n=0(−1)n(θ)2n+1/(2n+ 1)! . (6b)

It is readily verified that the Eq. (6b) Taylor expansions of cos θ and sin θ also follow from their derivatives—
which are given by Eq. (4d)—in conjunction with the Eq. (2b) fact that (cos(0), sin(0)) = (1, 0).
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